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Abstract: In diabetes, possibly the most significant site of microvascular damage is the kidney. Due to
diabetes and/or other co-morbidities, such as hypertension and age-related nephron loss, a significant
number of people with diabetes suffer from kidney diseases. Improved diabetic care can reduce the
prevalence of diabetic nephropathy (DN); however, innovative treatment approaches are still required.
MicroRNA-21 (miR-21) is one of the most studied multipotent microRNAs (miRNAs), and it has been
linked to renal fibrosis and exhibits significantly altered expression in DN. Targeting miR-21 offers an
advantage in DN. Currently, miR-21 is being pharmacologically silenced through various methods, all
of which are in early development. In this review, we summarize the role of miR-21 in the molecular
pathogenesis of DN and several therapeutic strategies to use miR-21 as a therapeutic target in DN.
The existing experimental interventions offer a way to rectify the lower miRNA levels as well as
to reduce the higher levels. Synthetic miRNAs also referred to as miR-mimics, can compensate for
abnormally low miRNA levels. Furthermore, strategies like oligonucleotides can be used to alter the
miRNA levels. It is reasonable to target miR-21 for improved results because it directly contributes to
the pathological processes of kidney diseases, including DN.

Keywords: nephropathy; chronic kidney disease; diabetes; pharmacological silencing of miR-21;
LNA-21; antagomirs; small interfering RNAs (siRNAs); antisense oligonucleotides (ASOs); miR-21-5p;
miR-21-3p; hsa-miR-21

1. Introduction

Diabetes mellitus is a multifactorial and chronic metabolic disorder characterized by
hyperglycemia and caused by defects in insulin secretion or action. In both developed
and developing countries, diabetes is a major public health concern. In the last 20 years,
the global diabetes population has more than doubled [1–5] and type 2 diabetes mellitus
(T2DM) accounts for more than 90% of the global diabetes burden [5–7]. In diabetic patients,
the long-term and recurring hyperglycemic condition causes dysfunction, internal organ
injury, and failure, which leads to the development of diabetes-related comorbidities [8].

Among all diabetes-related comorbidities, diabetic nephropathy (DN) is regarded
as one of the leading causes of end-stage renal disease (ESRD), which further leads to
increased morbidity and mortality in diabetic patients [9]. DN imposes the highest burden
in terms of both financial expense and impact on daily life [10,11]. In the 1980s, Mogensen
defined diabetic kidney disease (DKD) as a progressive condition that is initiated with the
loss of small amounts of albumin into the urine (30–300 mg/day), termed microalbuminuria
or incipient nephropathy [12]. DN has generally been considered a microvascular ailment,
with retinopathy [13] and neuropathy [14], and is distinct from macrovascular disease,
which leads to peripheral vascular disease, coronary heart disease, and cerebrovascular
disease [15]. However, each condition can be considered as a tissue-specific expression
of the same pathogenetic process, with DN being the renal manifestation of the same
glucose-driven process that occurs at other vulnerable places in the body [16–18].
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On the other hand, in the past decades, the dysregulation of small non-coding RNA
molecules, and miRNAs sparked interest in the occurrence and progression of DN. Several
microRNAs (miRNAs) have been reported to be deregulated in DN, including miR-21,
miR-124, miR-135a, miR-192, miR-195, miR-200, miR-215, miR-216a, miR-217, miR-377, and
miR-1207-5p, which bind to the 3′ untranslated region (UTR) of reno-protective genes and
suppress their activity [19]. Thus, miRNAs can serve as a diagnostic tool and be used to
anticipate the involvement of certain pathogenic signaling in DN [8,10,20]. Among the
miRNAs, miR-21 is one of the most significant miRNAs involved in renal fibrosis and is
elevated in the tissues of the kidneys [21]. Overexpressed miR-21 increases oxidative stress
and regulates signaling pathways related to renal fibrosis. In mice, miR-21 promotes renal
fibrosis by silencing metabolic pathways [22]. It is a highly regulated miRNA in kidneys of
the mouse model for DN [23]. In this context, the strategic use of miR-21 as a therapeutic
target may be helpful to combat DN.

In this narrative review, we explored the current understanding of miR-21 in the de-
velopment and pathogenesis of DN. We addressed its association with metabolic pathways
and discussed the possible strategies to use miR-21 as a therapeutic agent. Finally, we
discussed the future possibilities and concerns related to miRNA-based therapy.

2. Development of DN and Current Therapeutics

The inability of endothelial cells to downregulate their glucose transport in response
to high glucose levels, in particular, results in an overwhelming flux of intracellular glucose,
triggering the production of pathogenetic mediators that contribute to the development
of DKD [11]. Pathogenetic processes, initiated and sustained in the kidney by increased
glucose levels, can be intensified by various variables. These include a range of metabolic
(glucose-dependent pathways) alterations, hemodynamic (various vasoactive hormones)
abnormalities, and alterations in signaling pathways caused by prolonged hyperglycemia
resulting in the development of DN. The key factors in the development and progression
of renal dysfunction are almost always present, such as excess fatty acids, oxidative stress,
dyslipidemia, obesity, hypertension, formation of advanced glycation end products (AGEs),
the activation of protein kinase C (PKC), inflammation, intrarenal vascular disease, acute
kidney injury, glomerular atherosclerosis, activation of the renin–angiotensin–aldosterone
system (RAAS), and age-related nephron loss. In the context of diabetes, these factors
feed into and intensify common pathogenetic pathways such as elevated levels of growth
factors, vasoactive hormones, cytokines, and chemokines in the kidney [11,24].

Current treatments for DN include drugs to slow its progression or kidney replacement
therapy, neither of which is an effective treatment for DN. The current standard of care for
DN involves blood pressure control with angiotensin I-converting enzyme inhibitors or an-
giotensin receptor blockers and good glycemic control, which have been partially effective
in delaying the onset and/or progression of renal dysfunction. Additionally, metformin
combined with sodium-glucose co-transporter 2 inhibitors (SGLT2is) is recommended as
the first-line treatment for patients with a glomerular filtration rate ≥ 30 mL/min/1.73 m2

because of their cardioprotective properties and ability to stop the progression of chronic
kidney disease (CKD). Concomitant mineralocorticoid receptor blockade has been em-
ployed to further prevent the CKD progression. A combined regimen of angiotensin
I-converting enzyme inhibitors or angiotensin receptor blockers with a mineralocorticoid
receptor blockade may help to further reduce albuminuria in diabetic nephropathy [24].

The best practices to address this devastating condition are rapid diagnosis and proper
interventions. Early identification has the potential to offer long-term advantages by
decreasing disease progression, increasing life expectancy, and minimizing the humanistic
and economic burden. Despite these advantages, DN instances are rarely discovered until
serious issues arise [11,24].

A better knowledge of the molecular pathways that are dysregulated in the early
stages and progression of the disease is critical for the development of novel therapies
for this catastrophic condition. Identifying early biomarkers will support the discovery
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of new mechanisms of pathophysiological alterations in diabetic kidney injury. Although
numerous molecular mechanisms have been addressed as therapeutic approaches in DN,
the incidence and prevalence of the disease are increasing. On these grounds, identi-
fying a novel target(s) for a new therapy to improve the clinical management of DN is
vital [11,24,25].

3. MicroRNAs in Diabetic Nephropathy

miRNAs are endogenous, non-coding RNA molecules that are 19–25 nucleotides
long [20]. These small molecules attach to the 3′ UTR of target messenger RNAs (mR-
NAs) [26]. miRNAs regulate the gene expression of particular mRNA targets and are
produced in the cell nucleus via a complicated multi-step biosynthetic process that be-
gins with RNA polymerase II. The human genome harbors approximately more than
2300 miRNAs [27], with each possessing the potential to regulate the activity of hundreds
of mRNAs. These miRNAs are recognized for their capability to modulate the expression
of over 60% of protein-encoding mRNAs, exhibiting tissue and cell-specific regulatory
effects. They can be found in plasma, urine, cerebrospinal fluid, and other extracellular
fluids. miRNAs are involved in a variety of cellular activities, including differentiation, cell
growth and proliferation, metabolism, organogenesis, tissue remodeling, stress response,
and apoptosis. Furthermore, they have important roles in many diseases, including neuro-
logical disorders, cancer, vascular disease, heart disease, viral infection, diabetes mellitus,
and diabetes-related kidney disease [10,20,28].

miRNAs play a pivotal role in various aspects of DN pathophysiology, encompass-
ing the pathological alterations of the glomerular basement membrane, the buildup of
extracellular matrix proteins such as collagen and fibronectin, and the process of epithelial-
to-mesenchymal transition (EMT). These aforementioned changes collectively contribute to
the characteristic manifestation of renal tissue fibrosis [9].

One of these miRNAs, miR-21, has been one of the most studied multipotent miRNAs.
Its expression undergoes significant alterations in DN, highlighting its relevance in the
context of renal fibrosis. Figure 1 shows the role of miR-21 in the pathogenesis of DN.
miR-21 is often investigated to enhance cell proliferation, inflammation, angiogenesis,
and immunological destruction and has been implicated in the development of DN in
numerous studies. Also, prior studies have reported that overexpression of miR-21 under
high glucose settings suppresses mesangial cell proliferation, and while exaggerating Akt
activation stimulates mesangial cell hypertrophy and fibronectin expression [29,30]. The
degree of glomerular fibrosis during renal fibrosis has been strongly correlated with miR-21
expression levels. miR-21 overexpression increases transforming growth factor-beta1 (TGF-
β1)-induced EMT by upregulating mothers against decapentaplegic homolog 3 (SMAD3)
expression and downregulating SMAD7 expression. Notably, miR-21 inhibitors improve
kidney structure and function in DN in addition to halting the advancement of renal fibrosis
and EMT [31,32]. Thus, the direct reduction of renal fibrosis in DN may be achieved by
suppressing miR-21.
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Figure 1. Role of miR-21 in the pathogenesis of diabetic nephropathy. miR-21, microRNA-21; PTEN, 
phosphatase and TENsin homolog; TGF-β, transforming growth factor-β; TIMP3, tissue inhibitor of 
metalloproteinases 3; MCP-1, monocyte chemoattractant protein 1; CDC25A, cell division cycle 25A; 
CDK6, cyclin dependent kinase 6; NF-κB, nuclear factor κB; PDCD4, programmed cell death 4; IL-
1β, interleukin-1β; TNF-α, tumor necrosis factor α [10,23]. 
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main function of miR-21 is the degradation of mRNAs of several target genes by binding 
to their 3′ UTR regions [34]. The biogenesis of miR-21 begins with the expression of pri-
mary transcript pri-miR-21. The mature miR-21 is formed by two consecutive cleavage 
reactions [35]. The gene coding pri-miR-21 overlaps with the TMEM49 gene. 

miR-21 has several experimentally validated target genes including programmed cell 
death 4 (PDCD4), retinoblastoma 1 (RB1), transforming growth factor beta receptor 2 
(TGFBR2), B-cell lymphoma-2 (BCL-2), phosphatase and TENsin homolog (PTEN), 
SMAD7, tropomyosin 1 (TPM1), tumor protein P63 (TP63), and others (Figure 1). Many 
of them are linked to intrinsic or extrinsic pathways of apoptosis and autophagy. As it is 
overexpressed in many cancers, it is considered an oncogenic miRNA. Its oncogenic func-
tion includes inhibition of the apoptosis pathway [36,37]. In the case of pancreatic cancer, 
miR-21 promotes glycolysis and lactate production. This metabolic reprogramming favors 
cancer progression [38]. For renal cancer, it promotes malignancy by silencing the large 
tumor suppressor gene 1 (LATS1) [39]. 

In the case of DN also, miR-21 is upregulated and its target genes have critical roles 
in multiple signaling pathways which regulate renal fibrosis [40]. DN is associated with 
progressive renal fibrosis. Fibrosis originates from tissue injuries and is caused by the ac-
tivation of renal fibroblasts which secrete and remodel the extracellular matrix [41]. The 
extracellular matrix proteins accumulate in the mesangium and basement membrane of 
the glomerulus and renal tubulointerstitium. The changes in the protein composition in 
the mesangium are initiated by glucose metabolism and the formation of advanced gly-
cation end products [42]. Overexpression of glucose transporter type 1 (GLUT1) in mesan-
gial cells enhances the synthesis of an extracellular matrix [43,44]. As a consequence of 
glucose metabolism, reactive oxygen species (ROS) are generated which further activate 
several intracellular signaling pathways [45]. The signaling pathways activate redox-sen-
sitive transcription factors which change gene expressions of extracellular matrix proteins 
[42]. In normal injury, fibrosis helps to repair damaged tissues. In pathological fibrosis, 

Figure 1. Role of miR-21 in the pathogenesis of diabetic nephropathy. miR-21, microRNA-21; PTEN,
phosphatase and TENsin homolog; TGF-β, transforming growth factor-β; TIMP3, tissue inhibitor of
metalloproteinases 3; MCP-1, monocyte chemoattractant protein 1; CDC25A, cell division cycle 25A;
CDK6, cyclin dependent kinase 6; NF-κB, nuclear factor κB; PDCD4, programmed cell death 4; IL-1β,
interleukin-1β; TNF-α, tumor necrosis factor α [10,23].

4. Role of microRNA-21 in Metabolic Pathways Related to Diabetic Nephropathy

miR-21 is classified as a non-coding miRNA, with a length ranging from 20 to 24 nucleotides
and is encoded by gene MIR21. Its chromosomal location is 17q23.1 [33]. The main function
of miR-21 is the degradation of mRNAs of several target genes by binding to their 3′ UTR re-
gions [34]. The biogenesis of miR-21 begins with the expression of primary transcript pri-miR-21.
The mature miR-21 is formed by two consecutive cleavage reactions [35]. The gene coding
pri-miR-21 overlaps with the TMEM49 gene.

miR-21 has several experimentally validated target genes including programmed
cell death 4 (PDCD4), retinoblastoma 1 (RB1), transforming growth factor beta receptor 2
(TGFBR2), B-cell lymphoma-2 (BCL-2), phosphatase and TENsin homolog (PTEN), SMAD7,
tropomyosin 1 (TPM1), tumor protein P63 (TP63), and others (Figure 1). Many of them are
linked to intrinsic or extrinsic pathways of apoptosis and autophagy. As it is overexpressed
in many cancers, it is considered an oncogenic miRNA. Its oncogenic function includes
inhibition of the apoptosis pathway [36,37]. In the case of pancreatic cancer, miR-21
promotes glycolysis and lactate production. This metabolic reprogramming favors cancer
progression [38]. For renal cancer, it promotes malignancy by silencing the large tumor
suppressor gene 1 (LATS1) [39].

In the case of DN also, miR-21 is upregulated and its target genes have critical roles
in multiple signaling pathways which regulate renal fibrosis [40]. DN is associated with
progressive renal fibrosis. Fibrosis originates from tissue injuries and is caused by the
activation of renal fibroblasts which secrete and remodel the extracellular matrix [41]. The
extracellular matrix proteins accumulate in the mesangium and basement membrane of the
glomerulus and renal tubulointerstitium. The changes in the protein composition in the
mesangium are initiated by glucose metabolism and the formation of advanced glycation
end products [42]. Overexpression of glucose transporter type 1 (GLUT1) in mesangial
cells enhances the synthesis of an extracellular matrix [43,44]. As a consequence of glucose
metabolism, reactive oxygen species (ROS) are generated which further activate several
intracellular signaling pathways [45]. The signaling pathways activate redox-sensitive
transcription factors which change gene expressions of extracellular matrix proteins [42].
In normal injury, fibrosis helps to repair damaged tissues. In pathological fibrosis, the
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activation of fibroblasts is prolonged [46]. miR-21 levels were found related to increased
fibrosis through the TGF-β signaling pathway. Wang et al. reported knockdown of Ski-
related novel protein (SnoN) which promotes the upregulation of miR-21 [47]. SnoN is
known to negatively regulate the TGF-β signaling pathway which promotes the synthesis of
extracellular matrix proteins [48,49]. Hence, SnoN suppresses renal fibrosis by modulating
the TGF-β signaling pathway and miR-21 expression [47].

On the other hand, it was also reported that the overexpressed miR-21 can promote
fibrosis by silencing metabolic pathways in mice [22,50]. Chau et al. reported that in miR-
21 knockdown mice, 700 genes belonging to metabolic pathways are de-repressed. The
pathways included fatty acid and lipid oxidation pathways [50]. Alternatively, in murine
models, the overexpression of miR-21 has the capacity to suppress metabolic pathways.
Roggli et al. reported that the overexpressed miR-21 reduces glucose-stimulated insulin
secretion [51]. In addition, Liu et al. observed that in mice lacking miR-21 specifically in
β-cells, there was an enhancement in glucose uptake and an increase in glucose-stimulated
insulin secretion [52]. Additionally, it has been revealed that miR-21 contributes to car-
diovascular diseases. miR-21, which was initially shown to promote tumor growth, was
later determined to be involved in mediating the homeostasis of the cardiovascular system.
Abnormally high levels of miR-21 cause a wide range of cardiovascular diseases, such as
coronary heart disease, cardiac fibrosis, and cardiac hypertrophy. In turn, miR-21 increases
heart hypertrophy and interstitial fibrosis by encouraging cardiac fibroblast survival and
growth factor release [53].

Furthermore, it has been observed that the overexpression of miR-21 is related to
the prognosis of DN through renal fibrosis. However, this relationship appears to be
predominantly influenced by signaling pathways rather than metabolic pathways. Further
investigations are warranted to explore the specific impact of upregulated miR-21 on genes
involved in metabolic pathways.

5. Strategies to Use miR-21 as a Therapeutic Target in Diabetic Nephropathy

Currently, available experimental interventions offer a way to rectify the lower miRNA
levels as well as to reduce excessive levels. Figure 2 shows possible strategies for lower-
ing miR-21 levels. The use of synthetic miRNAs, commonly known as miR-mimics, can
compensate for the lower-than-usual levels of miRNAs. In addition, strategies such as
oligonucleotides can be employed to reduce the levels of miRNAs. Since miR-21 plays a
direct role in the pathological processes of various CKDs, including DN, it is rational to
target it for better outcomes. Targeting miR-21 offers an advantage in terms of selectivity in
DN as opposed to transcription factors, which are complex molecules and present a phar-
macological challenge in specific targeting. Currently, miR-21 is being pharmacologically
silenced through various methods, all of which are in early development. In Table 1 we
summarized different targets of miR-21 and their therapeutic implications in DN.
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Table 1. Therapeutic implications of miR-21 silencing in diabetic nephropathy.

Model miR-21 Expression Target Major Findings Ref.

Human and mouse Upregulated CDC25A, CDK6

miR-21 targets CDC25A and CDK6
in mesangial cells and results in
mesangial cell hypertrophy by
stimulating a G1-phase arrest.
miR-21 targets PTEN, increasing
podocyte motility as well as the
formation and deposition of
extracellular matrix.

[23]

MES13 cell line, mouse
kidney, and human
biopsies

Upregulated TIMP3

A considerable overexpression of
miR-21 was seen in mesangial cells
cultured in high glucose
environments and in mouse kidney
and human kidney biopsies. The
glycemic burden can stimulate
miR-21 expression and destroy
TIMP3 mRNA.

[54]

Diabetic kk-ay mice
and C57BL mice
(control)

Upregulated MMP-9/TIMP1

miR-21 expression was significantly
higher in kk-ay mice. miR-21
expression positively correlated with
TIMP1, collagen IV, urine albumin
creatine ratio (ACR), and fibronectin;
whereas negatively correlated with
creatine clearance ratio (Ccr) and
MMP-9 protein. Antagomir-21
improved Ccr and ACR and reduced
collagen IV, TIMP1, and fibronectin.

[55]

Male kk-ay and
C57BL/6J mice Upregulated SMAD7

miR-21 overexpression accelerated
TGF-β1-induced EMT by targeting
SMAD7. Notably, miR-21 inhibitor
improves the renal structure and
function and inhibits fibrosis.

[31]

DN mouse models and
cell models Upregulated FOXO1

FOXO1 was recognized as a target of
miR-21. By specifically targeting
FOXO1 in high glucose cultured
podocytes, miR-21 utilizes its
pro-apoptosis and anti-autophagy
effects.

[47]

Rat renal tubular
epithelial cells and
HEK 293T cells

Upregulated SMAD7

SMAD7 is a direct target of miR-21,
and its overexpression may prevent
rat renal tubular epithelial cells from
proliferating.

[56]

db/db mice (a mouse
model of T2D) Upregulated SMAD7

Overexpression of miR-21 in kidney
cells increased the generation of
fibrotic and inflammatory markers
driven by high glucose, whereas
miR-21 knockdown decreased this
production. Renal miR-21
knockdown restored Smad7 levels
and reduced activation of the TGF-β
and NF-κB signaling pathways.

[21]
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Table 1. Cont.

Model miR-21 Expression Target Major Findings Ref.

OVE26 type 1 diabetic
mouse Upregulated PTEN, PRAS40

Upregulation of miR-21 resulted in
the promotion of renal fibrosis. In
high glucose-induced TORC1
activity, miR-21 increased renal cell
hypertrophy and fibronectin
expression.

[57]

Kidney biopsies of DN
patients and normal
kidney donors

Upregulated PTEN-SMAD7

Tubular miR-21 upregulation was
seen in human kidney biopsies.
miR-21 specifically targets the
repressors of SMAD3-dependent
and PI3K-dependent TGF-β1
signaling, SMAD7, and PTEN
(known fibrotic signaling proteins),
respectively.

[29]

DN patients Upregulated Not determined

Patients with DN had higher levels
of hsa-miR-21-5p, and an inverse
relationship between eGFR and
miR-21-5p in the proximal tubules
and glomeruli was found.

[58]

Abbreviations: SMAD: mothers against decapentaplegic homolog; PTEN: phosphatase and TENsin homolog; DN:
diabetic nephropathy; PI3K: phosphoinositide 3-kinase; PRAS40: proline-rich Akt substrate of 40 kDa; TGF-β:
transforming growth factor-β; NF-κB: nuclear factor κB; TIMP: tissue inhibitor of metalloproteinases; MMP-9: matrix
metalloproteinases-9; FOXO1: forkhead box O1; TORC1: target of rapamycin complex 1; eGFR: estimated glomerular
filtration rate; T2D: Type 2 diabetes; CDC25A: cell division cycle 25A; CDK6: cyclin-dependent kinase 6.

5.1. Antisense Oligonucleotides

Oligonucleotides are short, synthetic sequences of nucleotides, either DNA or RNA,
that find their uses in genetic applications from DNA sequencing to modulation of gene
expression. Antisense oligonucleotides (ASOs) are a type of oligonucleotide that can be
designed to bind and inhibit the function of an RNA such as miR-21 [59]. ASOs have ad-
vanced enough to provide precise targeting of miR-21, making it a highly feasible strategy;
however, they have a major drawback that has limited their use in in vivo applications.
They are extremely sensitive and vulnerable to ribonuclease-mediated degradation, which
occurs in both cellular and extracellular environments. When injected into the kidneys of
a diabetic animal, they are degraded by ribonucleases in the bloodstream. To circumvent
this limitation of ASOs, the nucleotides are chemically modified to prevent them from
ribonuclease-mediated degradation and to be quickly taken in by the target cells. The
results of these modifications have produced 3 types of oligonucleotides. (1) The least
modified ASO is obtained by substituting non-bridged phosphate oxygens with sulfur
atoms. The resulting species are called phosphorothioate (PS)-modified ASOs which are
resistant to ribonucleases and stay intact for a longer period. However, they lack specificity
in terms of binding to their targets and their unwanted involvement with the proteins
presents another significant drawback [60]. (2) A methyl bridge is inserted between 2-O
and 4-C of the ASOs to form locked nucleic acids (LNAs). This modification gives LNAs a
locked 3′-endo conformation which is protective against nucleases. A modification known
as GapmeR has been employed to improve the function of miRNAs [61]. This modification
involves connecting two LNAs with a short DNA segment. As a result, the modified
species, known as GapmeR, exhibits increased susceptibility to degradation by nucleases
when bound to their targets. This enhanced degradation is considered a desirable property
in the context of their intended function [61]. (3) The third and most advanced type of
ASO is obtained through the substitution of ribose 2′-OH group with 2′-O-methyl (2′-O-
Me), 2′-fluoro (2′-F), or 2′-O-methoxyethyl (2′-O-MOE). It is also resistant to nucleases
and has additional advantages such as increased half-life, higher specificity, and being
non-immunogenic [62]. Other types of ASOs can also be formed through a mix and match
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of these modifications to meet the desired properties. One such example is antagomir
which contains 2′-O-Me, PS, and a cholesterol group [63].

Various types of ASOs have been used in animal studies to evaluate the therapeutic
effects of miR-21 silencing. In one such preclinical study, the researchers first established
that miR-21 is a major unregulated miRNA in DN animal models and human patients [23].
They also found that miR-21 suppresses the cell division cycle 25A (CDC25A) and cyclin-
dependent kinase 6 (CDK6) in mesangial cells that promote a G1-phase arrest, eventually
leading to hypertrophy (Table 1). Moreover, a higher miR-21 level could induce podocyte
motility by regulating PTEN [30]. Subsequently, they proceeded to suppress miR-21 in
diabetic mice by employing LNAs, leading to a decrease in tubulointerstitial fibrosis,
mesangial matrix expansion, and albuminuria [23]. A single dose of LNAs showed its
effects for at least 21 days indicating the sustainability of this mode of treatment.

Exploring beyond direct DN, work has been done on the therapeutic silencing of
miR-21 in Alport syndrome which shares many features with DN. In the context of this
article, the most important features present between Alport syndrome and DN are miR-21-
induced glomerulosclerosis and tubulointerstitial fibrosis. In a preclinical study published
in 2015, the researchers performed miR-21 silencing in a mouse model of Alport nephropa-
thy [22]. The mice were subcutaneously administered ASOs that were chemically modified
to enhance their stability, specificity, and compound visualization in the kidneys. This
intervention led to a lowering of albuminuria and attenuation of glomerulosclerosis and
interstitial fibrosis. In another animal study that evaluated the individual and combined
effects of anti-miR-21 ASOs (Lademirsen) with angiotensin I-converting enzyme inhibitor
therapy (ramipril) in Alport syndrome mice models; anti-miR-21 therapy was found to have
both individual and additive benefits in delaying kidney damage [64]. Lademirsen also
underwent a phase 1 clinical trial for its safety and pharmacodynamic and pharmacokinetic
profile in Alport syndrome patients but its phase 2 clinical trial was terminated by the
sponsor because it failed to meet the pre-defined futility criteria [65].

5.2. Natural Compounds

Oligonucleotides are not the sole method to down-regulate miR-21; some natural
compounds such as resveratrol, 3, 6-dihydroxyflavone, quercetin, and epigallocatechin-
3-gallate, can also lower the levels of miR-21 [66]. Astragaloside IV (AS-IV), a bioactive
saponin extracted from the Astragalus root, is another such compound that downregulates
miR-21. In a study conducted in 2017, the authors investigated the effect of AS-IV on the
progression of DN in diabetic mice and high glucose-treated podocytes [67]. They found
that AS-IV treatment, in a dose-dependent manner, significantly ameliorated progressive
albuminuria and glomerulosclerosis in diabetic mice. AS-IV also attenuated high glucose-
induced podocyte apoptosis, caused remission in the endoplasmic reticulum (ER) stress,
and restored impaired autophagy. Additional investigations looking into the underlying
mechanism of these effects revealed that the protective effects of AS-IV were mediated, at
least in part, by sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA2)-dependent
ER stress attenuation and activation of protein kinase α (AMPKα)-promoted autophagy
induction pathways. Another study found that the miR-21-inhibiting ability of AS-IV
improved renal function and renal fibrosis [68]. The detailed analysis showed that over-
expression of miR-21 activated the β-catenin pathway and the TGF-β1/Smads pathway
which in turn promoted podocyte dedifferentiation and mesangial cell activation. The
downregulation of miR-21 reversed these processes and led to an improvement of renal
function in the mice models.

Hyperoside is a natural compound obtained from Abelmoschus manihot L medic and
is known to have a hypoglycemic effect. In a study by Zhang et al., the administration of
hyperoside markedly improved the renal dysfunction of diabetic mice [69]. These effects
of hyperoside were mediated by suppression of fibronectin (FN), collagen IV (COL IV),
and TIMP1 expression, and promotion of matrix metalloproteinase-9 (MMP-9) and MMP-2
expressions. The up-regulation of MMP-9 in a post-transcriptional manner led the authors
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to speculate that hyperoside shows its effects by downregulating miR-21. Additional
analysis revealed that hyperoside exerts a down-regulatory effect on miR-21 expression.

Ursolic acid is known to have anti-hyperglycemic, anti-hyperlipidemic, anti-inflammatory,
and anti-oxidative effects. Previously, it was shown to inhibit miR-21 and cause apoptosis and
ameliorate fibrosis and hypertrophy [70,71]. In a study evaluating the effects of ursolic acid in
DN, it was shown to ameliorate podocyte injury in high glucose-treated murine cell cultures.
These effects were secondary to the inhibition of miR-21 which increased the expression
of PTEN which in turn inhibited Akt and mTOR and restored autophagy and eventually
ameliorated renal injury [72].

Quercetin is another plant-based compound known to have ant-miR-21 effects. It
has been shown to ameliorate diabetic fibrosis in human tubular epithelial HK-2 cells by
downregulating miR-21 [73]. A lack of miR-21 upregulated PTEN and TIMP3 which were
already known to play an anti-fibrotic role in the kidneys [74,75].

Curcumin also possesses anti-miR-21 activity. However, it has limited bioavailability.
Very high doses are required to achieve its therapeutic concentrations. To circumvent this
challenge, a novel analog of curcumin, called C66, has been developed which requires
only 5 mg/kg dose and it has been previously shown to alleviate diabetic cardiomyopathy
and DN through in vitro and in vivo analyses [76,77]. Later, it was found that C66 inhibits
miR-21 which plays a role in its protective mechanism against DN [78].

5.3. Small Molecules

Atorvastatin is a synthetic lipid-lowering drug used in the prevention and treatment
of atherosclerosis and cardiovascular disease. It has been shown to reduce the miR-21
level [79]. In a study on the effects of atorvastatin in type 1 diabetes mellitus mice, it reduced
the level of miR-21 that resulted in alleviating renal tubular epithelial cell injury. The
authors first treated the streptozotocin-induced diabetic mice with high glucose and high
fat, which increased the level of miR-21 and downregulated the expression of peroxisome
proliferator-activated receptors-α (PPAR-α). Upon the administration of atorvastatin, these
changes were reversed which led to an improvement in lipid metabolism, mitochondrial
dysfunction, and subsequent reduction in DKD [80].

Metformin is another small molecule with the potential to downregulate miR-21.
Metformin is better known for its hypoglycemic effects in T2DM but recently it was shown
to have direct implications on DN by modulating miR-21 levels. First, it was found that
T2DM and DN patients have an elevated level of miR-21-5p and a lower level of MMP-
9 [81]. A similar analysis of patients receiving metformin revealed that they have a lower
level of miR-21 and higher levels of MMP-9. The same study also found that metformin
directly targets miR-21. Moreover, the in silico analysis showed that MMP-9 and PTEN are
targets of miR-21-5p.

Pioglitazone is a PPAR-γ agonist widely used in T2DM. It possesses glucose lowering
as well as direct anti-fibrotic properties and was shown to alleviate DN [82,83]. Recently,
it was found that pioglitazone inhibits miR-21-5p expression in TGF-β1-exposed HK-2
cells and unilateral ureteral obstruction (UUO) kidney [84]. The inhibition of miR-21-5p
expression by pioglitazone was confirmed when the administration of miR-21-5p inhibitors
produced the same effect as pioglitazone and that of miR-21-5p mimics which reversed
these effects [84].

5.4. Genetic Engineering

Although less practical than the above-mentioned intervention, genetic engineering
provides another therapeutic option to lower the levels of miR-21. In an animal study, the
researchers used ultrasound-mediated gene transfer to introduce a plasmid containing a
knockdown sequence for miR-21 into the kidney cells of diabetic mice [21]. This plasmid
was mixed with another plasmid to induce its expression. This knockdown led to the
mitigation of microalbuminuria and renal fibrosis and inflammation in diabetic mice.



Biomedicines 2023, 11, 2583 10 of 13

6. Future Possibilities in miRNA-Based Therapy

Current therapeutic interventions for DN targeting miR-21 are in the preclinical stages,
with Lademirsen being the only relevant intervention that entered clinical studies for
the treatment of Alport syndrome. However, the phase 2 clinical trial was eventually
terminated due to failure to meet the objectives. Prior to clinical trials, any potential
therapeutic must address a number of issues, along with safe and effective delivery to the
site of action, the kidneys. The most promising agents to silence miR-21 are ASOs, which
require subcutaneous or intravenous administration due to their low stability and poor
absorption from the gastrointestinal tract. This poses potential complications for human
subjects, and early clinical trials must address these concerns. Additionally, sustainable
intervention with an extended half-life is necessary to avoid frequent injections and improve
patient compliance. Despite these challenges, given that DN is a significant complication
of diabetes, addressing these issues and pursuing clinical studies of miR-21 targeting
interventions is a worthy endeavor.

7. Conclusions

Although current therapeutic approaches for DN-directing miR-21 are in preclinical
stages, relevant studies have shown a significant potential for this miRNA as both diagnos-
tics and therapeutic targets for renal pathologies. Emerging evidence has demonstrated that
miR-21 is a pathogenic factor in the development of DN and its expression is dramatically
enhanced in the course of DN. Consolidating and translating these findings, however, will
take much more work. To integrate the therapeutic role of miR-21 into standard clinical
practice and to confirm its viability, multination and multicenter epidemiological studies
are needed. Nonetheless, the discovery of miRNAs as potential targets for the enhancement
of DN patient outcomes offers optimism for important upcoming clinical advancements.
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