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Abstract: Psychotic disorders are a heterogenous class of mental illness, with an intricate pathophys-
iology, involving genetics and environmental factors, and their interaction. The identification of
accessible biomarkers in bodily systems such as blood may lead to more accurate diagnosis, and more
effective treatments targeting dysfunctional pathways, and could assist in monitoring the disease
evolution. This systematic review aims to highlight the dysregulated microRNAs (miRNAs) in the
peripheral blood of patients with psychotic disorders. Using the PRISMA protocol, PubMed and
Science Direct databases were investigated and 22 articles were included. Fifty-five different miRNAs
were found differentially expressed in the blood of psychotic patients compared to controls. Seven-
teen miRNAs (miR-34a, miR-181b, miR-432, miR-30e, miR-21, miR-137, miR-134, miR-7, miR-92a,
miR-1273d, miR-1303, miR-3064-5p, miR-3131, miR-3687, miR-4428, miR-4725-3p, and miR-5096)
were dysregulated with the same trend (up- or down-regulation) in at least two studies. Of note,
miR-34a and miR-181b were up-regulated in the blood of psychotic patients in seven and six studies,
respectively. Moreover, the level of miR-181b in plasma was found to be positively correlated with
the amelioration of negative symptoms. The panel of miRNAs identified in this review could be
validated in future studies in large and well-characterized cohorts of psychotic patients.

Keywords: miRNAs; blood; psychotic disorders

1. Introduction

Psychotic disorders are mental illnesses characterized by psychotic symptoms, which
are generally described as significantly altered or distorted perceptions of reality. Although
their median lifetime prevalence has been estimated to be only 7.49 per 1000 [1], psychotic
disorders cause substantial functional impairment in affected individuals. Schizophrenia,
whose prevalence was 24 million in 2019, represents one of the top 15 leading causes of
disability worldwide [2] with patients experiencing a significantly lower quality of life than
unaffected individuals [3].

Unless psychotic symptoms appear because of drugs or substance use, or other medical
conditions such as brain tumors, viral infections, or metabolic disorders [4], their etiology has
not been clearly defined yet. What is certain is that a complex interplay between genetic and
environmental factors occurs, playing an important role in the onset and progression of such
diseases [5,6].

Data on the genetic component of psychiatric disorders is mainly derived from twin
studies. A recent work based on the nationwide Danish Twin Register has estimated
that the heritability of psychotic disorders is 73%, while multiple studies reported the
heritability of schizophrenia and bipolar disorder with a value of approximately 80% [7–9]
and 70%, respectively [10].

The environmental factors associated with psychotic disorders are heterogeneous.
Childhood trauma and infections have been extensively researched and frequently linked
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to both schizophrenia and bipolar disorder, while obstetric complications, birth in the
winter or spring, migration, and urban living are risk factors mainly associated with
schizophrenia, while their role in bipolar disorder is not [11]. Uncertain results have been
obtained on Vitamin D, with many studies reporting lower serum Vitamin D levels in
patients suffering from psychotic disorders compared to healthy individuals [12], without
explaining whether this is a causal relationship or an effect of poorer patients’ lifestyle
choices. Moreover, other studies have shown that both neonatal Vitamin D deficiency and
excess seem to increase the risk of developing schizophrenia during later life [13,14].

From the clinical point of view, psychotic disorders are characterized by dysfunctions
in at least one of the following areas: hallucinations, delusions, disorganized thinking or
speech, abnormal motor behavior, and negative symptoms. The duration and number of symp-
toms of affected individuals differentiate between the disorders categorized under the term
“Schizophrenia Spectrum and Other Psychotic Disorders”, in the DSM-5 [15]. Table 1 presents
the disorders included in the category of psychotic disorders, as classified by the DSM-5.

Table 1. Schizophrenia Spectrum and Other Psychotic Disorders, as classified by the DSM-5 (Ameri-
can Psychiatric Association, 2013 [15]).

Schizophrenia Spectrum and Other Psychotic Disorders

Schizotypal personality disorder
Delusional disorder
Brief psychotic disorder
Schizophreniform disorder
Schizophrenia
Schizoaffective disorder
Psychotic disorders induced by another condition:

− Substance or medication-induced
− Due to another medical condition

Catatonia
Other specified schizophrenia spectrum and other psychotic disorder
Unspecified schizophrenia spectrum and other psychotic disorder

At present, psychotic disorders are diagnosed exclusively based on clinical features,
and while clinicians have become very skilled at assessing symptoms, the lack of biological
tests represents an important limit in psychiatry.

Over the past two decades, an extraordinary effort has been made to identify biomark-
ers that are significantly associated with either a specific symptom or a cluster of symptoms
from the category of psychotic disorders. These could be useful for both diagnostic and
disease monitoring purposes, as well as for predicting treatment response, and potential
side effects to certain antipsychotics, so that even initial treatment can directly bypass
individual genetic resistance mechanisms.

Moreover, these biomarkers could help to predict the conversion to psychosis in
individuals from high-risk groups.

The search for biomarkers has been oriented towards two main areas: central biomark-
ers, where the state of the brain is being analyzed using various neuroimaging methods,
and peripheral biomarkers, where specific molecules from different peripheral tissues are
quantified, in an attempt to correlate them with certain symptoms.

The most investigated central biomarker associated with schizophrenia is dopaminer-
gic hyperactivity at the D2 dopamine receptor. Along with studies using SPECT (single-
photon emission computed tomography), detecting a hyperdopaminergic state both in
first-episode psychosis and subsequent episodes [16], pharmacological studies on D2 an-
tagonists have been conducted, correlating higher occupancy of the receptors with clinical
improvement of psychotic symptoms [17,18].

A newer hypothesis of the pathophysiological process of psychotic disorders is the
NMDA receptor hypofunction, which causes a hyperglutamatergic state in specific brain
regions such as the striatum [19], or the hippocampus [20]. Subsequently, glutamatergic
antagonism increases dopamine release in the striatum and cerebral cortex. Therefore, an
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interaction between the dopaminergic and glutamatergic systems could best account for
the multiple dimensions of psychotic symptoms [20].

Another theory involving the hippocampus is hippocampal hyperactivity, reflected
in an increased blood flow, using various magnetic resonance sequences [21,22]. Other
potential neuroimaging biomarkers can detect neuroinflammation using PET [23], and
grey matter reduction [24], which could be associated. Neuroimaging biomarkers have the
advantage that they can directly analyze the state of the brain in different phases of the
disorder; however, they are expensive and require the collaboration of patients who, in
many cases, are vulnerable or not cooperative. Therefore, it would be difficult to conclude
a potential neural correlation, due to the heterogeneity of the results.

Peripheral biomarkers can be investigated in more accessible biological samples such as
blood, plasma, saliva, or cerebrospinal fluid and can be represented by DNA methylation [25],
histone modifications [26], mRNA, or the identification of various types of noncoding RNA,
such as microRNA (miRNA), or long noncoding RNA [27]. Cytokines involved in inflamma-
tion can also be identified in peripheral tissues of psychotic patients, as well as abnormally
functioning blood cells [28,29]. Unlike central biomarkers, peripheral biomarkers have the
great advantage that they are easy to obtain, and do not require the patients to cooperate for
long periods of time. However, they are greatly dependent on any medication that the patient
is administered, and can also be influenced by recent bacterial or viral infections.

MicroRNAs are small noncoding RNA, with an average length of 22 nucleotides. The
main role of miRNAs is regulating gene expression post-transcriptionally, by binding to
mRNA in the cytoplasm of cells, and consequently either blocking protein expression or
causing the degradation of mRNA [30,31]. A single molecule of miRNA can target a large
array of up to hundreds of different unique mRNAs [32].

miRNA can be found both intracellularly, and in the extracellular compartment,
which facilitates their identification in tissues such as cerebrospinal fluid, peripheral whole
blood, plasma, or serum [33]. Of note, extracellular miRNAs have been found to be more
resistant to endogenous RNase [34] than intracellular miRNAs, and some studies show
that extracellular miRNAs remain stable even in the case of pH alterations [35].

This review aims to provide a comprehensive assessment of the current progress
regarding the potential value of blood-based miRNAs in psychotic disorders by centralizing
the published results on the topic and by verifying whether any specific miRNA correlates
with certain clinical psychotic features. Although other studies have reviewed the various
epigenetic mechanisms involved in psychotic disorders [36–41], not all the studies have
used a systematic approach. This work represents the most recent systematic review that
summarizes the roles of blood-based miRNAs found consistently abnormally expressed in
psychotic disorders, including in the first episode of psychosis.

2. Methods

This systematic review was carried out according to the Preferred Reporting Items for
Reviews and Meta-Analyses (PRISMA) 2020 guideline [42].

2.1. Data Sources, Search Strategy, and Eligibility Criteria for Article Inclusion

The database search was conducted between December 2022 and January 2023, and the
articles included in this review were selected from the PubMed and Science Direct databases.
The keywords used in each database were the following: (psychosis OR schizophrenia)
AND (miRNA OR microRNA). This review has been registered with PROSPERO (registry
number CRD42023429319). The inclusion criteria for the studies reported in this review
were as follows: (i) studies investigating miRNA expression exclusively in human subjects
and including both sexes; (ii) the article type being only original research articles; (iii)
the study design being case-control type; (iv) the study having been originally written in
English, or any other language, with an available English translation; (v) articles published
between January 2010 and January 2023. This review is based on 22 remaining articles that
fulfilled the eligibility criteria, as shown in Figure 1.
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Figure 1. PRISMA flow diagram of the studies included in this review.

2.2. Data Extraction and Risk of Bias Assessment

The data extracted from each publication were: authors, year of publication, sample
size, diagnoses, type of sample, presence/absence of psychotropic medication, miRNAs
dysregulation type (significant up- or down-regulation). The possibility of bias in the
design and analysis of each study included was assessed by two different evaluators using
the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool.

3. Results

The PRISMA flow diagram for the selection of articles included in this study is pre-
sented in Figure 1.

A total number of 22 studies were included in this review. All of them included patients
with a diagnosis of either first-episode psychosis (311 subjects from 7 studies), schizophrenia
(1762 subjects from 20 studies), or bipolar disorder (31 subjects, 1 study). A total of 842
patients from 16 different studies were either treatment-naive or had not been administered
any psychotropic medication for at least 3 months before being included in the studies. The
other 1262 individuals had been exposed to antipsychotic medication before being included.

The analyzed miRNAs were isolated from the following tissues: peripheral blood
mononuclear cells (PBMCs; 7 studies), plasma (5 studies), whole blood (5 studies), serum
(3 studies), serum extracellular vesicles (1 study), and both plasma and PBMCs (1 study).

Quantification of miRNAs was performed using qRT-PCR (12 studies), microarray
followed by qRT-PCR validation (6 studies), or RNA sequencing followed by qRT-PCR
validation (4 studies). Details of the 22 study characteristics are summarized in Table 2.
The diagram showing the bias detected in the different domains and the overall bias of
studies included is presented in Supplementary Materials (Table S1).
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Table 2. Summary table of the characteristics and results of the studies included in this review.

No. Author (Year) Diagnosis Tissue Method Intervention miRNAs Identified Number of Patients

1 Gardiner et al. (2011) [43] Schizophrenia PBMCs Microarray followed by
qRT-PCR

All patients previously
received antipsychotic
treatment

mir-31 ↓
mir-431 ↓
mir-433 ↓
mir-107 ↓
mir-134 ↓
mir-99b ↓
mir-487b ↓

112 SCZ;
76 controls

2 Lai et al. (2011) [44] Schizophrenia PBMCs qRT-PCR
All patients previously
received antipsychotic
treatment

miR-34a ↑
miR-449a ↑
miR-564 ↑
miR-548d ↑
miR-572 ↑
miR-652 ↑
miR-432 ↓

90 SCZ; 60 controls

3 Shi et al. (2012) [45] Schizophrenia Serum qRT-PCR
All patients previously
received antipsychotic
treatment

miR-181b ↑
miR-219-2-3p ↑
miR-346 ↑
miR-1308 ↑
miR-92a ↑
miR-195 ↓
miR-17 ↓

115 SCZ; 40 controls

4 Song et al. (2014) [46] Schizophrenia Plasma qRT-PCR
None, or at least 3 months
with no psychotropic
medication.

miRNA-181b ↑
miRNA-30e ↑
miRNA-34a ↑
miRNA-7 ↑

20 SCZ; 20 controls

5 Fan et al. (2015) [47] Schizophrenia PBMCs Microarray followed by
qRT-PCR

None, or at least 3 months
with no psychotropic
medication.

miR-1273d ↑
miR-1303 ↑
miR-21 ↑
miR-3064-5p ↑
miR-3131 ↑
miR-3687 ↑
miR-4428 ↑
miR-4725-3p ↑
miR-5096 ↑

55 SCZ; 28 controls
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Table 2. Cont.

No. Author (Year) Diagnosis Tissue Method Intervention miRNAs Identified Number of Patients

6 Yu et al. (2015) [48] Schizophrenia PBMCs Microarray followed by
qRT-PCR 105 treatment-naive patients

miR-132 ↓
miR-134 ↓
miR-1271 ↓
miR-664 ↓
miR-200c ↓
miR-432 ↓

105 SCZ;
130 control

7 Sun et al. (2015a) [49] Schizophrenia Plasma and
PBMCs qRT-PCR

No antipsychotic treatment, or
at least 3 months with no
psychotropic medication.

miR-132 ↑ plasma
miR-195 ↑ plasma
miR-30e ↑ plasma
miR-7 ↑ plasma
miR-212 ↑ PBMC
miR-34a ↑ PBMC
miR-30e ↑ PBMC

25 SCZ; 13 control

8 Sun et al. (2015b) [50] Schizophrenia Plasma qRT-PCR
No antipsychotic treatment, or
at least 3 months with no
psychotropic medication.

miR-30e ↑
miR-181b ↑
miR-34a ↑
miR-346 ↑
miR-7 ↑

61 SCZ; 62 control

9 Wei et al. (2015) [51] Schizophrenia Plasma RNA Sequencing followed
by qRT-PCR

164 drug-naive patients;
400 patients with previous
antipsychotic treatment

miR-130b ↑
miR-193a-3p ↑ 564 SCZ; 400 control

10 Lai et al. (2016) [52] Schizophrenia
(acute state) PBMCs qRT-PCR

4 drug-naive patients;
44 patients with previous
antipsychotic treatment

miR-34a ↑
miR-564 ↑
miR-548d ↑
miR-449a ↑

48 SCZ; 37 control

11 Camkurt et al. (2016) [53]
Schizophrenia
(Active psychotic
episode)

Whole blood qRT-PCR
3 drug-naive patients;
13 patients with previous
antipsychotic treatment

miR-9-5p ↑
miR-29a-3p ↑
miR-106b-5p ↑
miR-125a-3p ↑
miR-125b-3p ↑

16 SCZ;
16 control
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Table 2. Cont.

No. Author (Year) Diagnosis Tissue Method Intervention miRNAs Identified Number of Patients

12 Chen et al. (2016) [54] Schizophrenia PBMCs Microarray followed by
qRT-PCR

None, or at least 3 months
with no psychotropic
medication.

miR-1273d ↑
miR-1303 ↑
miR-21 ↑
miR-3064-5p ↑
miR-3131 ↑
miR-3687 ↑
miR-4428 ↑
miR-4725-3p ↑
miR-5096 ↑

82 SCZ;
43 controls

13 Liu et al. (2017) [55] Schizophrenia PBMCs qRT-PCR
None, or at least 3 months
with no psychotropic
medication.

miR-181b-5p ↑
miR-21-5p ↑
miR-195-5p ↑
miR-137 ↑
miR-34a-5p ↑
miR-346 ↓

20 first-episode
schizophrenia
19 schizophrenia
50 controls

14 Ma et al. (2018) [56] First-onset
schizophrenia Whole blood RNA sequencing followed

by qRT-PCR All patients were drug-naive.

miR-22-3p ↑
miR148b-5p ↑
miR-181a-5p ↑
miR-181b-5p ↑
miR-199b-5p ↑
miR-92a-3p ↑

10 first-onset SCZ;
10 control (RNA
sequencing) and 44 SCZ;
44 controls (qRT-PCR)

15 He et al. (2019) [57] Schizophrenia Serum qRT-PCR
All patients had previously
received antipsychotic
treatment

miR-34a-5p ↑
miR-449a ↑
miR-432-5p ↓

40 SCZ;
40 control

16 Wang et al. (2019) [58] Schizophrenia Serum Microarray followed by
qRT-PCR

59 treatment-naive patients
3 clinically cured patients

miR-320a-3p ↓
miR-320b ↓

3 treatment-naive SCZ,
3 clinically cured SCZ and
3 control (Microarray
analysis);
59 SCZ and 60 control
(qRT-PCR validation)
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Table 2. Cont.

No. Author (Year) Diagnosis Tissue Method Intervention miRNAs Identified Number of Patients

17 Zhao et al. (2019) [59]
First-episode
psychosis and
Schizophrenia

Plasma Microarray followed by
qRT-PCR

17 FEP patients with no
history of antipsychotic
treatment for longer than
16 weeks
21 SCZ patients with previous
antipsychotic treatment

miR-223-3p ↑ FEP,
SCZ
miR-6131 ↑FEP

17 FEP 17 control and
21 SCZ; 21 control

18 Du et al. (2019) [60] Schizophrenia Serum-derived
exosomes

RNA sequencing followed
by qRT-PCR

106 drug-free patients
43 patients with previous
antipsychotic treatment

miR-206 ↑
miR-619 ↑
miR-144-3p ↓

49 drug-free first-episode
SCZ;
46 controls (RNA
sequencing)
100 SCZ (57 first-episode,
drug-free patients and 43
chronically treated
patients); 100 controls
(qRT-PCR)

19 Horai et al. (2020) [61] Schizophrenia Whole blood qRT-PCR
All patients were under
chronic antipsychotic
treatment

miR-19b ↑ 22 SCZ; 19 control

20 Gou et al. (2021) [62] First-episode
schizophrenia Whole blood qRT-PCR

10 drug-naive patients;
113 patients had previously
received antipsychotic
medication

miR-181b-5p ↑ 123 first-episode SCZ;
50 controls

21 Chen et al. (2021) [63] Schizophrenia
Bipolar disorder Plasma qRT-PCR Medically stabilized

miR-137 ↑ SCZ,
relatives
miR-34b ↑ SCZ,
relatives
miR-34c ↑ SCZ,
relatives

215 SCZ;
72 unaffected first-degree
relatives of SCZ patients
31 BD;
100 controls

22 Jin et al. (2022) [64] First-episode
Schizophrenia Whole blood RNA sequencing followed

by qRT-PCR None miR-9-5p ↓
miR-4467 ↑ 35 FES; 60 control
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After centralizing the results, the expression of 20 miRNAs has been identified to
be significantly dysregulated in psychotic patients compared to controls, in at least two
different studies. Among them, 17 miRNAs were found to be dysregulated in more than
one study with the same trend (up- or down-regulation) (Table 3).

Table 3. miRNAs found to be dysregulated in at least two studies.

No. miRNAs Study (Author, Year)/Tissue Expression

1. miR-34a

Lai et al. (2011)/PBMC [44]
Song et al. (2014)/Plasma [46]
Sun et al. (2015a)/PBMC [49]
Sun et al. (2015b)/Plasma [50]
Lai et al. (2016)/PBMC [52]
Liu et al. (2017)/PBMC [55]
He et al. (2019)/Serum [57]

↑ 7 studies
(4 PBMC; 2 Plasma; 1 Serum)

2. miR-181b

Shi et al. (2012)/Serum [45]
Song et al. (2014)/Plasma [46]
Sun et al. (2015b)/Plasma [50]
Liu et al. (2017)/PBMC [55]
Ma et al. (2018)/Whole blood [56]
Gou et al. (2021)/Whole blood [62]

↑ 6 studies
(1 PBMC; 2 Plasma; 1 Serum;

2 Whole Blood)

3. miR-432
Lai et al. (2011)/PBMC [44]
Yu et al. (2015)/PBMC [48]
He et al. (2019)/Serum [57]

↓ 3 studies
(2 PBMC; 1 Serum)

4. miR-30e
Song et al. (2014)/Plasma [46]
Sun et al. (2015a)/Plasma and PBMC [49]
Sun et al. (2015b)/Plasma [50]

↑ 3 studies
(1 PBMC; 3 Plasma)

5. miR-21
Fan et al. (2015)/PBMC [47]
Chen et al. (2016)/PBMC [54]
Liu et al. (2017)/PBMC [55]

↑ 3 studies
(3 PBMC)

6. miR-137 Liu et al. (2017)/PBMC [55]
Chen et al. (2021)/Plasma [63]

↑ 2 studies
(1 PBMC; 1 Plasma)

7. miR-134 Gardiner et al. (2011)/PBMC [43]
Yu et al. (2015)/PBMC [48]

↓ 2 studies
(2 PBMC)

8. miR-7 Sun et al. (2015a)/Plasma [49]
Sun et al. (2015b)/Plasma [50]

↑ 2 studies
(2 Plasma)

9. miR-92a Shi et al. (2012)/Serum [45]
Ma et al. (2018)/Whole Blood [56]

↑ 2 studies
(1 Serum; 1 Whole Blood)

10. miR-1273d Fan et al. (2015)/PBMC [47]
Chen et al. (2016)/PBMC [54]

↑ 2 studies
(2 PBMC)

11. miR-1303 Fan et al. (2015)/PBMC [47]
Chen et al. (2016)/PBMC [54]

↑ 2 studies
(2 PBMC)

12. miR-3064-5p Fan et al. (2015)/PBMC [47]
Chen et al. (2016)/PBMC [54]

↑ 2 studies
(2 PBMC)

13. miR-3131 Fan et al. (2015)/PBMC [47]
Chen et al. (2016)/PBMC [54]

↑ 2 studies
(2 PBMC)

14. miR-3687 Fan et al. (2015)/PBMC [47]
Chen et al. (2016)/PBMC [54]

↑ 2 studies
(2 PBMC)

15. miR-4428 Fan et al. (2015)/PBMC [47]
Chen et al. (2016)/PBMC [54]

↑ 2 studies
(2 PBMC)

16. miR-4725-3p Fan et al. (2015)/PBMC [47]
Chen et al. (2016)/PBMC [54]

↑ 2 studies
(2 PBMC)
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Table 3. Cont.

No. miRNAs Study (Author, Year)/Tissue Expression

17. miR-5096 Fan et al. (2015)/PBMC [47]
Chen et al. (2016)/PBMC [54]

↑ 2 studies
(2 PBMC)

18. miR-195
Shi et al. (2012)/Serum [45]
Sun et al. (2015a)/Plasma [49]
Liu et al. (2017)/PBMC [55]

↑ 2 studies
(1 PBMC: 1 Plasma)

↓ 1 study
(1 Serum)

19. miR-346
Shi et al. (2012)/Serum [45]
Sun et al. (2015b)/Plasma [50]
Liu et al. (2017)/PBMC [55]

↑ 2 studies
(1 Plasma; 1 Serum)

↓ 1 study
(1 PBMC)

20. miR-132 Sun et al. (2015a)/Plasma [49]
Yu et al. (2015)/PBMC [48]

↑ 1 study
(1 Plasma)
↓ 1 study
(1 PBMC)

Three miRNAs (miR-195, miR-346, and miR-132) have shown contrasting results in
different studies.

Only 3 of the studies included in this review analyzed the presence of correlations be-
tween miRNA levels and specific psychotic symptoms (Table 4). Lai et al. (2011) concluded
that miR-449 levels were positively correlated with negative symptoms on the PANSS
questionnaire [44]. Song et al. (2014) identified another miRNA correlating with negative
symptoms—in this case, miR-181b was positively correlated with the improvement of
negative symptoms [46]. Finally, Chen et al. (2016), stated that miR-21 was negatively
correlated with improvement of positive, general psychopathology, and aggressiveness
symptoms [54].

Table 4. MicroRNAs correlating with various symptoms from the PANSS Scale.

No. Study (Author, Year) miRNA/Tissue Correlation on the PANSS Scale

1. Lai et al. (2011) [44] miR-449/PBMCs Positively correlated with negative symptoms

2. Song et al. (2014) [46] miR-181b/Plasma Positively correlated with the amelioration of negative symptoms

3. Chen et al. (2016) [54] miR-21/PBMCs
Negatively correlated with the amelioration of positive
symptoms, general psychopathology, and
aggressiveness symptoms

4. Discussion

This systematic review aimed to synthesize literature data from multiple databases,
highlighting the differentially expressed miRNAs in the blood of psychotic patients com-
pared to controls. The analysis of the included studies yielded various results identifying
65 different miRNAs. Among them, 17 were found in multiple studies, with a consistently
abnormal expression in the same direction. Notably, miR-34a and miR-181b were found
up-regulated in the blood of psychotic patients compared to controls in seven and six
independent studies, respectively, suggesting that these two miRNAs could represent
possible diagnostic biomarkers. The increased expression of these miRNAs was observed
in different blood components, including PBMCs, plasma, and serum of psychotic patients.
In addition, miR-181b was also found dysregulated in whole blood [56,62].

miR-34 is a family of miRNAs encoded by chromosome 1p36, consisting of 3 members,
miR-34a, b, and c, and with the highest expression in the brain. miR-34a has been the most
studied molecule of the miR-34 family. In the central nervous system, miR-34 regulates
neural stem cell differentiation, and, when overexpressed, contributes to neurite elongation.



Biomedicines 2023, 11, 2536 11 of 16

Its expression is dependent on p53 proteins, creating a feedback loop that is more active
during neural development [65,66].

In psychiatric disorders, multiple studies identified miR-34a to be differentially ex-
pressed in postmortem cerebral tissues of patients with schizophrenia or bipolar disorder,
compared to a healthy control group [67,68]. Additionally, studies investigating miR-34′s
expression in peripheral blood mononuclear cells identified higher levels in patients with
schizophrenia, major depressive disorder, or Alzheimer’s disease, compared to control
groups. Consistent with these results, one study concluded that a 12-week treatment with
escitalopram significantly decreased the miR-34c expression in peripheral blood [69].

miR-181 is a family of microRNAs with expression predominantly in B cells, the retina,
and the brain [70]. The mature products of the miR-181 precursor are miR-181a, b, c, and
d. The articles included in this review have highlighted the up-regulation of miR-181b in
psychotic disorders in six different studies.

In 2008, Beveridge et al. found that there was significant up-regulation of miR-181b in
the superior temporal gyrus of patients with schizophrenia, compared to controls [71]. The
same study identified that the calcium sensor gene visinin-like 1 (VSNL1) and the ionotropic
AMPA glutamate receptor subunit (GRIA2) genes were down-regulated as an effect of the
aberrant expression of the miRNA. These results are consistent with the conclusions of this
review, rendering miR-181b a miRNA playing an important role in the development of
psychiatric disorders, specifically psychosis. Indeed, our review identified a study showing
that the level of miR-181b in plasma was found to positively correlate with the amelioration
of negative symptoms, suggesting that, if validated in a larger cohort, this miRNA could be
a biomarker for monitoring the disease evolution and the response to therapy.

Although miR-432 has been studied less than miR-34a and miR-181b some interesting
results showing a putative role in psychiatric disorders have been found. Zhang et al. iden-
tified miR-432 to be crucial in mediating the antidepressant effect of the molecule ADAR-1
(Adenosine deaminase acting on RNA1), specifically through brain-derived neurotrophic
factor (BDNF) [72]. Moreover, a recent study [73], found that miR-432 was down-regulated
in peripheral extracellular vesicles of adolescents with major depressive disorder or anxiety
compared to controls.

The other two miRNAs found significantly up-regulated in the blood of psychotic
patients in three different studies are miR-30e and miR-21. miR-30 is a family consisting
of 5 members, miR-30a, b, c, d and e. A postmortem study that included patients with
Alzheimer’s disease (AD), stated that miR-30e was up-regulated in the hippocampus at
Braak stages III/IV of non-demented and early AD subjects and that overexpression of
the molecule increased the levels of superoxide dismutase, glutathione, and glutathione-
peroxidase, and decreases ROS levels by inhibiting TGF-β [74]. Although our review has
identified an up-regulation of this miRNA in the plasma of psychotic patients, Perkins
et al. [75], identified miR-30e to be down-regulated in the prefrontal cortex of patients with
schizophrenia and schizoaffective disorder. This opposite trend is not surprising, since the
relationship between blood and brain miRNA expression activity is not well understood
and it is known that the miRNA blood–brain correlations are region-specific [76].

miR-21, identified as up-regulated in PBMCs of psychotic patients in three studies,
is a miRNA that generally targets tumor suppressor genes, and has been associated with
multiple types of cancers [77]. In the central nervous system, miR-21 has been correlated
particularly with disorders involving inflammation, such as Alzheimer’s disease or multiple
sclerosis [78]. An interesting aspect regarding miR-21 is that it has been found to be
both ubiquitous in many different cell types and overexpressed in various disease states.
Therefore, its lack of specificity poses a problem when studies try to correlate it with certain
disorders [79].

Three articles included in this review found abnormal levels of miR-195 in the pe-
ripheral blood of psychotic patients; however, two of them found it to be overexpressed,
while the third one concluded it was down-regulated in patients compared to controls.
This discrepancy could be explained by the fact that the latter study included patients
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previously exposed to antipsychotic medication, and the down-regulation of miR-195 could
be an effect of the treatment. Multiple studies analyzing microRNA molecules from post-
mortem brain samples, found miR-195 to be consistently up-regulated [80,81]. miR-195 has
been found to have a role in regulating BDNF [82], suggesting that, as well as the role of
diagnostic biomarker, it is also involved in the mechanisms underlying psychotic disorders.

Another miRNA with strong evidence of abnormal values in postmortem brain tissue
is miR-7: multiple studies have reported its up-regulation in the dorsolateral prefrontal
cortex of patients with schizophrenia compared to unaffected patients [67,75,80]. An
article by Zhao et al. (2020), investigated the physiological and pathological roles of miR-
7 in the central nervous system. In the field of psychiatric disorders, miR-7 has been
found to interfere with the SHANK3 domains, involved in memory and synaptic plasticity.
miR-7 also has different roles in the pathogenesis of neurodegenerative diseases, such as
Alzheimer’s disease or Parkinson’s disease, and neuroinflammation [83].

Consistent with a broader review of miRNAs in psychiatric disorders, the most fre-
quently abnormally expressed miRNAs in psychotic disorders, such as miR-34a, miR-181b,
or miR-30e, were specific to this diagnostic class, and could not be identified in other
psychiatric disorders, such as affective disorders or addictions [84]

After the discovery of miRNAs in 1993 [85], numerous studies examining their role in
various disorders have been conducted. These short noncoding RNA have been particularly
studied in the field of oncology, as new and precise biomarkers are needed for the im-
provement of therapeutic and monitoring protocols. Although psychiatry, unlike oncology,
does not yet rely on any objectively measurable parameters for diagnosis, monitoring, or
predicting treatment response, identifying miRNAs that could potentially play such a role,
would be crucial for facilitating the development of this field.

The results presented in this review have some limitations: first, some of the studies
included patients treated with antipsychotics, and other studies only treatment-naive
patients. The presence of a specific therapeutic regimen could explain the identification
of some miRNAs with opposite results in their expression in different studies. Second,
this review summarizes the evidence identified in different blood components (whole
blood, PBMC, plasma, and serum) obtained with different methodologies, and although
this aspect has been highlighted in the manuscript, the results must be carefully interpreted.
Moreover, most of the included studies were conducted on the Asian population, whose
genetic background can be different from those of other ethnicities.

Although many studies have investigated the expression of specific miRNAs in psy-
chiatric disorders, few of them have accounted for their varying expression throughout
an individual’s lifetime. Future studies need to be conducted, focusing on miRNA expres-
sion in different age groups, both in healthy individuals and in patients suffering from
psychiatric disorders.

Moreover, the fact that the same miRNAs were found to be abnormally expressed in
multiple psychiatric disorders may indicate that the current classification of these disorders
is not consistent with their underlying neurobiological mechanisms. Therefore, future
research should be directed toward identifying epigenetic correlates to transdiagnostic di-
mensions of psychiatric disorders, aiming to verify whether current psychiatric nosology is
accountable for the failure to identify consistent biomarkers corresponding to these classes.

Another direction for future studies in the field of miRNAs and, more generally,
epigenetic studies in psychiatric disorders, is conducting longitudinal studies with large
community cohorts, as opposed to case-control, cross-sectional studies. These designs
could reveal a more accurate image of miRNA expression both inter- and intraindividu-
ally, as well as the molecules and correspondent genes involved in the various stages of
psychiatric disorders.

Although the field of peripheral blood biomarkers in psychiatric disorders has been
developing for the last decade, future studies are needed to clarify the pros and cons of
blood as tissue for investigating miRNAs, and better explain the brain-blood correlations.
Since the relationship between brain and blood miRNA expression is not well understood
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the research should focus on the identification of how and if the brain-blood miRNA
correlations are useful not only as biomarkers but also reflect the etiological mechanisms of
psychotic disorders.

Once these issues are clarified, miRNAs could be used as biomarkers for various aspects
of psychiatric disorders, such as the risk of developing certain disorders, their prognosis,
identifying patients’ susceptibility to different compounds, as well as symptom remission.
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