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Abstract: Background: Aging plays an essential role in the development of diabetic nephropathy
(DN). This study aimed to identify and verify potential aging-related genes associated with DN using
bioinformatics analysis. Methods: To begin with, we combined the datasets from GEO microarrays
(GSE104954 and GSE30528) to find the genes that were differentially expressed (DEGs) across samples
from DN and healthy patient populations. By overlapping DEGs, weighted co-expression network
analysis (WGCNA), and 1357 aging-related genes (ARGs), differentially expressed ARGs (DEARGs)
were discovered. We next performed functional analysis to determine DEARGs’ possible roles.
Moreover, protein–protein interactions were examined using STRING. The hub DEARGs were
identified using the CytoHubba, MCODE, and LASSO algorithms. We next used two validation
datasets and Receiver Operating Characteristic (ROC) curves to determine the diagnostic significance
of the hub DEARGs. RT-qPCR, meanwhile, was used to confirm the hub DEARGs’ expression levels
in vitro. In addition, we investigated the relationships between immune cells and hub DEARGs.
Next, Gene Set Enrichment Analysis (GSEA) was used to identify each biomarker’s biological role.
The hub DEARGs’ subcellular location and cell subpopulations were both identified and predicted
using the HPA and COMPARTMENTS databases, respectively. Finally, drug–protein interactions
were predicted and validated using STITCH and AutoDock Vina. Results: A total of 57 DEARGs were
identified, and functional analysis reveals that they play a major role in inflammatory processes and
immunomodulation in DN. In particular, aging and the AGE-RAGE signaling pathway in diabetic
complications are significantly enriched. Four hub DEARGs (CCR2, VCAM1, CSF1R, and ITGAM)
were further screened using the interaction network, CytoHubba, MCODE, and LASSO algorithms.
The results above were further supported by validation sets, ROC curves, and RT-qPCR. According
to an evaluation of immune infiltration, DN had significantly more resting mast cells and delta
gamma T cells but fewer regulatory T cells and active mast cells. Four DEARGs have statistical
correlations with them as well. Further investigation revealed that four DEARGs were implicated in
immune cell abnormalities and regulated a wide range of immunological and inflammatory responses.
Furthermore, the drug–protein interactions included four possible therapeutic medicines that target
four DEARGs, and molecular docking could make this association practical. Conclusions: This study
identified four DEARGs (CCR2, VCAM1, CSF1R, and ITGAM) associated with DN, which might
play a key role in the development of DN and could be potential biomarkers in DN.

Keywords: diabetic nephropathy; aging; diagnostic biomarker; immune cell infiltration; molecular
docking
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1. Introduction

Diabetic kidney disease (DN), one of the most common microvascular effects of
diabetes, is the leading cause of end-stage renal disease (ESRD) worldwide [1]. The major
lesion of DN, visible in the glomeruli, is characterized by extracellular matrix deposition and
basement membrane thickening [2]. There is still much to learn about the pathogenesis and
etiology of DN. Historically, the presence of microalbuminuria (MA) and the progression of
diabetes mellitus (DM) have been used to make an early diagnosis of DN [3]. This approach
is ineffective, though, as only 30% of cases had pathology confirm them, and the remaining
cases were DM with primary glomerular illnesses present [4]. The lack of complete and
efficient therapy for DN makes it the main contributor to renal dysfunction and ESRD
development [5]. Even though there are several potential causes of DN, including obesity,
heredity, and environment, the general pathophysiological pathways remain unknown.
Consequently, understanding the causes of DN is essential for discovering and identifying
diagnostic biomarkers for the incidence and progression of DN.

Recent research shows that DN is highly associated with accelerated aging in various
cell types, including endothelial, tubular, and podocyte cells [6–8]. Increased cortical
surface roughness, the number of cysts, and reduced cortical volume are just a few of the
macrostructural changes that the aging kidneys experience [9]. These changes correspond
to the typical microstructural features of glomerulosclerosis, tubular atrophy, interstitial
fibrosis, and nephron loss [10]. Notably, mesangial and tubular cells were susceptible to
direct cellular senescence induction by hyperglycemia [11–14]. Low-grade inflammation
and cellular aging could be promoted by excessive glucose, which is also capable of making
macrophages release SASP components [15]. Along with hyperglycemia, AGE generation,
oxidative stress induction, chronic persistent inflammation, glucose toxicity, and lipid
metabolism problems could all work in concert to foster the development of a favorable
milieu for aging cells [16]. Aging is also accompanied by dysregulation of the immune
system, which is characterized as immune aging and involves impaired immune responses
and overwhelming inflammation [17]. Immune dysregulation and inflammation linked
with immune aging have been identified as risk factors for a wide range of age-related
illnesses [18,19]. Immune aging can eventually lead to increased vulnerability to age-related
comorbidities such as cancer, autoimmune illnesses, and infectious diseases [20].

In this investigation, we employed gene expression profiles specific to DN, combined
with aging-related databases, bioinformatic analyses, and validation tests, to identify aging-
associated genes that serve as potential biomarkers for DN development. Furthermore, we
elucidated the immune mechanisms underlying DN by conducting an immune infiltration
analysis, thereby uncovering the immunological basis of these biomarkers. Our study
aimed to provide novel insights into the intricate relationship between aging, immune
responses, and the progression of DN.

2. Material and Methods

This study’s objective was to investigate DN-related gene sets via the lens of ARGs.
The study flowchart is depicted in Figure 1.

2.1. Data Preprocessing and Differentially Expressed Genes (DEGs) and Aging-Related Genes
(ARGs) Identifying in DN

First, to investigate the DEGs in DN patients compared to healthy individuals, we
obtained the gene expression profiles of DN patients from the publicly available GEO
database. The NCBI GEO GSE104954 and GSE30528 datasets provided datasets with
clinical details on DN and healthy kidney samples. The 7 DN kidney tissues and 18 normal
tissues in the GSE104954 data set were based on the Affymetrix Human Genome U133 Plus
2.0 Array of the GPL22945 platform. The 9 DN kidney tissues and 13 normal tissues in the
GSE30528 data set were based on the Affymetrix Human Genome U133A 2.0 Array of the
GPL571 platform. We processed the datasets using the inSilicoMerging [21] R program
to combine the various datasets. In order to exclude group effects, we also applied the
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Johnson et al. technique [22]. The follow-up analysis of this study includes a total of 16 DN
samples and 31 normal tissue samples. The limma R tool was then used in differential
analysis to find the genes that differ between the DN group and the control group [23]. The
|fold-change (FC)| > 1.5 and p-value < 0.05 were the statistical thresholds for screening
RNA expression. Subsequently, in order to obtain ARGs, we retrieved 1357 ARGs from the
GeneCards database (Supplementary Table S1) with a relevance score of greater than 5 [24].
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2.2. Identification of Clinically Significant Modules Based on Weight Gene Correlation Network
Analysis (WGCNA)

Next, we employed the WGCNA to further identify gene clusters that play crucial
roles in the onset and progression of DN. In order to create the scale-free co-expression
network, we removed outlier DEGs and probes using the R program WGCNA. To be
more precise, all pair-wise genes were first subjected to the average linkage approach and
Pearson’s correlation matrices. A soft-thresholding parameter, β, emphasized strong gene
connections and penalized weak ones. In order to measure the network connectivity of a
gene, which is defined as the sum of its adjacency with all other genes for network gene
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ratio, the adjacency was transformed into a topological overlap matrix (TOM) after selecting
the power of 6, and the corresponding dissimilarity (1-TOM) was calculated. Average
linkage hierarchical clustering was carried out using the TOM-based dissimilarity measure
with a minimum size (gene group) of 10 for the gene dendrogram in order to arrange genes
with comparable expression profiles into gene modules. We determined the dissimilarity
of the module eigengenes, selected a cut line for the module dendrogram, and combined
several modules in order to further investigate the module.

2.3. Functional Enrichment Analysis of DEGs and DEARGs

Furthermore, we performed functional enrichment analysis to explore the biological
roles of DEGs and DEARGs in DN. Based on the Molecular Signatures Database (MSigDB)
and the DAVID database, we obtained gene annotations for the Human Phenotype Ontol-
ogy (HPO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG),
respectively. We used the ClusterProfiler R package and DAVID database to perform HPO,
GO, and KEGG function analysis to acquire the results of the DEGs enrichment. Statistical
significance was defined as p-value < 0.05. The maximum and minimum gene sets are 5000
and 5, respectively.

2.4. Identification of Hub Biomarkers Based on Protein–Protein Interaction (PPI) and Machine
Learning Algorithm

Moreover, we employed PPI analysis and a machine learning algorithm to identify hub
biomarkers that play pivotal roles among DEARGs. The STRING database was utilized to
examine the interactions of different module genes with filtering criteria (score > 0.4). The
network was displayed using Cytoscape 3.8.1. The Molecular Complex Detection (MCODE)
plug-in for Cytoscape was used to examine the primary functional modules. These criteria
for selection are defined as follows: K Core = 2, Cut Grade = 2, Maximum Depth = 100, Cut
Node Score = 0.3. Each node gene is scored using the Maximum Clique Centrality (MCC)
by the cytoHubba plug-in for Cytoscape. The top 10 nodal genes of each algorithm’s MCC
score were used to screen for the pivot genes. Then, the hub biomarkers were found using
Cox regression with the Least Absolute Shrinkage and Selection Operator (LASSO). Based
on the 3-fold cross-validation method, we calculated the penalty parameter, selected the
best value corresponding to the lowest cross-validation error, and listed the gene names
matching that value utilizing the “glmnet” software package. The GeneMANIA database
(http://genemania.org/ (accessed on 1 May 2023)) is a website for building PPI networks.
Using GeneMANIA, we identified PPI networks of hub biomarkers in this study.

2.5. Diagnostic Value of Characteristic Biomarkers and Data Validation in DN

To validate the diagnostic value of the selected hub genes, we built a logistics model
and visualized the results with the ggplot2 package. The area under the ROC curve was
used to evaluate the biomarkers’ diagnostic value (AUC, which was between 0.5 and 1). The
diagnosis is more accurate when the AUC is near 1. Additionally, we also utilized the RNA
expression datasets GSE104948 (which included 7 DN samples and 18 control samples) and
GSE30529 (which included 10 DN samples and 12 control samples) as validation sets to
conduct a controlled reliability study.

2.6. RT-qPCR

The SV40-MES-13 mouse mesangial cell line was obtained from BNCC Biological
Technology (Beijing, China) and cultured in DMEM medium (Solarbio, Beijing, China)
supplemented with 10% fetal bovine serum (FBS; BI) and 1% penicillin/streptomycin. The
cells were incubated at 37 ◦C in a 5% CO2-humidified atmosphere. Control cells were
cultured in a normal medium containing 5.5 mM glucose, while the model cells were
treated with 40 mM high glucose for 24 h. Total RNA was isolated from the cells using the
TRIzol kit (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s
protocol. The isolated RNA was then reverse-transcribed into cDNA using the M-MuLV

http://genemania.org/
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First Strand cDNA Synthesis Kit (Sangon Biotech, Shanghai, China). Quantitative real-time
PCR was performed using the SYBR Premix EX Taq™ II (Tli RNaseH Plus) kit (Takara Bio,
Inc., Kusatsu, Japan) and an ABI Stepone plus PCR system (ABI, Oakland, CA, USA). The
expression levels of the hub genes were normalized to GAPDH and analyzed using the
2−∆∆Ct method. The primer sequences can be found in Supplementary Table S17.

2.7. Evaluation of Immune Cell Infiltration and Correlation Analysis between Diagnostic Markers
and Infiltrating Immune Cells

The expression of immune cells plays a crucial role in the development of kidney
diseases. In order to estimate the frequency of immunological invasion, the 1000 permuta-
tion deconvolution method CIBERSORT [25] converts the expression matrix into different
immune cell types. Then, generate a histogram to illustrate the different cell components. A
correlation heatmap of different cell components was created to show associations between
different subtypes. A box plot was also used to show the differential analysis between
immune cells from DN and healthy tissue. A correlation analysis of Spearman’s rank was
utilized to examine and illustrate relationships between the detected biomarkers and the
quantity of invading immune cells using dot-bar graphs.

2.8. Gene Set Enrichment Analysis (GSEA) of Biomarkers

In order to explore the possible roles of the chosen biomarkers in DN, we used the
GSEA analysis [26] to explore Human Phenotypic Ontology, GO items, and KEGG path-
ways. Based on the biomarker expression levels, all samples were split into low-expression
groups (50%) and high-expression groups (50%). Reference gene sets included the Molecu-
lar Signatures Database datasets c5.go.bp.v7.4.symbols.gmt, c2.cp.kegg.v7.4.symbols.gmt,
and c5.hpo.v7.4.symbols.gmt. For GSEA analysis with default settings, p < 0.05 was re-
garded as statistically significant.

2.9. Single-Cell Expression Analysis and Subcellular Localization of Biomarkers

On the basis of the HPA database [27,28] (https://www.proteinatlas.org/ (accessed
on 1 May 2023)), single-cell data and transcriptional data were utilized to assess the
expression of biomarkers in kidney cells. Based on the COMPARTMENTS database
(https://compartments.jensenlab.org/ (accessed on 1 May 2023)), we also predicted bio-
marker protein subcellular localization. This website serves as a prediction tool for proteins’
subcellular locations.

2.10. Drug–Protein Interaction and Molecular Docking Analysis of Biomarkers

The Drugbank database (https://go.drugbank.com/ (accessed on 1 May 2023)) was
used to identify existing or possibly relevant drug compounds in order to investigate
drug–protein interactions. The 3D structures of target proteins and ligands were found
using the AlphaFold Protein Structure database (https://alphafold.ebi.ac.uk/ (accessed on
1 May 2023)) and the PubChem database (https://pubchem.ncbi.nlm.nih.gov/ (accessed
on 1 May 2023)). Docking simulations and visualizations were performed and presented
using PyMOL software 2.3.0 and AutoDock Vina 1.2.0 [29,30].

2.11. Statistical Analysis

Statistical analyses were conducted using GraphPad Prism 8.0.2 and R (version 4.2.1).
For comparing data between two groups, either Student’s t-test or Mann–Whitney U-test
was applied, depending on the normality of the data. A significance level of p < 0.05
was considered statistically significant. The level of significance was denoted as follows:
* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

https://www.proteinatlas.org/
https://compartments.jensenlab.org/
https://go.drugbank.com/
https://alphafold.ebi.ac.uk/
https://pubchem.ncbi.nlm.nih.gov/
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3. Results
3.1. Data Preprocessing

Firstly, to obtain gene expression profiles of DN patients, we downloaded two large-
scale clinical datasets, GSE104954 and GSE30528, from the GEO database. We eliminated
batch impact from the gene expression matrix after merging the GSE104954 and GSE30528
datasets (Supplementary Tables S2 and S3). The box diagram in Figure 2A,B demon-
strated that the datasets’ sample distributions differed significantly before batch impact
was eliminated, implying batch variance’s existence. After batch impact removal, the
datasets’ sample median distributions tend to be the same. In addition, UMAP findings
in Figure 2C,D indicated that the two datasets were independent of one another and did
not intersect before batch impact was removed. After batch variance was removed, the
sample distributions tended to be similar. Moreover, density curves in Figure 2E,F revealed
a substantial variation between the two datasets’ sample distributions prior to batch im-
pact exclusion. After it was removed, the sample distributions between the datasets were
almost consistent.
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3.2. Identification and Function Enrichment of DEGs for DN

We obtained the DEGs from the gene expression matrix after merging the datasets.
A total of 559 genes were screened as DEGs under the conditions of p-value > 0.05 and
|fold-change (FC)| > 1.5, with 270 genes up-regulated and 289 genes down-regulated
(Figure 3A,B) (Supplementary Table S4). The biological functions and pathways related
to 559 DEGs were then examined using HPO, GO, and KEGG enrichment analyses
(Supplementary Tables S5–S7). The top 10 HPO results showed that abnormal renal glomeru-
lus morphology, abnormal renal cortex morphology, nephrotic syndrome, glomerulonephri-
tis, and abnormal urine protein levels were significantly enriched (Figure 3C), which
confirmed our data’s dependability. More importantly, the top 10 GO analysis showed
that a large number of biological processes related to immune and inflammatory responses
were significantly enriched, including inflammatory response, immune response, antigen
processing, and presentation of exogenous peptide antigen via MHC class II, positive
regulation of T cell activation, positive regulation of ERK1 and ERK2 cascade, and cellular
response to interleukin-1 (Figure 3D). In addition, cell adhesion, angiogenesis, and positive
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regulation of cell migration were also enriched. In terms of the KEGG pathway, comple-
ment and coagulation cascades, cytokine-cytokine receptor interaction, the AGE-RAGE
signaling pathway in diabetic complications, and the NF-kappa B signaling pathway were
significantly enriched (Figure 3E). The findings above clearly imply that inflammation and
autoimmunity are crucial components of DN development.
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3.3. Weighted Gene Co-Expression Network Construction and Identification of Clinically
Significant Modules

In order to determine the critical modules most closely related to DN, WGCNA was
carried out using the combined gene expression profile (Supplementary Table S8). Then,
when R2 = 0.86 and the average connectivity is high, we set the soft threshold to 10
(Figure 4A,B). After combining strong association modules with a cluster height limit of
0.25, a total of 19 modules were found (Figure 4C). Then, the clustering of module feature
vectors was explored, and the results showed the distance between them (Figure 4D). The
relationships between modules and clinical symptoms were also investigated. The top
4 results demonstrated the strongest correlation between the “group” attribute (i.e., DN
and Control) and the brown module, the royal blue module, the salmon module, and the
green module, especially the green module (Figure 4E,F).

To comprehend the biological roles that the green module’s genes perform, we car-
ried out functional enrichment (Supplementary Tables S9–S11). The top 10 HPO results
demonstrated that abnormal inflammatory response, abnormal lymphocyte morphology,
immunodeficiency, abnormal immune system morphology, abnormality of the lymph
nodes, and lymphopenia were significantly enriched (Figure 4G). According to the results
of GO and KEGG analysis, DEGs in the green module were related to numerous biological
processes and pathways that were linked to infection, inflammation, and autoimmunity.
GO enrichment analysis showed that the green module’s genes have immune response,
inflammatory response, antigen processing and presentation, innate immune response,
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antigen processing and presentation of exogenous peptide antigen via MHC class II, posi-
tive regulation of T cell activation, and cellular response to interleukin-1 (Figure 4H). In
addition, cell adhesion, positive regulation of apoptotic process, and defense response
were also enriched, showing their potential pathogenesis in DN. More importantly, KEGG
analysis was associated with cell adhesion molecules, Type I diabetes mellitus, complement
and coagulation cascades, and NF-kappa B signaling pathway (Figure 4I).

Biomedicines 2023, 11, x FOR PEER REVIEW 9 of 26 
 

 
Figure 4. Identification of DN-associated key modules based on WGCNA analysis. (A) Scale-free 
fitting index analysis and mean connectivity of soft threshold power from 1 to 30. (B) Clustering 
dendrogram with tree leaves corresponding to individual samples. (C) Clustering dendrogram of 
all expressed genes based on a dissimilarity measure (1-TOM). (D) Correlation heatmap of the mod-
ule feature vector. (E) Correlation heatmap between module eigengene and DN clinical trait. (F) 
Correlation scatter plot between DN gene significance and green module membership. (G) Human 
phenotype ontology analysis for green module genes. (H) GO biological processes analysis for green 
module genes. (I) KEGG pathway analysis for green module genes. 

3.4. Identification and Function Enrichment of DEARGs for DN 
Then, the DEGs, the WGCNA green module genes, and aging-related genes were 

overlapping. We intersected 57 genes (DEARGs) in total (Figure 5A). The heat map dis-
played the expression features for 57 DEARGs in DN individuals as well as controls (Fig-

Figure 4. Identification of DN-associated key modules based on WGCNA analysis. (A) Scale-free
fitting index analysis and mean connectivity of soft threshold power from 1 to 30. (B) Clustering
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3.4. Identification and Function Enrichment of DEARGs for DN

Then, the DEGs, the WGCNA green module genes, and aging-related genes were over-
lapping. We intersected 57 genes (DEARGs) in total (Figure 5A). The heat map displayed
the expression features for 57 DEARGs in DN individuals as well as controls (Figure 5B).
In addition, a functional analysis was performed on the 57 DEARGs (Supplementary
Tables S12–S14). In HPO results, abnormal circulating creatinine concentration, abnormal
circulating nitrogen compound concentration, hyperuricemia, severe infection, and renal
corticomedullary cysts were enriched (Figure 5C). In BP results, the leukocyte cell-cell ad-
hesion, inflammatory response, immune response, aging, and humoral immune response
were enriched (Figure 5D). The KEGG results indicated that complement and coagulation
cascades, cell adhesion molecules, AGE-RAGE signaling pathway in diabetic complications,
and cytokine-cytokine receptor interaction might participate in the pathogenesis of DN
(Figure 5E).
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3.5. Identification of Hub DEARGs with a Least Absolute Shrinkage and Selection Operator
(LASSO) Algorithm

To further explore DN-associated hub DEARGs and relative mechanisms, we up-
loaded the aforementioned 57 DEARGs to the STRING website and built a PPI network
consisting of 51 nodes and 297 edges (Figure 6A) (Supplementary Table S15). The top
10 genes among the 51 nodes with a high binding degree were identified using the MCODE
and MCC calculation algorithms in Cytoscape (Figure 6B). We selected the candidate genes
for feature gene screening through LASSO regression. The results of the LASSO regres-
sion identified four hub DEARGs (CCR2, VCAM1, CSF1R, and ITGAM) with non-zero
regression coefficients and the optimal lambda value of lambda. min = 0.16 (Figure 6C,D).
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The GeneMANIA database was then used to study the hub DEARGs co-expression
networks and probable roles (Figure 6E) (Supplementary Table S16). We discovered a
complex PPI network with 0.60% protein domain, 1.88% pathway, 2.87% genetic relation-
ships, 3.64% co-localization, 5.37% predicted interactions, 8.01% co-expression, and 77.64%
physical interactions. According to a function study, they were mostly linked to various
immunological and inflammatory processes, including positive regulation of leukocyte
migration, granulocyte chemotaxis, cellular extravasation, granulocyte migration, mononu-
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clear cell migration, a protein complex involved in cell adhesion, and cytokine receptor
binding, indicating their critical involvement in the etiology of DN.

3.6. RT-qPCR and Datasets Validation and Diagnostic Value of Hub DEARGs for DN

In order to confirm the expression of CCR2, VCAM1, CSF1R, and ITGAM in DN,
we created an in vitro high glucose-induced human mesangial cell model. We discov-
ered that, compared to control subjects, these proteins were all substantially expressed
in the cells of the model group, revealing the accuracy of our bioinformatics predic-
tions (Figure 7A) (Supplementary Table S17). Further analysis was done on the other
two new DN-related datasets, GSE104948 and GSE30529 (Figure 7B,C). Verification re-
vealed that hub biomarker expressions were all higher in DN groups than in control
groups (Supplementary Table S18). The results fully validated the presumption that CCR2,
VCAM1, CSF1R, and ITGAM may serve as DN diagnostic biomarkers.
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qPCR validation of hub DEARGs. (B) Dataset validation of hub DEARGs by GSE104948. (C) Dataset
validation of hub DEARGs by GSE30529. (D) ROC curves estimate the diagnostic values of DEARGs
in merged datasets. (E) ROC curves estimate the diagnostic values of DEARGs in GSE104948. (F) ROC
curves estimate the diagnostic values of DEARGs in GSE30529. (Note: **** p < 0.0001).



Biomedicines 2023, 11, 2454 12 of 24

Next, we used ROC curves to investigate the association between hub DEARG expres-
sions and DN patient prognosis in order to evaluate the potential predictive usefulness
of four hub markers in DN (Supplementary Table S19). High diagnostic specificity and
sensitivity for DN were regarded as having an AUC greater than 0.800. According to
Figure 7D, CCR2 is 0.889 (95% CI: 0.775–1.000), VCAM1 is 0.881 (95% CI: 0.777–0.986),
CSF1R is 0.839 (95% CI: 0.700–0.978), and ITGAM is 0.869 (95% CI: 0.749–0.989). Moreover,
the AUC values of two new DN-related datasets also showed excellent diagnostic utility
(Figure 7E,F). The findings demonstrated the high DN diagnostic value of CCR2, VCAM1,
CSF1R, and ITGAM.

3.7. Immune Cell Infiltration Analysis

To analyze immunological patterns in DN and normal tissues, we used CIBERSORT
to compute the proportion of 22 immune cells in each sample through the matrix of gene
expression (Supplementary Table S20). Each sample’s 22 different categories of immune
cells were represented by a histogram (Figure 8A). Each histogram’s colors showed the
immune cell percentages, with a sum of 1 for each sample. The findings showed that the
most prevalently infiltrated immune cells in all 47 samples were resting dendritic cells
(47), plasma cells (46), regulatory T cells (46), and M2 macrophages (46). Eosinophils (2),
CD4 memory resting T cells (2), and CD4 naive T cells (7) were infiltrating less, though. In
the subsequent study, the correlation between 22 categories of immuno-infiltrated cells in
two groups was investigated (Figure 8B). Delta gamma T cells were strongly positively
correlated with activated CD4 memory T cells and negatively correlated with regulatory T
cells and activated mast cells, according to the correlation heat map of different immune
cells. Violin plots of the differential in immune cell infiltration revealed that compared to
the normal control sample, memory B cells, naive CD4 T cells, delta gamma T cells, and
resting mast cells infiltrated more, whereas naive B cells, regulatory T cells, and activated
mast cells infiltrated less (Figure 8C).

3.8. Correlation between Hub DEARGs and Immune Cells

We next investigated the relationship between hub DEARG expression and immune
cell abundance (Supplementary Table S21). The results of Pearson’s correlation showed
that a total of four types of immune cells were associated with all four DEARGs. As
shown in Figure 9A–D, regulatory T cells and active mast cells were statistically negatively
correlated with CCR2, VCAM1, CSF1R, and ITGAM, but delta gamma T cells and resting
mast cells were positively correlated with them, suggesting they may play crucial roles in
DN formation.
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3.9. GSEA of Hub DEARGs

Furthermore, we investigated the precise signaling pathways and the probable bio-
logical processes of the hub DEARGs that regulated DN development (Supplementary
Tables S22–S25). The top 10 GSEA HPO results revealed that CCR2 was mostly relevant
for abnormalities in a variety of immune cells, including abnormal granulocyte count, B
lymphocytopenia, vasculitis, abnormal lymphocyte morphology, and abnormal immune
system morphology (Figure 10A). The main enriched items for VCAM1 were recurrent
pneumonia, meningitis, and basal cell carcinoma (Figure 10B). The main enriched items
for CSF1R were recurrent lower respiratory tract infections, viral hepatitis, and abnor-
mal lymphocyte physiology (Figure 10C). As for ITGAM, the main enriched items were
autoimmunity, leukocytosis, and B lymphocytopenia (Figure 10D).
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What is more, the top 10 GO BP results revealed that CCR2 regulated a variety of
immunological responses, including regulation of chromosome separation, apoptotic cell
clearance, interleukin-2 production, positive regulation of T helper 1 type immune response,
and regulation of leukocyte apoptotic process (Figure 10E). The main enriched terms for
VCAM1 were regulation of complement activation, mitochondrial outer membrane perme-
abilization, regulation of unsaturated fatty acid synthetic processes, granulocyte migration,
and calcium-mediated signaling using intracellular calcium (Figure 10F). The main en-
riched terms for CSF1R expression were leukocyte differentiation, lymphocyte activation,
leukocyte migration, apoptotic cell clearance, and regulation of lymphocyte activation
(Figure 10G). As for ITGAM, the main enriched terms were antigen processing and pre-
sentation of exogenous peptide antigen via MHC class I, regulation of myeloid leukocyte-
mediated immunity, regulation of defense response to virus by virus, and multicellular
organism aging (Figure 10H).

Meanwhile, KEGG gene sets found that CCR2 was primarily enriched in the chemokine
signaling pathway, the T cell receptor signaling pathway, Fc gamma R mediated phagocy-
tosis, the Toll-like receptor signaling pathway, and primary immunodeficiency (Figure 10I).
The main enriched pathways for VCAM1 were the Fc epsilon ri signaling pathway, ECM
receptor interaction, T cell receptor signaling pathway, Toll-like receptor signaling pathway,
and natural killer cell-mediated cytotoxicity (Figure 10J). The main enriched pathways for
CSF1R were the T cell receptor signaling pathway, the Nod-like receptor signaling path-
way, natural killer cell-mediated cytotoxicity, the Toll-like receptor signaling pathway, and
leukocyte transendothelial migration (Figure 10K). As for ITGAM, the main enriched path-
ways were the B cell receptor signaling pathway, natural killer cell-mediated cytotoxicity,
allograft rejection, focal adhesion, and the T cell receptor signaling pathway (Figure 10L).
The above results suggest that all of these hub DEARGs might play essential roles in the
regulation of immunity and inflammation in DN.

3.10. Single Cell Analysis and Subcellular Localization of Hub DEARGs

To more precisely delineate the expression of hub DEARGs in human kidney tissues,
we interrogated a scRNA-seq based on the HPA database to identify the cell populations ex-
pressing in DN. Clustering identified 15 kidney cell subpopulations, as shown in the UMAP
plot. The outcomes further revealed the major expression of CCR2 in macrophages and T
cells (Figure 11A), VCAM1 in proximal tubular cells (Figure 11B), CSF1R in macrophages,
T cells, and B cells (Figure 11C), and ITGAM in macrophages (Figure 11D). Proteins have
different biological functions depending on where they are in the cell. Based on the COM-
PARTMENTS database (Supplementary Table S26), we further predicted the protein subcel-
lular localization of hub DEARGs. CCR2 is primarily distributed in the nucleus and plasma
membrane (Figure 11E), VCAM1 is primarily distributed in the Golgi apparatus, endosome,
endoplasmic reticulum, cytoskeleton, extracellular, and plasma membrane (Figure 11F),
CSF1R is primarily distributed in the nucleus and plasma membrane (Figure 11G), and
ITGAM is primarily distributed in extracellular and plasma membrane (Figure 11H).

3.11. Drug–Gene Interaction and Molecular Docking Analysis of Hub DEARGs

Developing possible therapeutic medicines that target CCR2, VCAM1, CSF1R, and
ITGAM offers a unique therapy strategy. Four small molecular medicines, including
cenicriviroc, carvedilol, sunitinib, and atorvastatin, were ultimately obtained based on the
GeneCards database (Table 1). The potential for binding was then assessed by docking the
aforementioned four bioactive chemical ligands with the proteins CCR2, VCAM1, CSF1R,
and ITGAM. The docking 3D and 2D models of the proteins CCR2, VCAM1, CSF1R, and
ITGAM, as well as four small-molecule medications with the firmest binding, were shown
in Figure 12A–D, demonstrating their ability to lessen or even reverse the development of
DN (Supplementary Table S27).
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Table 1. The details of the candidate small molecular drugs targeting hub DEARGs.

DRUGBANK ID NAME TYPE Chemical Formula DRUG GROUP ACTIONS

DB11758 Cenicriviroc Small Molecule C41H52N4O4S investigational inhibitor
DB01136 Carvedilol Small Molecule C24H26N2O4 approved, investigational inhibitor
DB01268 Sunitinib Small Molecule C22H27FN4O2 approved, investigational inhibitor
DB01076 Atorvastatin Small Molecule C33H35FN2O5 approved inhibitor
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4. Discussion

The aging of the kidneys is a complicated process that interacts with a variety of
disorders, particularly those that are more common in the elderly. Glomerular filtration
rate (GFR) decline, a physiological feature of DN, is a manifestation of kidney aging [31,32].
Beyond age 35, the GFR declines by roughly 5–10% per decade, while those between the
ages of 18 and 29 had 48% more intact nephrons than those between the ages of 70 and
75 [33,34]. The increase in senescent cells leads to two main effects. First, as one might
anticipate, the senescence of cells may result in a lack of self-repair and regeneration po-
tential due to persistent cell cycle arrest [35–38]. This might cause other progenitor or
stem cells, in addition to renal cells, to run out. According to a study, people with chronic
renal disease have 30–50% fewer endothelial progenitor cells than healthy subjects [39]. In
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kidneys with DN, there is a small reservoir, a diminished population, and a low rate of
stem cell renewal [40,41], all of which would inevitably hasten the disease’s course. Second,
the aging process also affects the immune system, including immune-cell function and
biomolecules that act as effectors, which results in immunosenescence, immunoactivation,
and inflammatory processes [42,43]. Cytokines that promote inflammation and matrix syn-
thesis, such as IL-6 and TGF-β, can be produced by senescent cells. These SASP-associated
compounds may have a paracrine and autocrine role in stem and kidney cell renewal,
as well as persistent inflammation and fibrosis [44,45]. In summary, cellular senescence
engages in various pathogenic processes collectively to promote the development of DN.

In this work, we screened 559 DEGs and discovered 289 down-regulated genes and
270 up-regulated genes. Further GO enrichment analysis revealed that a large number of
biological processes associated with immunological and inflammatory responses (inflam-
matory response, immune response, positive regulation of T cell activation, and cellular
response to interleukin-1) are considerably enriched, whereas a KEGG enrichment study
revealed some correlation with complement and coagulation cascades, cytokine-cytokine
receptor interaction, the AGE-RAGE signaling pathway in diabetic complications, and the
NF-kB signaling pathway. Also, the results above are further supported by Human Phe-
notype Ontology analysis. The primary enriched terms were abnormal renal glomerulus
morphology, abnormal renal cortex morphology, nephrotic syndrome, glomerulonephritis,
and abnormal urine protein level. As a result, it is possible that the DEGs have a role in
DN pathogenesis.

Then, based on WGCNA analysis, we discovered 19 DN-related modules. Many
biological functions and pathways associated with inflammation and the immune system
have been revealed to involve DEGs in the green module. We got a total of 57 DEARGs
by overlapping the DEGs, the green module genes, and the ARGs. To further identify
DN-related hub DEARGs, we estimated the expression of the aforementioned 57 DEARGs
using MCODE, MCC, and LASSO methods and then identified four DEARGs (CCR2,
VCAM1, CSF1R, and ITGAM). Fewer of them have been reported in the development of
DN, but many of them have been linked to immunological and inflammatory responses in
other disorders.

C-C chemokine receptor type 2 (CCR2) modulates the immune response by causing
the migration of macrophages and monocytes to areas of inflammation [46,47]. In fact, it
has been demonstrated that CCR2 is engaged in the DN process. According to research,
macrophages play a direct role in the renal injury of diabetic nephropathy, and genetic
CCR2 deletion provides kidney protection in renal injury [48]. The 90-kDa glycoprotein
known as Vascular Cell Adhesion Molecule 1 (VCAM-1) is mostly expressed in endothelial
cells. The first identification of VCAM-1 as an endothelial cell surface glycoprotein occurred
in 1989 [49,50]. Inflammatory cytokines, including TNF, ROS, oxidized LDL, elevated blood
sugar levels, toll-like receptor agonists, and shear stress, all stimulate the production of
VCAM-1 [51]. A class of tyrosine/serine kinases known as colony-stimulating factor 1
receptor (CSF1R) are primarily in charge of controlling the proliferation and differentiation
of microglia and macrophages [52]. In both human and rat RA models, CSF1R blockade
lowers inflammation [53]. CSF1R is bound by CSF, which increases cell survival and prolif-
eration [54]. In RA, synovial endothelial cells generate CSF [55] and IL-1β and TNF [56]
in vitro. Integrin Subunit Alpha M (ITGAM) encodes the CD11b-subunit of the Mac1 or
CD11b/CD18 integrin, which has been repeatedly linked to susceptibility to systemic
lupus erythematosus (SLE) [57]. In diabetic nephropathy, ITGAM may contribute to kid-
ney injury by increasing macrophage recruitment in the kidneys and causing histological
abnormalities in the glomeruli [58].

For a comprehensive understanding of the dysregulated immune cells in DN, an
immune infiltration investigation was conducted. We discovered that DN tissue had higher
levels of resting mast cells and delta gamma T cells but lower levels of regulatory T cells and
activated mast cells. Moreover, our investigation demonstrated that several main immune
cells were statistically correlated to all four DEARGs (CCR2, VCAM1, CSF1R, and ITGAM).
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For instance, delta gamma T cells and resting mast cells showed a positive correlation with
all hub genes, but regulatory T cells and activated mast cells showed a negative correlation
with them. They might, therefore, be extremely important in the immunomodulation of
DN and be linked to the malfunctioning of inflammatory cells in DN. The immunological
response of effector T cells, B cells, and innate immune cells is suppressed by CD4+ T
cells known as Tregs (regulatory T cells). Tregs limit inflammatory immunity in numerous
ways, including through the renal and systemic systems [59]. Current research indicates
that kidney disease may cause a decline in the proportion of Tregs and an impairment of
their regulatory capabilities [60]. Delta gamma T cells are the primary warriors of both the
innate and adaptive immune systems, making up an average of 3.7% of CD3+ T cells in
peripheral blood [61,62]. The fact that delta gamma T cells are classified as T lymphocytes
have TCR rearrangement, have the capacity to create immunological memory, and can
lyse target cells all point to them being an important component of the adaptive immune
system [63]. Studies have shown that T lymphocytes control renal operational processes.
Mast cells are mononuclear, non-dividing cells that are a component of the innate immune
system [64]. The two phenotypes of mast cells that are typically distinguished are those that
secrete tryptase and chymase and those that exclusively secrete tryptase. Tryptase-secreting
mast cells may perform many functions in the immunological response, whereas chymase-
secreting mast cells may also participate in revascularization and tissue repair [65,66]. The
release of mediators by mast cells during inflammation may result in the loss of kidney
structure, and mast cells have also been recognized as significant effector cells in renal
inflammation [67]. Despite this, there are not many researches that investigate how hub
DEARGs relate to resting memory CD4 T cells, gamma delta T cells, and mast cells in the
DN, which could be a fascinating discovery.

Following that, we looked into the particular signal pathways that the four hub
DEARGs enriched and investigated how the hub DEARGs might affect the development
of DN. Four DEARGs were implicated in immune cell abnormalities, and GSEA analysis
revealed that they controlled a great deal of immune system responses and inflammatory
pathways, including apoptosis, interleukin-2 production, complement activation, Nod-
like receptor signal pathways, and Toll-like receptor signal pathways, indicating that hub
DEARGs may be a potential biomarker for DN diagnosis and prognosis. Apoptosis, a sort
of active, programmed cell death, maintains the stability of the body’s environment [68].
Apoptosis and proliferation of cells are directly controlled by genes, ensuring the equilib-
rium state of the body’s cells [69]. It has been discovered that apoptosis has a significant
impact on glomerular remodeling and regulates glomerular cell regression during CGN
recovery [70,71]. Interleukin 2 (IL-2) is a multipotent cytokine with a 15.5 kDa four-helix
bundle that plays a crucial role in immune control. Antigen-stimulated CD4+ T cells are the
predominant producers, but NK T cells, CD8+ T cells, mast cells, and dendritic cells can also
generate it [72–76]. Long-term IL-2 treatment decreased the activity and proliferation of
intrarenal conventional CD4+ T cells, which was accompanied by a clinical and histological
improvement of lupus nephritis, according to research, while short-term IL-2 treatment
increased the intrarenal Treg population in mice with active lupus nephritis [77]. Moreover,
IL-2 often protects against caspase-8-mediated apoptotic injury, making it a potentially new
and practical method to avoid tubular injury in autoimmune kidney diseases [78]. Com-
plement and coagulation cascades perform significant functions in inflammatory-related
events and the immune system’s protection and regulation [79]. Coagulation, complement,
the fibrinolysis system, and platelets all work together to build a tight network in the
blood circulation. Systemic lupus erythematosus, C3 glomerulonephritis, and ischemia-
reperfusion damage are just a few examples of illnesses that can advance clinically as a
result of dysregulation of any cascade system [80]. A family of pattern recognition receptors
(PRRs) known as the NOD-like receptor (NLR) family of proteins is known to mediate
the early innate immune response to cellular injury and stress. Its activation occurs not
only in immune cells but also in resident cells, including endothelial cells and podocytes in
the glomeruli [81,82]. Inflammation and other cellular damage are the results of NLRP3
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inflammasome activation, which has been linked to ESRD and glomerular injury in stud-
ies [83]. Similar to this, the toll-like receptor family (TLRs) plays a crucial manipulative
function in the innate immune system. According to a current study, the transduction of
TLR signals affects how the kidney responds to various external and internal stimuli by
triggering its inflammatory response [84]. Besides, TLRs also play new roles in addition to
their well-known ones in host defense, such as regulating body homeostasis and healing
wounds [85].

Moreover, we explored cell subpopulations and the subcellular localization of hub
DEARGs in the kidney. The results identified 15 kidney cell subpopulations and pre-
dicted various organelles, such as the Golgi apparatus, endosome, endoplasmic reticulum,
cytoskeleton, extracellular, and plasma membrane. However, hub DEARGs are mostly
expressed in macrophages as well as on the cell membrane in the kidney. Lastly, we dis-
covered four prospective therapeutic medicines that target hub DEARGs, suggesting a
potential therapeutic strategy for DN. According to molecular docking, precise molecule
binding strengthens the reliability of this association.

Our investigation was subject to certain limitations. Specifically, we quantified gene
expression levels exclusively in high glucose-induced mesangial cells rather than in actual
tissue samples. Although this approach provided a representative model, it may not
fully capture the intricacies of the in vivo setting. To address this, we intend to conduct
future experiments utilizing clinical samples, thereby offering a more direct validation
of our findings. By doing so, we aim to enhance the robustness and clinical relevance of
our results.

5. Conclusions

In conclusion, four potential aging-related genes (CCR2, VCAM1, CSF1R, and ITGAM)
associated with DN were identified in this study using bioinformatic analysis and ma-
chine learning methods. By controlling senescence, these genes may influence the de-
velopment and prognosis of DN, and they may also aid in the development of future
therapeutic approaches.
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