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Abstract: Objective: Data on cellular and humoral immunogenicity after the third dose of anti-SARS-
CoV-2 vaccines in patients with immune-mediated rheumatic diseases (IMRDs) are scarce. Herein, we
evaluated the adaptive immune response in IMRD patients treated with different immunosuppressive
therapies (conventional synthetic disease-modifying antirheumatic drugs [csDMARDs], biological
disease-modifying antirheumatic drugs [bDMARDs], and targeted synthetic disease-modifying
antirheumatic drugs [tsDMARDs]) after the booster of the anti-SARS-CoV-2 vaccine to determine
whether any drug reduced the vaccine’s response. Methods: A single-center prospective study was
conducted, including patients presenting with IMRD and healthy controls (HC). Specific anti-SARS-
CoV-2 interferon-gamma (IFN-γ) production was evaluated between 8–12 weeks after the third
dose of the SARS-CoV-2 vaccine. In addition, anti-Spike IgG antibody titers were also measured.
Results: Samples were obtained from 79 IMRD patients (51 women, 28 men; mean age 57± 11.3 years
old): 43 rheumatoid arthritis, 10 psoriatic arthritis, 14 ankylosing spondylitis, 10 undifferentiated
spondyloarthritis, and 2 inflammatory bowel disease-associated spondyloarthritis (IBD-SpA). In
total, 31 HC (mean age 50.9 ± 13.1 years old, 67.7% women) were included in the study. Post-
vaccine results displayed positive T-cell immune responses in 68 out of 79 (86.1%) IMRD patients
(82.3% of those without prior COVID-19). All HC and IMRDs patients had an antibody response
against the SARS-CoV-2 receptor-binding domain; however, the HC response was significantly higher
(median of 18,048 AU/mL) than in IMRDs patients (median of 6590.3 AU/mL, p < 0.001). MTX
and leflunomide were associated with lower titers of IgG and IFN-γ responses. Among bDMARDs,
adalimumab, etanercept, and guselkumab are associated with reduced cellular responses. Conclusion:
Our preliminary data show that the majority of our IMRD patients develop cellular and humoral
responses after the SARS-CoV-2 booster vaccination, emphasizing the relevance of vaccination in this
group. However, the magnitude of specific responses was dependent on the immunosuppressive
therapy administered. Specific vaccination protocols and personalized decisions about boosters are
essential for these patients.
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1. Introduction

Faced with the current COVID-19 pandemic, an urgent need has arisen to understand
the impact of immunosuppressive therapies on the efficacy of SARS-CoV-2 vaccines. Pa-
tients with immune-mediated rheumatic diseases (IMRDs) have been considered a high-risk
group for severe disease, either because of the disease itself or the immunomodulatory ther-
apies used. Studies conducted during the pandemic in this population suggest that these
patients experience significantly higher rates of hospitalization, severe disease, morbidity,
and mortality [1–5].

Clinical trials involved in the development of these vaccines were designed to measure
the prevention of severe disease in the healthy population [6–9]. However, to date, these
studies have not included patients receiving immunosuppressive therapy. The degree to
which the immune response is altered may vary depending on the specific immunomodu-
latory regimen and vaccine used. Previous studies concerning other vaccines in patients
with IMRDs, such as influenza or pneumococcus, have shown impaired humoral responses
in these patients, especially in those who received rituximab treatment [10–13]. However,
existing data derived from experience with other types of vaccines may not translate to the
new vaccines implemented for COVID-19.

Initially, studies were conducted based on the humoral response in this group of
patients, concluding that, in general, patients generate specific antibody responses de-
pending on the therapeutic target of the immunosuppressive treatment and their intrinsic
characteristics [14–20].

Although current vaccine efforts have focused on the induction of neutralizing anti-
bodies against SARS-CoV-2, which wanes over time, there is a large body of evidence that
the SARS-CoV-2-specific T cell response is essential for viral clearance, disease outcome,
and long-term memory [21–23]. Experimental data suggest that CD8+ T-cell responses may
play a protective role in the presence of decreasing or subprotective antibody titers [22,24].
Recently, new research studies have been conducted to evaluate the cellular response
generated, showing that these vaccines are immunogenic, although the response is in some
cases significantly lower compared to healthy controls [25].

Various hypotheses have been propagated as to what factors influence vaccine im-
munogenicity, such as the type of pharmacological immunosuppression or patient intrinsic
factors [26–28]. Published data regarding immune responses identify drugs targeting B
cells as risk factors for low immunogenicity [15,17,29,30]. However, there are variable
results in studies of patients treated with these drugs, with some confirming that both
humoral and cellular responses are diminished and others showing a cellular response that
could confer immunogenicity in this subgroup of patients [31,32].

There are several types of drugs available for treating IMRDs, which fall under the
category of disease-modifying antirheumatic drugs (DMARDs). The three sub-categories of
DMARDs are conventional synthetic DMARDs (csDMARDs), which were the first drugs to
slow the progression of the disease and induce remission; biologic DMARDs (bDMARDs),
which consist of antibodies that target crucial inflammatory or immune pathways; and
targeted synthetic DMARDs (tsDMARDs), which are inhibitors of Janus kinase (JAK).
These molecules play a role in the signal transmission of inflammatory pathways that can
help regulate immune cells and inflammation [33,34].

Given the need to implement vaccine strategies in these patients, our objective was to
describe the serological and T-cell responses after the third dose of the vaccine in a cohort
of patients with IMRDs (rheumatoid arthritis and spondyloarthropathies) treated with
immunosuppressive therapy (csDMARDs, bDMARDs, and tsDMARDs). We aimed to
identify the impact of these treatments on vaccine response and determine which patients
would benefit from various vaccination strategies.
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2. Materials and Methods
2.1. Study Design

This was a single-center prospective observational study. Seventy-nine adult IM-
RDs treated with different immunosuppressive therapies (csDMARDs, bDMARDs, and
tsDMARDs) who received the third dose of the SARS-CoV-2 vaccine were studied. We
measured the adaptive immune response two weeks after stopping treatment to reduce the
influence of anti-inflammatory drugs in the assays. During the study, samples were col-
lected according to the visits scheduled in the care of each patient to avoid extra visits to the
hospital due to the pandemic situation. A group of sex- and age-matched healthy controls
(HC), healthcare workers (HCWs), and nonclinical personnel with no known rheumatic
diseases and receiving no immunosuppressive medications were used as a comparator
group for the study (n = 31). Thus, blood samples were taken between 8–12 weeks after
the third dose of the SARS-CoV-2 vaccination (BNT162b2 [Pfizer/BioNTech, New York,
NY, USA] or mRNA-1273 [Moderna, MA, USA]). Between November 2021 and February
2022, we conducted a search in the electronic clinical database to collect information on age,
gender, type of rheumatic diagnosis, pharmacological history, and COVID-19 vaccination. We
also examined the patients’ history of past COVID-19, although this data was not available for all
patients since some were diagnosed using antigen testing at home. Therefore, we administered
a questionnaire where patients self-reported if they had previously contracted the virus.

Exclusion criteria included pregnancy status, other concomitant biological therapies,
other known associated autoimmune rheumatic diseases, treatment with rituximab, HIV,
HBV, or HCV disease, and comorbidity with known immunodeficiencies. The study was
conducted in accordance with the guidelines of the Declaration of Helsinki. The study was
reviewed and approved by the Ethics Committee of the Hospital Clínico San Carlos. Written
informed consent was obtained from all individual participants included in the study.

2.2. Evaluation of SARS-CoV-2 Humoral Response

Serum samples were analyzed for the detection of anti–SARS-CoV2 antibodies at the
Microbiology Department at Hospital Clínico San Carlos. Antibody titers were measured
using the SARS-CoV-2 IgG II Quant assay (Abbott Diagnostics, Madrid, Spain) on the
Alinity i equipment. The SARS-CoV-2 IgG II Quant Assay is a chemiluminescent micropar-
ticle immunoassay (CMIA) used for the qualitative and quantitative determination of IgG
antibodies to SARS-CoV-2 in human serum and plasma. This assay is used to monitor the
antibody response derived from infection and vaccination against SARS-CoV-2 by deter-
mining quantitative IgG titers against the SARS-CoV-2 receptor-binding domain (RBD).
The results were expressed as arbitrary units (AU) per milliliter. The positive threshold
was 50 AU/mL, following the manufacturer’s recommendation. According to the EP34
Guide of CLSI (21), the ranges of results values that can be reported are 21.0–40,000 AU/mL
(analytical measurement range) and 40,000–80,000 AU/mL (extended measurement range).

2.3. Evaluation of SARS-CoV-2 Cellular Response

T cell response to SARS-CoV-2 was measured using an IFN-γ ELISA kit (Euroimmun,
Lübeck, Germany) within 16-h of blood withdrawal and analyzed on a Triturus analyzer
(Grifols S.A., Barcelona, Spain). Human lithium-heparin plasma, obtained after stimulation
using the SARS-CoV-2 IGRA stimulation tube set (Euroimmun, Lübeck, Germany), was
diluted 1:5 in the sample buffer. Afterward, 100 µL of each calibrator (0.1–400 mUI/mL),
controls, and diluted samples were added to high-binding 96 well ELISA plates pre-coated
with monoclonal anti-IFN-γ antibodies. After 2 h of incubation at room temperature
(RT), plates were washed five times with 350 µL of wash buffer. Subsequently, 100 µL
of biotin-labeled anti-interferon-gamma antibody was added to each of the microplate
wells and incubated for 30 min at RT. After the following washes as described above,
100 µL peroxidase-labeled streptavidin was added and incubated for 30 min at RT. After
five additional washes with wash buffer, 100 µL of 3,3′,5,5′-tetramethylbenzidine/peroxide
(TMB/H2O2) was added to each well, incubating it for 20 min, and the absorbance was
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read at 450 nm after 30 min of adding the stop solution (sulphuric acid). The interpretation
of SARS-CoV-2 IFN-γ antibody testing was as follows: <100 mUI/mL = negative, ≥100
to <200 = borderline, ≥200 = positive. The results were obtained by subtracting the blank
value from the values for the specific and non-specific stimulations. Validation criteria were
performed according to the manufacturer’s guidelines.

2.4. Statistical Analysis

Microsoft Excel (v.14.1.0, Washington, DC, USA) was used for data collection and
descriptive data analysis. R software (version 4.0.4, New Jersey, USA) was used for de-
scriptive and statistical data analysis. Categorical variables were compared using Fisher’s
exact test or the chi-squared test, as appropriate. Quantitative data were analyzed with
the Kruskal-Wallis test or Mann–Whitney U test, as convenient. Values were expressed
as means ± standard deviation (SD) or median (IQR), and p-values of less than 0.05 were
considered significant. GraphPad Prism software (V.9.1.0, New York, USA) was used to
make the violin plots and correlations. We excluded treatment groups with a sample size
of ≤2 from our analysis and figures due to the lack of significant data resulting from the
small sample size.

3. Results
3.1. Epidemiological and Immunological Characteristics of the Study Population

A total of 79 patients with IMRDs (mean age 58.2 ± 11.4 years, 60.8% women) and
31 patients with HC (mean age 50.9 ± 13.1 years, 67.7% women) were included in this
study. Baseline characteristics of all patients and HC are shown in Table 1. Most patients
with IMRDs had rheumatoid arthritis (n = 43, 54.4%), followed by psoriatic arthritis (n = 10,
12.7%), ankylosing spondylitis (n = 14, 17.7%), undifferentiated spondyloarthritis (n = 10,
12.7%), and IBD-associated spondyloarthritis (n = 2, 2.5%). Thirty-two (40.5%) IMRD
patients were receiving glucocorticoids (a mean dose of 5.3 mg). Patients were most
frequently treated with methotrexate (n = 25, 31.6%), followed by etanercept (n = 18, 22.8%).
In addition, 63.3% of patients were receiving a combination of immunosuppressants.

Sixty-three (79.7%) patients received the BNT162b2 vaccine and 16 (20.3%) the mRNA-
1273 vaccine. Out of 79 patients, 14 (17.7%) had an anamnesis positive for past SARS-CoV-2
infection confirmed serologically by PCR or antigenic test, similar to HC (16.1% reported
previous SARS-CoV-2 infection). Fifty-one (64.6%) patients had no adverse reactions
after vaccination.

Among twenty-eight patients (35.4%) with adverse reactions after booster, they had
mild and transient symptoms (most frequently 39.3% headache, 32.1% malaise, 28.6%
pain in the site of injection, and 7.1% myalgias). No severe adverse reactions have been
observed in vaccinated patients up to now. Most patients with IMRDs did not have an
outbreak of the rheumatic disease; however, 10.1% (8 of 79 patients) did, and all of them
had rheumatoid arthritis.

Table 1. Demographic and clinical characteristics of patients and controls.

Healthy Controls
(n = 31)

IMRDs Patients
(n = 79)

Age Mean ± SD years 50.9 ± 13.1 58.2 ± 11.4

Female 21 (60.8) 48 (67.7)Sex
n (%) Male 10 (39.2) 31 (32.2)

Diagnosis
n (%)

Rheumatoid arthritis N/A 43 (54.4)

Psoriatic arthritis N/A 10 (12.7)

Ankylosing spondylitis N/A 14 (17.7)

Undifferentiated spondyloarthritis N/A 10 (12.7)

IBD-associated spondyloarthritis N/A 2 (2.5)
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Table 1. Cont.

Healthy Controls
(n = 31)

IMRDs Patients
(n = 79)

Glucocorticoids N/A 32 (40.5)

Dose, mean ± SD (mg) N/A 5.3 ±1.7

Conventional synthetic DMARDs

Methotrexate N/A 25 (31.6)

Sulfasalazine N/A 11 (13.9)

Leflunomide N/A 9 (11.4)

Mycophenolate N/A 1 (1.3)

Hydroxychloroquine N/A 2 (2.5)

Biologicals DMARDs

Etanercept N/A 18 (22.8)

Adalimumab N/A 17 (21.5)

Certolizumab N/A 11 (13.9)

Gulsekumab N/A 8 (10.1)

Secukinumab N/A 6 (7.6)

Sarilumab N/A 3 (3.8)

Infliximab N/A 2 (2.5)

Ixekizumab N/A 1 (1.3)

Abatacept N/A 1 (1.3)

Targeted Synthetic DMARDs

Baricitinib N/A 5(6.3)

Upadacitinib N/A 4(5.1)

Medication
n (%)

Combination of conventional and
biological DMARDs N/A 50(63.3)

3rd COVID-19 vaccine
n (%)

BNT162b2 (Pfizer) 5 (16.1) 63 (79.7)

mRNA-1273 (Moderna) 26 (83.9) 16 (20.3)

Prior history
of COVID-19

n (%)
PCR or IgG antigenic test 5 (16.1) 14 (17.7)

3.2. Humoral Immune Responses to COVID-19 Vaccination

Antibodies against the SARS-CoV-2 RBD of the S protein were analyzed after the third
dose of BNT162b2 or the mRNA-1273 vaccine. A detectable anti-RBD antibody response
was observed in all HC and in all IMRD patients (100%). However, the magnitude of the HC
response (median 18,048 [IQR 10,554–25,664] AU/mL) was significantly higher than that of
IMRDs patients (median 6590.3 IQR [2061.5–16,848.3] AU/mL) (p < 0.001) (Figure 1A). No
differences were identified when patients and controls were stratified by age, sex, and type
of vaccine received. Specific anti-SARS-CoV-2 IgG levels were higher in IMRD patients
with a previous history of COVID-19, with significant differences (p < 0.001) (Figure 1B).
No differences were observed in the levels of anti-S1 IgG antibodies when we looked at
the different IMRD diseases, but when we compared the humoral response of each IMRD
disease with HC, rheumatoid arthritis and ankylosing spondylitis had lower titer levels
(p < 0.01 and p < 0.05, respectively) (Figure 1C). Treatment with methotrexate (MTX) led to a
lower titer compared to HC and other IMRD patients not taking any conventional synthetic
disease-modifying antirheumatic drugs (csDMARDs) (p < 0.01) (Figure 1D). Compared
to the HC and no treatment groups, bDMARDs did not significantly decrease antibody
titers, with the exception of adalimumab (p < 0.01) (Figure 1E). The serologic results were
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reported as median because, after exploring the dataset using a quantile-quantile plot, the
data showed a non-normal distribution.
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Figure 1. Anti-S1 IgG antibodies in IMRD patients and HC measured by chemiluminescent mi-
croparticle immunoassay are represented by a violin plot. Dotted lines represent the positivity cutoff:
≥50 AU/mL. (A) Significant differences were observed between our cohort of IMRD patients and
HC. (B) Antibody titers with and without past COVID-19. (C) Levels of anti-SARS-CoV-2 antibodies
are compared across different IMRD patients and HC. (D) Antibody levels in patients treated with
csDMARDs (E) and bDMARDs. No treatment group represents IMRD patients without csDMARDs
treatment (D) or without bDMARDs treatment (E). Data were analyzed by Mann–Whitney U or
Kruskal-Wallis tests when we compared two or more groups, respectively. * p < 0.05, ** p < 0.01,
*** p < 0.001.

3.3. Cellular Immune Responses to COVID-19 Vaccination

Positive specific cellular responses were displayed in 69 out of 79 (87.4%) patients
after the third dose of the SARS-CoV-2 vaccine in our IMRD patients (82.3% when con-
sidered IMRDs without previous COVID-19). Median (IQR) IFN-γ levels in IMRDs
were 1606.8 (607.1–2056.2) mUI/mL, and in all (100%) HC, median (IQR) IFN-γ lev-
els were 2216 (2015.2–2372.1) mUI/mL, with significant differences between both groups
(p < 0.0001) (Figure 2A). Women showed significantly higher responses than men (p = 0.04).
No differences were identified when patients and controls were stratified by age and type
of vaccine received.
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Figure 2. Specific anti-SARS-CoV-2 IFN-γ responses were measured by IGRA. Dotted lines represent
the positivity cutoff: ≥200 mUI/mL. (A) Significant differences were observed between our cohort
of IMRD patients and HC. (B) IFN-γ titers with and without past COVID-19. (C) Levels of anti-
SARS-CoV-2 IFN-γ are compared across different IMRDs and HC. (D) IFN-γ levels in patients treated
with csDMARDs (E) and bDMARDs. Data were analyzed by Mann–Whitney U or Kruskal-Wallis
tests when we compared two or more groups, respectively. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.
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Past COVID-19 infection was associated with higher titers than in patients without
prior infection (Figure 2B). All patients with prior COVID-19 had positive cellular responses.
No differences were observed in the levels of IFN-γ when we compared the different IMRD
diseases. However, significant differences were seen when we compared IFN-γ titers of each
IMRD disease with HC; rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis
had lower titer levels (p < 0.0001, p < 0.01, and p < 0.05, respectively) (Figure 2C). Treatment
with MTX and leflunomide led to lower IFN-γ titers compared to HC and other IMRD
patients not taking any csDMARDSs (p < 0.0001 and p < 0.01, respectively) (Figure 2D).
Among bDMARDs, adalimumab, etanercept, and guselkumab appeared to decrease IFN-γ
titers compared to HCs and the no treatment group. (p < 0.0001, p < 0.001, and p < 0.05,
respectively) (Figure 2E).

We also observed differences between IMRD patients who had a positive cellular
response (responders) and those who did not (non-responders). They are shown in Table 2.
Significant differences were seen when stratifying by sex; most of the responders’ patients
were female (65.2%, p = 0.04). We did not identify significant differences between groups in
relation to age, diagnosis, comorbidity, or type of vaccine. In regard to treatment, we did
not observe significant differences in most of the csDMARDs, except in the leflunomide
group, where half of the non-responders were on leflunomide, compared with 8.5% of the
responders who were on it (p = 0.0036). Nearly all bDMARDs show no significant differ-
ences in cellular response, except in the sarilumab group (p = 0.0407). No differences were
observed in the tsDMARDs group. All of the IMRD patients that had a prior SARS-CoV-2
infection (hybrid group) had a positive cellular response.

We also focused on the correlation between the two arms of the adaptive immune
response. A positive, weak correlation between humoral and cellular immune responses
after the third dose of vaccine has been observed in IMRD patients (r = 0.5, p < 0.0001)
(Figure 3).

Table 2. Demographic characteristics of IMRD patients: cellular responders and non-responders.

Responders Non-Responders

(n = 69) (%) (n = 10) (%)
p-Value

Age (Median) 58 62 0.4433

Female 45 (65.2) 3 (30.0) 0.0429

Diagnosis 0.2672

Rheumatoid arthritis 37 (53.6) 6 (60) 0.7481

Psoriatic arthritis 7 (10.1) 3 (30) 0.1094

Ankylosing spondylitis 14 (20.3) 0 0

Undifferentiated spondyloarthritis 9 (13.1) 1 (10) 1

IBD-associated spondyloarthritis 2 (2.9) 0 0

Comorbidity

Arterial hypertension 25 (36.2) 3 (30) 1

Diabetes mellitus 5 (7.2) 1 (10) 0.5687

Dyslipidemia 27 (39.1) 2 (20) 0.31

Cardiovascular disease 0 1 (10) 0.1266

COPD 3 (4.3) 1 (10) 0.4246

Interstitial lung disease 0 0 -

Oncologic disease 0 0 -

Treatment

Glucocorticoids (mean) (mg/day) 1.79 3.35 0.2171



Biomedicines 2023, 11, 2418 9 of 14

Table 2. Cont.

Responders Non-Responders

(n = 69) (%) (n = 10) (%)
p-Value

Conventional synthetic DMARDs 0.1249

Methotrexate 31 (45) 2 (20) 0.18

Leflunomide 6 (8.7) 5 (50) 0.0036

Sulfasalazine 12 (17.4) 1 (10) 1

Mycophenolate 1 (1.4) 0 1

Hydroxychloroquine 10 (14.5) 0 1

Biologicals DMARDs 0.4556

Adalimumab 15 (21.7) 2 (20) 1

Infliximab 8 (11.6) 0 0.5865

Etanercept 2 (2.9) 0 1

Certolizumab 16 (23.2) 2 (20) 1

Secukinumab 10 (14.5) 1 (10) 1

Ixekizumab 5 (7.24) 1 (10) 0.5687

Gulsekumab 1 (1.4) 0 1

Abatacept 1 (1.4) 0 1

Sarilumab 1 (1.4) 2 (20) 0.0407

Targeted synthetic DMARDs

Baricitinib 4 (5.8) 1 (10) 0.5013

Upadacitinib 4 (5.8) 0 1

Prior history of COVID-19 19 (27.5) 0 0.1069

3rd COVID-19 vaccine

1Pfizer 55 (79.7) 8 (80)

Moderna 14 (20.8) 2 (20)
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3.4. SARS-CoV-2 Infection Follow-Up

Our study population was followed up 5 months after the cellular and humoral assay
to evaluate whether high cellular IFN-γ responses correlated with protection against subse-
quent exposure to SARS-CoV-2 infection. Seventeen out of 79 (21.5%) IMRD patients, four
of them with negative cellular responses, were further exposed to SARS-CoV-2 after the
booster, all of them related to mild symptoms. Eleven out of 31 (35.5%) HCs referred to ex-
posure to SARS-CoV-2. There were no serious or major adverse events in the control group.
None of them required hospitalization and are currently free of the disease’s sequelae.

4. Discussion

To the best of our knowledge, this is one of the very first studies assessing the immuno-
genicity of SARS-CoV-2 booster vaccination in patients with IMRDs on immunosuppressive
therapy (non-rituximab). We found a detectable, specific SARS-CoV-2 cellular response in
87.4% of IMRD patients (82.3% without previous COVID-19) and in all HC. Specific humoral
responses scored positive in all IMRDs and HC. These results are in line with other cohort
reports showing that the majority of IMRD patients are able to respond to SARS-CoV-2
vaccines or infection [28,35]. Infection seems to induce higher responses (positive in all
naturally infected patients, while only 82.3% were positive in non-infected patients), in line
with data published in other populations [36,37], which stresses the need to individualize
booster decisions. However, lower titers of IFN-γ and antibodies against the SARS-CoV-2
RBD of the S protein were observed in IMRD patients compared with HC. This reduction in
the vaccine’s immunogenicity might be due to immunosuppressive/immunomodulatory
therapies [15].

Regarding humoral response after the third vaccine dose (booster), our findings show
a substantial reduction with methotrexate and adalimumab treatment [38]. To avoid factor
rheumatoid interference in rheumatoid arthritis patients, we only measured IgG antibodies
against SARS-CoV-2, which did not significantly interfere, as shown by Liu et al. [39].

Spike-specific T-cell response was also evaluated, displaying significantly lower titers
in those patients under methotrexate and leflunomide and the bDMARDs adalimumab,
etanercept, and guselkumab. These reductions in cellular and humoral responses are in
agreement with other studies [14,16,40]. MTX constitutes a cornerstone treatment for a
range of rheumatic diseases. It has been reported that the disruption of MTX for 2 weeks
after vaccination improved the adaptive response to influenza vaccination in patients with
rheumatoid arthritis with a low risk of disease flares [41]. Moreover, certain biological
therapies would enable higher specific vaccine responses with respect to csDMARDs and
tsDMARDs. More studies are certainly needed to address the impact of comedication on
cellular and humoral immune responses after boosters of SARS-CoV-2 vaccines.

From the viewpoint of particular IMRD at risk of low immunogenic response to
SARS-CoV-2 booster, rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis
were associated with a diminished cellular response to the vaccine compared to healthy
controls. These results seem to be at least partially explained by the underlying treatment.
Our findings in IMRD patients are in agreement with a study by Mauro et al. [14].

As manifested in our cohort, although the different SARS-CoV-2 vaccines showed a
good immunogenicity outline according to adaptive response, a considerable portion of
patients with IRMD (12.6%) failed to mount an appropriate cellular response, as shown
in other cohorts [26,36]. These non-responders in our cohort were essentially men (n = 7,
8.9%), which might be explained by sexual dimorphism, which has potential implications
for the severity and mortality of COVID-19 [42,43]. Another potential explanation of the
loss of cellular response might be the occurrence of anti-IFN-γ antibodies described by
Bastard et al. [44], which were not performed in our study. The lower immunogenicity of
SARS-CoV-2 vaccination in IMRD patients after booster might be due to the development
of exhausted lymphocytes, which were not studied [45]. The persistent inflammation
seen in patients with rheumatoid arthritis triggers the development of T cells with an
exhausted phenotype, which is characterized by a diminished ability to respond to vi-
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ral antigens [46]. Persistent antigen stimulation with vaccination might increase these
phenomena in IMRD patients.

In the case of the hybrid subgroup (patients with IMRD who were naturally immu-
nized by infection plus vaccination), they presented the highest specific anti-SARS-CoV-2
IFN-γ levels, which might indicate that the cellular response induced by prior natural
infection was significantly enhanced by subsequent vaccination [47].

The poor correlation between cellular and humoral immunity might be explained
by chronic suppression therapy in patients with rheumatological diseases [48]. Only
eight patients (10.1%) of our cohort had a flare-up (without requiring medication changes)
identified from the post-vaccination surveillance; all of them had rheumatoid arthritis.
Similar results were seen in other cohorts studied [49,50]. In contrast, Geisen et al. and
Braun-Moscovici et al. reported no flare at all [51,52]. These data should be interpreted
with prudence due to an exploratory analysis of disease activity assessment performed
within a variable prevaccination and postvaccination time frame.

This study has several limitations that should be mentioned, and thus the results
should be interpreted with caution. Our results cannot be considered definitive due
to the small sample size of both patients and healthy controls. While our findings do
provide a preliminary understanding of the immunogenic response in this subgroup of
patients, further studies with larger participant numbers are required to validate our
findings. Additionally, the IGRA test does not differentiate between CD4+ and CD8+

SARS-CoV-2-specific T cells. More research is necessary to gain a deeper understanding of
the extent to which each cell subset contributes to the immune response following infection
or vaccination. Another limitation is that it was a single-center study, which might limit
the impact of the study. Therefore, we present the work as a pilot exploratory analysis.

On the other hand, our study has several strengths. We have recruited homogeneous
study groups with patients and HC matched by age and gender. Moreover, we included
in the study patients with different IMRDs and treatments and determined the influence
of the booster SARS-CoV-2 vaccine on adaptive immune responses. Moreover, the assays
used in the present study to detect a SARS-CoV-2 specific response are easy and highly
reproducible.

To summarize, our results show that most of our IMRD patients develop cellular and
humoral responses after the third dose of the SARS-CoV-2 vaccine. The results displayed
have important implications for the management of anti-SARS-CoV-2 vaccination in pa-
tients treated with biological therapies. Based on our data, we believe in the necessity
of these functional immunological studies to better define the vaccination strategies for
individual IMRD patients.
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