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Abstract: Background: The mechanism by which infiltrating CD8+ T lymphocytes in the tumour
microenvironment influence the survival of patients with ovarian cancer (OC) remains unclear.
Methods: To identify biomarkers to optimise OC treatment, 13 immune-cell-line-associated datasets,
RNA sequencing data, and clinical data from the GEO, TCGA, and the ICGC were collected. Gene
expression in OC was assessed using quantitative reverse transcription polymerase chain reaction
(qRT-PCR) and immunohistochemistry (IHC) staining. Results: We identified 520 genes and three
immunological clusters (IC1, IC2, and IC3) associated with CD8+ T cells. Higher IFN scores, immune
T cell lytic activity, and immune cell infiltration and upregulated expression of immune-checkpoint-
related genes indicated that IC3 is more responsive to immunotherapy, whereas IC1 and IC2 have a
poorer prognosis. A 10-gene signature, including SEMA4F, CX3CR1, STX7, PASK, AKIRIN2, HEMGN,
GBP5, NSG1, and CXorf65, was constructed, and a multivariate Cox regression analysis revealed a
significant association between the 10-gene signature-based risk model and overall survival (p < 0.001).
A nomogram was constructed with age and the 10-gene signature. Consistent with the bioinformatics
analysis, IHC and qRT-PCR confirmed the accuracy of the signatures in OC tissue samples. The
predictive ability of the risk model was demonstrated using the Imvigor210 immunotherapy dataset.
Conclusions: The development of a novel gene signature associated with CD8+ T cells could facilitate
more accurate prognostics and prediction of the immunotherapeutic response of patients with OC.

Keywords: ovarian cancer; immunotherapy; biomarkers; tumour microenvironment; risk model

1. Introduction

Worldwide, approximately 230,000 new cases of ovarian cancer (OC) are diagnosed
and 150,000 patients die every year [1]. Among gynaecological cancers, OC has the greatest
mortality rate and only a 46% 5-year survival rate [2], with most patients eventually
relapsing and developing resistance to chemotherapy. This loss in efficacy of conventional
therapy necessitates the development of novel treatment plans for patients with OC.

Although a high proportion of homologous repair deficiency tumours in OC exhibit a
high tumour mutational burden (TMB), increased CD8+ lymphocyte infiltration, and high
tumour antigen expression that can independently trigger an antitumour response [3–5],
clinical studies of OC immunotherapy have not yielded satisfactory results. Additional and
more effective biomarkers are therefore required to identify patients that will be sensitive
to OC checkpoint inhibitors.

An imbalanced immunological tumour microenvironment (TME) [6], which comprises
tumour, stromal, and immune cells [7], is a prominent characteristic of tumours. In most
immunotherapeutic settings, CD8+ T lymphocytes eradicate OC cells and are correlated
with patient survival [8]. Furthermore, OC is considered a “cold tumour” with a low TMB
phenotype [9,10], and can elicit a spontaneous antitumour immune response [5,11]. Human
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OC tumour antigen-specific CD8+ T lymphocytes that co-express programmed death 1
(PD-1) and LAG-3 produce less interferon-gamma (IFNγ) and TNFα than single-positive
cells [12]. However, the mechanism and therapeutic significance of CD8+ T cell infiltration
in OC remain unclear.

This study aimed to develop a polygenic signature and predictive model for OC by
identifying genes associated with CD8+ T cells using data from immune cell lines. This will
allow identification of high-risk subpopulations most likely to benefit from immunotherapy,
which will improve prognostics and prediction of immunotherapy efficacy in patients
with OC.

2. Materials and Methods
2.1. Data Pre-Processing

The National Cancer Institute Genomic Data Commons API was used to download
TCGA–OV RNA sequencing (RNA-seq) and clinical data. The International Cancer Genome
Consortium provided the OV–AU dataset, and the Gene Expression Omnibus (GEO)
provided the GSE26193, GSE30161, GSE63885, and GSE9891 datasets for GSE–OV cohort
microarray and survival data.

In total, 13 immune-cell-line-related datasets, namely, GSE37750, GSE13906, GSE59237,
GSE23371, GSE27838, GSE28726, GSE39889, GSE42058, GSE28490, GSE49910, GSE6863,
GSE27291, and GSE8059, were downloaded from the GEO.

The TMB was estimated from the TCGA mutect2-processed mutation dataset, and
the single-sample GSEA approach was used to calculate IFN scores from Th1/IFN gene
signatures as previously described [13].

Affy’s RMA was used to process each immune-cell-line-associated dataset, and the
limma “RemoveBatchEffect” R-package was used to eliminate batch effects.

TCGA–OV and OV–AU RNA-seq data samples lacking follow-up, survival time, or
living status were eliminated. Ensemble gene IDs were transformed into gene symbols,
and median values were determined when numerous gene symbols were expressed. Batch
effect adjustments were made.

The GSE–OV dataset excluded normal tissue samples, samples without follow-up, OS,
and living status. An annotation file transformed probes into gene symbols. The Affy RMA
algorithm processed each immune-cell-line-associated dataset. Batch effects were corrected.

After quality control, the dataset included 373 TCGA–OV samples, 93 OV–AU samples,
and 511 GSE–OV samples (Supplementary Table S1).

A single dataset was created from 13 immune-cell-line-associated datasets by merging
the RNA-seq data of TCGA–OV and OV–AU dataset samples into the RNA-seq dataset,
and merging the GSE26193, GSE30161, GSE63885, and GSE9891 microarray data into a
single GSE–OV dataset. Principal component analysis verified the batch effect correction of
the three merged datasets. The datasets were dispersed (Supplementary Figure S1A,C,E)
but harmonised after batch effect correction (Supplementary Figure S1B,D,F).

2.2. Weighted Gene Correlation Network Analysis (WGCNA)

The WGCNA R-package was used to construct a weighted co-expression network
based on the expression patterns of co-expressed coding genes and modules. Co-expression
module screening used an eight-threshold soft threshold. The co-expression network was
scale-free, with the log(k) of the node, where K represents the connection, negatively as-
sociated with log (P(k)), where P represents probability of occurrence, with a correlation
coefficient of >0.8. The expression matrix was converted into an adjacency matrix and sub-
sequently a topology matrix. Using average linkage hierarchical clustering, we constructed
a topological overlap matrix of clustered genes. Hybrid dynamic tree cut-off criteria in-
cluded 200 genes per gene network module. The dynamicTreecut R-package was used to
identify gene modules and calculate the eigenvector values of each module. Modules were
clustered and merged by applying height = 0.25, deepSplit = 2, and minModuleSize = 200.
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2.3. Immunotyping

We performed a univariate Cox analysis of CD8+ T-cell genes and intersecting genes
from the RNA-seq and GSE–OV datasets. The ConsensusClusterPlus R-package grouped
the 466 RNA-seq samples according to the predicted CD8+ T-cell gene expression. The
cumulative distribution function (CDF) was used to determine the optimal cluster number
and the CDF delta area curve was used to determine the most stable number of groups.
Subsequently, we evaluated the immune subtype characteristics of each group. The same
analyses were performed for the GSE–OV group. The pooled Akaike information criterion
(AIC) was used in stepwise regression using the MASS package. Briefly, the stepAIC
technique involves starting with the model with the most variables and sequentially
deleting variables to decrease the AIC, as a smaller AIC is indicative of a better fitted model.
The workflow is shown in Supplementary Figure S2.

2.4. Specimen Collection

Surgical OC resection specimens and adjacent normal tissues were snap-frozen in
liquid nitrogen and kept at −80 ◦C until RNA extraction. This study was approved by
the Ethics Committee of the Cancer Hospital, Chinese Academy of Medical Sciences and
Peking Union Medical College (17-099/1355).

2.5. Quantitative Reverse Transcription PCR (qRT-PCR) and Immunohistochemistry Analysis

Total RNA from 10 ovarian tumours and 10 non-tumour tissues was isolated using
RNA Easy Isolation Reagent (Vazyme, Nanjing, China). qRT-PCR was performed using
Vazyme’s HiScript III 1st Strand cDNA Synthesis Kit and ChamQTM Universal SYBR
qPCR Master Mix. Primer sequences are listed in Supplementary Table S2. GAPDH was
used as the internal control. Immunohistochemistry (IHC) was conducted as previously
described [14]. Anti-TXK (1:500), anti-STX7 (1:500), and anti-HEMGN (1:500) antibodies
were purchased from Proteintech, and anti-SEMA4F (1:500) antibodies were purchased
from Abcam. Images were acquired at 20× magnification.

2.6. Statistical Analysis

Statistical analyses were performed with R software 3.5.3 and GraphPad Prism v. 8.01
(GraphPad Software, La Jolla, CA, USA). A Student’s t test was used to compare values
between test and control groups. p values of <0.05 indicated statistical significance.

3. Results
3.1. CD8+ T Cell-Associated Genes

Hierarchical clustering generated 179 immune-cell-line-associated expression profiles
(Supplementary Figure S3A). To obtain a scale-free network, we set β = 8 (Supplementary
Figure S3B); 12 modules were obtained (Supplementary Figure S3C). Grey module genes
could not be aggregated into other modules. The pink module contained 520 genes, most
of which were positively linked to CD8+ T cells (Supplementary Figure S3D).

Gene ontology (GO) functional annotation determined the top ten biological processes
(BPs, Supplementary Figure S4A), cellular components (CCs, Supplementary Figure S4B),
and molecular functions (MFs, Supplementary Figure S4C) enriched in the CD8+ T cell
module. Additionally, a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis (Supplementary Figure S4D) identified 10 significantly enriched immunological
pathways involving primary immunodeficiency and T cell receptor signalling.

3.2. Immunophenotyping

Univariate analyses of the RNA-seq and GSE–OV datasets revealed 71 and 84 prognostic
genes, respectively. Nine genes were included in both datasets (Supplementary Figure S5A),
indicating that CD8+ T cell-associated gene expression may vary across sequencing platforms.
We also analysed 146 prognostically important genes from both datasets (p < 0.05).
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When k = 3, the RNA-seq dataset consensus clustering analysis yielded three stable
immunological clusters (ICs; Supplementary Figure S5B,C). The three ICs exhibit prognostic
ability (Supplementary Figure S5D), with IC3 exhibiting a better prognosis than IC1 and
IC2. These findings were successfully replicated in an independent GSE–OV cohort using
the same methodology (Supplementary Figure S5E).

3.3. Relationship between Immunophenotyping and TMB and Gene Mutation

The TMB differed significantly between IC1 and IC3 (Figure 1A). Comparison of the
mutated gene counts indicated that IC1 had significantly more mutated genes than IC3
(Figure 1B). Chi-square tests of 2431 genes with mutation frequencies of >3 and significantly
high-frequency mutations in each IC yielded 202 genes (p < 0.05). The mutation signatures
of the 15 genes in each IC group are shown in Figure 1C.
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Figure 1. Relationship between TMB and molecular subtypes. (A) Distribution of TMB for subtype
samples. (B) Distribution of the number of mutations for subtype samples. (C) Mutation features of
significantly mutated genes in samples of each subtype. * p < 0.05. ns: no significance.

3.4. Immunophenotyping Chemokines and Immunological Checkpoint Genes

Examination of the RNA-seq cohort revealed differential chemokine expression for 28
of 33 chemokines (84.85%; Figure 2A), suggesting differences in immune cell infiltration
and immunotherapeutic responses in the three ICs. Immunophenotyping also identified
differential expression for 14 of 18 chemokine receptor genes (Figure 2B).
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Figure 2. Differences in immune molecule expression and function between molecular subtypes in
the RNA-seq cohort for (A) chemokines, (B) chemokine receptors, (C) IFNγ, (D) immune T-cell lysis
activity, (E) angiogenesis scores, and (F) immune checkpoint genes. Significance was determined
using an ANOVA, with * p < 0.05; ** p < 0.01, *** p < 0.001, and **** p < 0.0001. ns: no significance.

CD8+ T lymphocytes may release IFNγ to upregulate PD-1/PD-L1 [15,16] and IDO1 [17]
gene expression, with IDO1 overexpression linked to poor prognosis, tumour development,
and metastasis. The Th1/IFNγ gene signatures were extracted as previously described [13], and
IFNγ scores were calculated for each sample using the single-sample GSEA method. We found
significant differences in IFNγ scores among ICs; the IC3 group exhibited higher IFNγ scores
than the IC1 and IC2 groups (Figure 2C).

Evaluation of mean GZMA and PRF1 expression levels, used to assess intratumoural
immune T-cell lysis activity [18], revealed substantial variation among the three ICs
(Figure 2D), with the IC3 group exhibiting greater immunological T-cell lysis activity
than the IC1 and IC2 groups.

Based on the angiogenesis-related gene set obtained from a previous study [19], the
angiogenesis score of each patient was calculated by the ssGSEA method in the R-package
GSVA, and significant differences were found between the subgroups. It was found that the
angiogenesis scores of IC2 and IC3 subgroups were lower than those of the IC1 subgroup
(Figure 2E).

Examination of 47 immune-checkpoint-related genes in different ICs in a prior study [13]
revealed significant differences for 44 (93.62%) patients (Figure 2F), with different subgroups ex-
hibiting differential responses to immunotherapy. Immune-checkpoint-related genes, including
CTLA4, PDCD1, PDCD1LG2, and IDO1, were highly expressed in IC3.
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3.5. Immune Signatures and Pathways in Different ICs

A CIBERSORT analysis of 22 immune cell scores in each sample of the RNA-seq
dataset revealed substantial immunological signature differences between the subgroups
(Figure 3A). CD8+ T cells, resting memory CD4+ T cells, and M0, M1, and M2 macrophages
were all highly expressed (Figure 3B).
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Figure 3. Immunological features and pathway characteristics of molecular subtypes. (A) Proportions
of 22 immune cell types in subtype samples. (B) Differences in immune cell scores of 22 immune
cell components between subtype samples. (C) Differences in enrichment scores of ten pathways
associated with tumour abnormalities between subtypes. (D) Distribution of immune infiltration
scores between subtype samples. (E,F) Comparison of the molecular subtypes with six previously
identified pan-cancer immunophenotypes. * p < 0.05; ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
ns: no significance.

Analysis of 10 carcinogenic pathways reported in a previous study [20] showed that
9 pathways were significantly different between the three subtypes (Figure 3C). IC3 exhib-
ited the highest microenvironment infiltration (Figure 3D).

A comparison of six previously reported immunophenotypes of pan-carcinoma [21]
and the ICs in the current study indicated that the ICs intersected with four of the six
published immune subtypes (Figure 3E,F). This suggests that the three ICs in this study are
complimentary to the four previously published immunophenotypes.

3.6. Tumour Immune Dysfunction and Exclusion (TIDE) among ICs

The clinical effects of immunotherapy on the three ICs were assessed using TIDE
(http://tide.dfci.harvard.edu/ (accessed on 20 August 2021)), with a higher TIDE predic-
tion score indicating a greater likelihood of immune escape and lower immunotherapy
efficacy. Analysis of the RNA-seq dataset indicated that IC2 and IC3 could benefit more
from immunotherapy than IC1 (Figure 4A). Comparison of projected T cell dysfunction and
rejection ratings revealed that IC2 exhibits reduced T cell dysfunction, and the projected
T cell rejection scores were greater for IC1 and IC2 than for IC3 (Figure 4B,C). Consistent
trends were observed for the GSE dataset (Figure 4D–F).

http://tide.dfci.harvard.edu/


Biomedicines 2023, 11, 2399 7 of 14
Biomedicines 2023, 11, x FOR PEER REVIEW 7 of 14 
 

 
Figure 4. (A) TIDE scores in the RNA-seq dataset samples. (B) T cell dysfunction scores in the RNA-
seq dataset samples. (C) T cell rejection scores in the RNA-seq dataset samples. (D) TIDE scores in 
the GSE-OV dataset samples. (E) T cell dysfunction scores in the GSE-OV dataset samples. (F) T cell 
rejection scores in the GSE-OV dataset samples. (G) RNA-seq submap analysis showing that IC1 
may be insensitive to anti-PD-1 (Bonferroni corrected, p < 0.05). (H) The response of different im-
mune clusters in the RNA-seq dataset to traditional chemotherapy drugs. (I) GSE submap analysis 
showing that IC1 may be insensitive to PD-1 inhibitors (Bonferroni corrected, p < 0.05). (J) The re-
sponse of different immune clusters in the GSE-OV dataset to traditional chemotherapy drugs. ** p 
< 0.01, *** p < 0.001, and **** p < 0.0001. ns: no significance. 

3.7. Differential Analysis of ICs in Immunotherapy/Chemotherapy 
We analysed variations in immunotherapy and chemotherapy efficacy. The 

GSE78220 dataset was used to examine immunological cluster similarity and immuno-
therapy efficacy via subclass mapping, with increasing similarity reflected by decreasing 
p-values. IC1 was similar to anti-PD-1_no response (anti-PD-1_NR) in both the RNA-seq 
(Figure 4G) and GSE (Figure 4I) datasets, suggesting it may be insensitive to PD-1 inhibi-
tors. Evaluation of cisplatin, sunitinib, paclitaxel, crizotinib, and bleomycin indicated that 
IC2 was less responsive to these five medications than IC1 and IC3 (Figure 4H,J). 

3.8. Prognostic Risk Model  
Training and validation sets were constructed from the 466 samples in the RNA-seq 

dataset. All samples were randomly clustered 100 times with replacement to prevent ran-
dom allocation bias from affecting modelling stability. The training-to-validation ratio 
was 4:1 for group sampling. 

Using the coxph function of the survival R-package and a filtering threshold of p < 
0.01 on the training set, a univariate Cox proportional hazards regression model was con-
structed for each CD8+ T cell-related gene and survival data. In total, 11 prognostic genes 
were identified in the RNA-seq and GSE datasets. A multivariate Cox analysis (Supple-
mentary Figure S6) and the stepwise regression algorithm reduced the 11 genes to 10 
genes, including TXK, STX7, PASK, AKIRIN2, SEMA4F, HEMGN, GBP5, CX3CR1, NSG1, 
and CXorf65. 

The 10-gene signature formula was as follows: 

RiskScore = −0.232 × TXK + 0.354 × STX7 − 0.224 × PASK − 0.279 × AKIRIN2 + 0.29 × SEMA4F − 6.158 × 
HEMGN − 0.17 × GBP5 + 0.183 × CX3CR1 − 0.084 × NSG1 − 0.342 × CXorf65 

Figure 4. (A) TIDE scores in the RNA-seq dataset samples. (B) T cell dysfunction scores in the RNA-seq
dataset samples. (C) T cell rejection scores in the RNA-seq dataset samples. (D) TIDE scores in the GSE-OV
dataset samples. (E) T cell dysfunction scores in the GSE-OV dataset samples. (F) T cell rejection scores
in the GSE-OV dataset samples. (G) RNA-seq submap analysis showing that IC1 may be insensitive to
anti-PD-1 (Bonferroni corrected, p < 0.05). (H) The response of different immune clusters in the RNA-seq
dataset to traditional chemotherapy drugs. (I) GSE submap analysis showing that IC1 may be insensitive
to PD-1 inhibitors (Bonferroni corrected, p < 0.05). (J) The response of different immune clusters in
the GSE-OV dataset to traditional chemotherapy drugs. ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
ns: no significance.

3.7. Differential Analysis of ICs in Immunotherapy/Chemotherapy

We analysed variations in immunotherapy and chemotherapy efficacy. The GSE78220
dataset was used to examine immunological cluster similarity and immunotherapy efficacy
via subclass mapping, with increasing similarity reflected by decreasing p-values. IC1 was
similar to anti-PD-1_no response (anti-PD-1_NR) in both the RNA-seq (Figure 4G) and
GSE (Figure 4I) datasets, suggesting it may be insensitive to PD-1 inhibitors. Evaluation
of cisplatin, sunitinib, paclitaxel, crizotinib, and bleomycin indicated that IC2 was less
responsive to these five medications than IC1 and IC3 (Figure 4H,J).

3.8. Prognostic Risk Model

Training and validation sets were constructed from the 466 samples in the RNA-seq
dataset. All samples were randomly clustered 100 times with replacement to prevent
random allocation bias from affecting modelling stability. The training-to-validation ratio
was 4:1 for group sampling.

Using the coxph function of the survival R-package and a filtering threshold of
p < 0.01 on the training set, a univariate Cox proportional hazards regression model
was constructed for each CD8+ T cell-related gene and survival data. In total, 11 prognostic
genes were identified in the RNA-seq and GSE datasets. A multivariate Cox analysis
(Supplementary Figure S6) and the stepwise regression algorithm reduced the 11 genes to
10 genes, including TXK, STX7, PASK, AKIRIN2, SEMA4F, HEMGN, GBP5, CX3CR1, NSG1,
and CXorf65.

The 10-gene signature formula was as follows:

RiskScore = −0.232 × TXK + 0.354 × STX7 − 0.224 × PASK − 0.279 × AKIRIN2 + 0.29 × SEMA4F − 6.158 ×
HEMGN − 0.17 × GBP5 + 0.183 × CX3CR1 − 0.084 × NSG1 − 0.342 × CXorf65
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The risk score distribution (Supplementary Figure S7A) was generated for each sample
based on its expression level in the RNA-seq training dataset. The timeROC R-package
was used to classify RiskScore prognosis, and the prognostic prediction of the risk model at
1, 3, and 5 years assessed using a receiver operating characteristic (ROC) curve analysis
(Supplementary Figure S7B) revealed a high area under the curve (AUC) for the model.
RiskScore z-scores classified samples as high risk (>0) or low risk (<0), and subsequently
constructed Kaplan–Meier (KM) curves indicated that the high-risk group had a signifi-
cantly reduced survival rate (p < 0.0001) (Supplementary Figure S7C).

3.9. Prognostic Risk Model Validation

The RiskScore distribution of samples in the RNA-seq validation set is shown in
Supplementary Figure S8A. An ROC analysis showed high AUC values for the risk model
at 1, 3, and 5 years (Supplementary Figure S8B). KM curves showed lower survival in the
high-risk group (p < 0.01; Supplementary Figure S8C).

Supplementary Figure S9A shows the RiskScore distribution of all the RNA-seq
datasets. An ROC analysis revealed a high AUC for the risk model at 1, 3, and 5 years
(Supplementary Figure S9B), and the KM curves indicated significantly reduced survival
rates for the high-risk group (p < 0.0001; Supplementary Figure S9C).

Supplementary Figure S10A shows the RiskScore distribution of samples in the in-
dependent GSE validation dataset. The RiskScore prognostic classification was evalu-
ated using an ROC analysis (Supplementary Figure S10B), which indicated a high AUC
value. The KM analysis results are consistent with the results of the RNA-seq datasets
(Supplementary Figure S10C, p < 0.001).

In addition, KM and ROC curves were constructed for RiskType using the survival
information of TCGA cohort (Supplementary Figure S11A), ICGC cohort (Supplemen-
tary Figure S11B), and four GSE cohorts (GSE26193, GSE30161, GSE63885, and GSE9891)
(Supplementary Figure S11C–F).

3.10. Relationships between RiskScore, Clinical Characteristics, and Molecular Subtypes

Comparison of the RiskScore distribution of all TCGA datasets among clinical features
indicated higher risk scores in later clinical stages (Supplementary Figure S12B). IC3 had the
best prognosis and lowest risk score (Supplementary Figure S12C), whereas IC1 had the poorest
prognosis. Other clinical features did not differ significantly (Supplementary Figure S12A,D).
For the TCGA dataset, we carried out a KM survival analysis stratified by age, stage, and grade.
Patients were stratified into ≤60 or >60 years subgroups (Supplementary Figure S12E,F), stage
I–II and III–IV subgroups (Supplementary Figure S12G,H), and G1/2 and G3/4 subgroups
(Supplementary Figure S12I,J). High-risk patients aged 60 years or older, stage III–IV, and
G1/2 and G3/4 subgroups exhibited a shorter OS than low-risk patients. Our risk model
exhibited good predictive ability in diverse clinical clusters.

In the 10-gene signature-based risk model, age and RiskScore were significantly corre-
lated with OS in univariate (Supplementary Figure S13A) and multivariate (Supplementary
Figure S13B; HR = 1.88, 95% CI = 1.43–2.48, p < 0.001) Cox regression analyses, indicating
that our 10-gene signature approach is clinically predictive.

3.11. Nomograms and Forest Plots

Using the full TCGA dataset, we constructed an age–RiskScore nomogram (Figure 5A).
The RiskScore function of the 10-gene-based risk model had the greatest survival prediction
ability. Calibration curves and DCA graphs are shown in Figure 5B,C. The nomogram
performed well.
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*** p < 0.001.

3.12. Predicting Immunotherapy Efficacy with the Constructed Risk Model

An immunotherapy dataset (Imvigor210) with transcriptome data was obtained to
test the 10-gene signature risk model. KM curves showed that immunotherapy patients
with higher RiskScores had poorer survival rates (Supplementary Figure S14A). RiskScore
ROC curves showed higher AUC values (Supplementary Figure S14B). Immunotherapy
responders and non-responders differed significantly in both high-risk and low-risk groups
(Supplementary Figure S14C). The MCPcounter R-package calculated immune cell scores
for Imvigor210 samples. TMB, NEO, and immune cell scores were inversely related to
RiskScore (Supplementary Figure S14D).

Furthermore, among groups, immunotherapy efficacy, immune cell grouping, tumour
cell grouping, and immunophenotypic grouping differed significantly according to the
RiskScore (Supplementary Figure S15A–D).

3.13. Gene Expression in OC Tissues

To validate the 10-gene signature, we analysed the expression of four genes in paired
tumour and adjacent non-tumour tissues from patients with OC. The clinical information
of the patients with OC is shown in Supplementary Table S3. IHC and qRT-PCR revealed
downregulated expression of HEMGN and TXK in OC tissues compared to normal tissues
(Figure 6A,B), whereas SEMA4F and STX7 were highly expressed in OC tissues. These
results validate the bioinformatics analyses.
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4. Discussion

Bevacizumab has been one of the most studied targeted agents in OC in recent decades;
however, despite its widespread use and efficacy, patient selection and timing of treatment
remain controversial and the survival benefit in patients with advanced OC remains lim-
ited [22]. Currently, immune checkpoint blockade (ICB) therapy is effective in cancers such as
melanoma and non-small cell lung cancer, but the therapeutic value of immunotherapy in OC
is still in the research stage. A phase II clinical study evaluating the role of combined anti-PD-1
antibodies and anti-VEGF antibodies in recurrent epithelial OC showed an overall response
rate of 28.9%, with a 40% overall response rate in platinum-sensitive OC [23]. The important
reason limiting the response to immunotherapy and disease progression in OC is that the
tumour microenvironment of OC is in a state of immunosuppression [24]. Immunologically
activated tumour-infiltrating lymphocytes (TILs) in ovarian tumour tissue demonstrate that
the immune system is the trigger for this tumour [25]. Therefore, the present study was
conducted to construct a gene model associated with CD8+ T lymphocytes to identify patients
with OC who would benefit from immunotherapy and predict prognosis.

We identified three OC ICs and a risk prediction model based on genes associated with
CD8+ T cells. The prognosis was worse for IC1 and IC2 than for IC3. TMB and the number
of gene mutations were considerably higher in IC1 than in IC3. Chemokines, their receptor
genes, and angiogenesis-related genes varied substantially between clusters. IC3 had a
better prognosis than IC1 and IC2 owing to greater IFN scores, immune T cell lytic activity,
immune cell infiltration, and immune checkpoint gene expression. IC1 had a higher TIDE
score than IC2 and IC3, indicating a larger risk of immune escape and less therapeutic
benefits. IC1 and IC3 were more sensitive to cisplatin, sunitinib, paclitaxel, crizotinib, and
bleomycin than IC2, suggesting that the three ICs can identify high-risk patients with OC
and help clinicians choose treatment drugs.

In total, 10 CD8+ T cell-related genes (TXK, STX7, PASK, AKIRIN2, SEMA4F, HEMGN,
GBP5, CX3CR1, NSG1, and CXorf65) were identified in patients with OC. High expression of
STX7, SEMA4F, and CX3CR1 was associated with a high risk and poor prognosis, whereas
high expressions of TXK, PASK, AKIRIN2, HEMGN, GBP5, NSG1, and CXorf65 were associ-
ated with a low risk and better prognosis. qRT-PCR and IHC confirmed the accuracy of the
signatures in OC tissue samples and the bioinformatics evaluation. Human TXK primarily
regulates IFNγ gene transcription in Th1/Th0 cells [26]. Syntaxin 7, encoded by STX7,
affects lysosome trafficking and phagosome–lysosome fusion [27]. PASK affects lipid and
glucose metabolism, mitochondrial respiration, phosphorylation, and gene expression [28].
AKIRIN2 controls embryonic development and innate immunity, but its role in carcino-
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genesis is unclear [29]. AKIRIN2 expression is correlated with chemotherapy resistance in
patients with OC [30]. SEMA4F regulates embryologic axon guidance and cancer-induced
neurogenesis [31]. HEMGN is upregulated in thyroid carcinoma tissues and cells [32] and
regulates cellular proliferation and apoptosis via the PI3K/Akt signalling pathway [33].
GBP5 has prognostic power for OS in OC [34]. The chemokine receptor CX3CR1 can identify
distinct populations within monocyte, macrophage, and dendritic cell lineages [35]. NSG1
is a neuronal cell-expressed endosomal protein and a direct transcriptional target gene of
the tumour suppressor p53 [36].

Although our study was a retrospective investigation, we mitigated potential biases
by validating the model with data from multiple cohorts.

5. Conclusions

We identified three immunophenotypes of OC and constructed a 10-gene signature-
based risk model that accurately predicts the prognosis and response to immunotherapy of
patients with OC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11092399/s1, Supplementary Figure S1. PCA analy-
sis. (A) PCA before batch effect correction. (B) PCA after batch effect correction. (C) PCA before batch
effects on RNA-seq datasets. (D) PCA after batch effects on RNA-seq datasets. (E) PCA before batch
effects on the GSE-OV dataset. (F) PCA after batch effects on the GSE-OV dataset. Supplementary
Figure S2. Workflow chart of the CD8+ T-cell-related gene model related to OC prognosis. Supplemen-
tary Figure S3. WGCNA-based co-expression analysis of CD8+ T-cell-associated genes. (A) Sample
clustering analysis. (B) Analysis of network topology for various soft-threshold powers. (C) Gene
dendrogram and module colours. (D) Correlation results between the 12 modules and each clinical
phenotype. Supplementary Figure S4. Functional enrichment analysis of CD8+ T-cell-associated
genes. (A) Biological process annotation map of genes in the pink-coloured module. (B) Molecular
function annotation map of genes in the pink-coloured module. (C) Cellular component annotation
map of genes in the pink-coloured module. (D) Kyoto Encyclopedia of Genes and Genomes annota-
tion map of genes in the pink-coloured module. Supplementary Figure S5. The ICs in OV. (A) Venn
diagram displaying the intersection of CD8+ T-cell genes significantly associated with prognosis
between the RNA-Seq and GSE-OV cohorts. (B) CDF curve and CDF delta area curve of the RNA-seq
dataset samples. (C) Heatmap of sample clustering at consensus k = 3. (D) Survival curves for the
molecular subtypes in the RNA-seq dataset cohort. (E) Survival curves for the molecular subtypes in
the GSE-OV dataset cohort. Supplementary Figure S6. Multivariate Cox Forest plot for the 10-gene
model. Supplementary Figure S7. Construction and evaluation of the prognostic risk model based on
CD8+ T-cell-associated genes using the training set. (A) RiskScore, time to live (TTL), and survival
status after applying the 10-gene signature to the RNA-seq training dataset. (B) ROC and AUC based
on the 10-gene signature. (C) KM survival curves for high- and low-risk groups based on the 10-gene
signature using the RNA-seq training dataset. Supplementary Figure S8. (A) RiskScore, TTL, and
survival status after applying the 10-gene signature to the RNA-seq validation dataset. (B) ROC
and AUC based on the 10-gene signature. (C) KM survival curves for high- and low-risk groups
based on the 10-gene signature using the RNA-seq validation dataset. Supplementary Figure S9. (A)
RiskScore, TTL, and survival status after applying the 10-gene signature to all the RNA-seq datasets.
(B) ROC and AUC based on the 10-gene signature. (C) KM survival curves for high- and low-risk
groups based on the 10-gene signature using all the RNA-seq datasets. Supplementary Figure S10.
(A) RiskScore, TTL, and survival status after applying the 10-gene signature to the independent GSE
validation dataset. (B) ROC and AUC based on the 10-gene signature. (C) KM survival curves for
high- and low-risk groups based on the 10-gene signature using the independent GSE validation
dataset. Supplementary Figure S11. KM and ROC curves for RiskScore and the survival of (A) TCGA
cohort, (B) ICGC cohort, and (C–F) four GSE cohorts. Supplementary Figure S12. Distribution of
the RiskScore of the TCGA dataset among clinical features, including (A) grade, (B) stage, (C) ICs,
(D) age. Survival analysis of the risk groupings of the TCGA dataset stratified according to clinical
characteristics, including (E) age ≤ 60, (F) age > 60, (G) stage I-II, (H) stage III-IV, (I) grade I-II, and
(J) grade III-IV. Supplementary Figure S13. Univariate and multivariate analyses of the risk model
based on the 10-gene signature using all TCGA datasets. (A) Univariate Cox regression analysis.
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(B) Multivariate Cox regression analysis. Supplementary Figure S14. Prediction efficacy of the risk
model based on the 10-gene signature. (A) Kaplan–Meier curves of high- and low-risk groups using
the Imvigor210 dataset. (B) Evaluation of the risk model compared with standard prediction models
of immunotherapy response using the Imvigor210 dataset. (C) Corresponding stacked plots of im-
munotherapy response among high- and low-risk groups in the Imvigor210 dataset. (D) Correlation
between RiskScore, immune score, TMB, and NEO using the Imvigor210 dataset. CR, complete
response; PR, partial response; SD, stable disease; PD, progressive disease. Supplementary Figure S15.
Comparison of RiskScore distribution across different subgroups for (A) immunotherapy response,
(B) immune cell level, (C) tumour cell level, and (D) immune phenotype. Supplementary Table S1.
After quality control, the dataset included 373 TCGA–OV samples, 93 OV–AU samples, and 511
GSE–OV samples. Supplementary Table S2. Primer sequences for qRT-PCR analysis. Supplementary
Table S3. Clinical information on 10 patients with OC used for immunohistochemistry.
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