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Abstract: Patients with chronic kidney disease (CKD) have a higher risk ofboth ischemic and hem-
orrhagic stroke. This association appears to be partly independent from the higher prevalence of
established risk factors for stroke in patients with CKD, including hypertension and atrial fibrillation.
In the present review we aim to discuss the impact of CKD on the risk of stroke and stroke-related
consequences, and explore the pathophysiology underpinning the increased risk of stroke in patients
with CKD. We cover the clinical association between renal dysfunction and cerebrovascular disease
including stroke, silent brain infarct, cerebral small vessel disease, microbleeds, and white matter
hyperintensity, and discuss the underlying mechanisms.
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1. Introduction

Globally, the all-age mortality rate from chronic kidney disease (CKD) increased by
41.5% and the all-age prevalence of CKD increased by 29.3% between 1990 and 2017 [1]. In
people without previously known cardiovascular disease (CVD) or diabetes mellitus (DM),
mild to moderate kidney dysfunction is associated with an increased risk ofCVD [2].

Stroke remains a leading cause of death and disability worldwide [3]. In the general
population, established risk factors for stroke are atrial fibrillation (AF), hypercholes-
terolemia, hypertension and carotid artery stenosis [4]. The importance of primary preven-
tion of stroke focuses on treating the causative and associated risk factors [4].

In the current review we aim to discuss the impact of CKD on the risk of stroke
and stroke-related consequences, and explore the pathophysiology underpinning the
increased risk of stroke in patients with CKD. We will cover the clinical association between
renal dysfunction and cerebrovascular disease including stroke, silent brain infarction,
cerebral small vessel disease, microbleeds, and white matter hyperintensity, and discuss
the underlying mechanisms.

2. CKD and Stroke Epidemiology

CKD is perceived to contribute to the development of stroke independently of tradi-
tional cardiovascular risk factors [5]. In 20,386 participants from the REasons for Geographic
and Racial Differences in Stroke (REGARDS) study, the incidence of stroke symptoms was
20.7% for estimated glomerular filtration rate (eGFR) < 45 mL/min per 1.73 m2 (hazard ratio
(HR) 1.26) and 18.8% for albumin–creatinine ratios > 300 mg/g (HR 1.29, p = 0.005 for trend)
during a 2-year follow-up [6]. Of particular note, in a meta-analysis of 63 cohort studies
and 20 randomized controlled trials (RCT), the risk of stroke increased by 7% for every
10 mL/min/1.73 m2 decline in eGFR and by 10% per 25 mg/mmol increase in the albumin–
creatinine ratio independently of GFR [7]. In a meta-analysis of 38 studies, proteinuria was
associated with stroke risk independently of established cardiovascular risk factors [8]. In
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an observational study, most stroke cases were ischemic among non-dialysis-dependent
CKD, but hemorrhagic stroke had approximately the same incidence as ischemic stroke
in CKD patients undergoing dialysis [9]. In contrast, the Choices for Healthy Outcomes
in Caring for End-Stage Renal Disease (CHOICE) study reported that ischemic stroke
represented the most common type in incident dialysis patients [10]. Moreover, the data
regarding the rates of different types of stroke between hemodialysis (HD) and peritoneal
dialysis patients are conflicting [11,12].

Silent brain infarction is a frequent finding in elderly subjects [13]. In CKD patients,
the lower the eGFR, the higher the prevalence of silent brain infarction [age-adjusted odds
ratio (95% confidence interval) for eGFR 30–59, 15–29 and <15 versus ≥60 mL/min/1.73 m2

1.34 (0.68–1.99), 1.94 (1.30–2.57) and 2.51 (1.91–3.10)] [14]. Similar findings were observed
in other studies that evaluated the association between eGFR and the prevalence of silent
brain infarction [15–17]. Moreover, albuminuria appears to increase the risk of silent brain
infarction in patients with type 2 DM [18]. Patients on maintenance hemodialysis are also
at increased risk of silent ischemic stroke [19].

In patients who suffer an acute ischemic stroke, reduced renal function at admission is
associated with more severe stroke and higher mortality rates during short-term and long-
term follow-up [20–23]. Acute ischemic stroke-related morbidity and mortality are also
higher in dialysis patients [24]. Moreover, patients with CKD who experience intracerebral
hemorrhage have increased rates of mortality and worse functional outcomes compared
with patients without CKD [25,26]. Additionally, decreased eGFR and proteinuria are
associated with poor functional outcomes in patients with ischemic stroke [23,27].Stroke
patients with underlying CKD had longer hospital stays and more recurrent hospitaliza-
tions than controls without underlying CKD [28]. CKD was a significant predictor of
worse functional outcomes and mortality in stroke patients treated with endovascular
thrombectomy [29]. Among patients with acute ischemic stroke treated with thrombolysis,
CKD was associated with greater disability, higher mortality, and increased bleeding risk
compared with patients with intact kidney function [30,31]. Several studies reported the
correlation between increased risk of recurrent stroke and declining eGFR levels in patients
with acute ischemic stroke [32,33].

3. Stroke Subtypes and Cerebral Pathology in Patients with CKD: Stroke, White
Matter Lesions, Silent Brain Infarct, and Microbleeds
3.1. Brain and Kidney Vasculature

The brain and kidneys are composed of low vascular resistance systems that allow
continuous high-volume perfusion [34,35]. Other shared characteristics of the kidneys and
brain are autoregulation of perfusion pressure, small vessel damage by cardiovascular risk
factors, and the fact that the relatively short arterioles of the kidneys and brain are particu-
larly susceptible to blood pressure fluctuations [35]. Both the glomerular juxtamedullary
afferent arterioles and the cerebral perforating arteries are small and short vessels arising
from large, high-pressure vessels and are exposed to high pressure that results in hyper-
tensive vascular damage [36,37]. Equivalent to the kidney vessels, the structural damage
of the cerebral vessels ranges from hyaline thickening to lipohyalinosis [35,38]. Impaired
kidney function is associated with less effective dynamic cerebral autoregulation in acute
ischemic stroke [39]. In patients with recent stroke, the presence of CKD is an independent
determinant of increased intracranial vascular resistance in both the anterior and posterior
cerebral circulation [40]. Cerebral blood flow also appears to be associated with the severity
of CKD [41]. In non-diabetic hypertensive patients, reduced eGFR was associated with
higher cerebral blood flow [42]. In contrast, in the Rotterdam study, lower eGFR correlated
with lower cerebral blood flow [43].

3.2. Cerebral Small Vessel Disease, White Matter Lesions, and Microbleeds in CKD

Cerebral smallvessel disease (CSVD), a group of pathological processes with various
etiologies that affect the small vascular system of the brain, is an important cause and risk
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factor for stroke [44]. Findings from a meta-analysis of 32 studies supported the fact that
the presence of CSVD features on imaging was associated with worse renal function [45].
Additionally, the urinary albumin–creatinine ratio was associated with CSVD [46,47].
Worse kidney function is associated with CSVD [48,49]. Endothelial dysfunction has been
suggested to represent a potential driver in CSVD [50–52]. Furthermore, CSVD has been
attributed to altered cerebral hemodynamics [53,54].

White matter hyperintensities predict an increased risk of stroke and adverse out-
come [55]. Studies have associated eGFR of 15 to 60 mL/min and albuminuria with
increased white matter hyperintensity volume [56,57].

Microalbuminuria is associated with the presence of microbleeds in hypertensive
patients [58]. The incidence of microbleeds was greater in patients on hemodialysis, and
the association was not modified by the presence of hypertension [59]. The occurrence of
cerebral microbleeds predisposed to intracerebral hemorrhage in stroke-free hemodialysis
patients [60]. In non-CKD patients, cerebral microbleeds predispose them to hemorrhagic
and ischemic stroke [61,62]. In vitro studies have suggested that elevated levels of urea
alter the actin cytoskeleton and tight junction proteins in cultured endothelial cells, im-
plying that these mechanisms are involved in the development of microhemorrhages and
microbleeds [63].

4. Atrial Fibrillation and Stroke in CKD

Atrial fibrillation (AF) is an established risk factor for stroke [64]. Studies have demon-
strated a much higher than previously suspected incidence of occult AF among patients
with stroke [65,66].There is a positive relationship between AF and CKD regarding ischemic
stroke risk [67,68]. A meta-analysis of 25 studies demonstrated that the prevalence of AF
was 11.6% and the overall incidence was 2.7/100 patient-years in end stage renal disease
(ESRD) patients [69]. Another large study found that the incidence rates of AF were 12.1,
7.3, and 5.0 per 1000 person-years in ESRD, CKD, and non-CKD patients, respectively [70].
In a study from China, AF was associated with a two-fold increased risk of ischemic stroke
and a 325% increased risk of hemorrhagic stroke in patients with CKD [71]. Data from the
international Dialysis Outcomes and Practice Patterns Study (DOPPS) showed that AF at
study enrollment was positively associated with all-cause mortality and stroke [72]. The
Stockholm CREAtinine Measurements (SCREAM) Project confirmed that AF was associated
with a two-fold higher risk of stroke (both ischemic and hemorrhagic) in patients with CKD,
and the stroke risk remained similar across all eGFR groups [73]. In a large prospective
study, decreased eGFR (<45 mL/min per 1.73 m2) correlated with all-cause mortality, stroke
recurrence, and greater disability in diabetic and non-diabetic patients with acute stroke
followedup for 1 year [74]. In a nationwide prospective study in a Chinese population, the
associations between low eGFR and risk of recurrent stroke, death, and poor functional
outcome in stroke patients with AF were stronger than in those without AF [75].

AF and CKD have a bidirectional relationship, with the presence of CKD increas-
ing the risk of incident AF and the presence of AF accelerating the development and
progression of CKD [76,77]. The proposed underlying mechanisms of CKD and AF inter-
action are activation of the renin-angiotensin-aldosterone system (RAAS), uremic toxins,
inflammation, myocardial remodeling and fibrosis, and dysregulated calcium homeosta-
sis [76,78,79]. Up-regulation of the RAAS is involved in cardiac remodeling and may exert
direct electrophysiological effects [80].

Regarding the management of AF in patients with CKD, a recent meta-analysis of
19 studies (n = 124,628) showed that direct oral anticoagulants (DOACs) reduced both
the risk of stroke and major bleeding more than warfarin [81]. Among DOACs, apixaban
was the safest and most effective in this population [81]. Another meta-analysis of eight
RCTs and 46 observational studies reached similar conclusions and also reported that both
DOACs and warfarin increase the risk of bleeding in patients on dialysis without reducing
the risk of stroke versus no anticoagulation [82].
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5. Prothrombotic State and Stroke in CKD

Non-paroxysmal AF and reduced GFR might predispose to the development of left
atrium thrombus found on transesophageal echocardiography [83,84]. The pathogenetic
mechanisms of thrombosis in these patients include platelet activation as well as the
effects of uremic toxins on platelets [85–88]. However, platelet dysfunction is a key factor
responsible for hemorrhagic complications in advanced kidney disease [85,89]. Multiple
studies have shown that defects in fibrin formation and fibrinolysis serve as thrombogenic
factors in CKD (Table 1) [90–92].

Table 1. Pathogenesis of prothrombotic state in chronic kidney disease.

Type of Study Population n Findings Ref.

Left atrial thrombus formation

Observational Patients undergoing transesophageal
echocardiography 581

Every 10 mL/min/1.73 m2 decrease in
estimated glomerular filtration rate

correlated with left atrial
thrombogenic milieu

[86]

Observational Patients with AF 1033
GFR < 56 mL/min/1.73 m2 was an
independent predictor of left atrial

thrombus
[85]

Platelet activation

Animal study Mice with CKD Not
applicable

Platelet hyperactivation was found in
mice with CKD and was associated

with high levels of serum
indoxylsulfate

[88]

Observational Patients on clopidogrel undergoing
percutaneous coronary intervention 8410

Two-fold higher odds for high platelet
reactivity associated with a creatinine

clearance < 30 mL/min compared
with ≥60 mL/min

[89]

Fibrin formation and lysis

Cross-sectional Patients with AF 502
Impaired fibrinolytic capacity in
patients with stages 3 to 4 CKD

compared with controls
[92]

Cross-sectional Patients with AF, with and without CKD,
and healthy controls 56

Reduced eGFR was associated with
reduced latency time and time to
achieve maximum clot thickness

[93]

Cross-sectional Patients with end-stage renal disease
(ESRD) and controls 316

In ESRD, both time required to form
(491 ± 177 vs. 378 ± 96 s, p < 0.001)

and to lyse an occlusive platelet
thrombus were prolonged (1820 vs.

1053 s, p < 0.001)

[94]

Cross-sectional Patients undergoing hemodialysis, renal
transplant recipients, and healthy controls 84 Increased platelet aggregability in

CKD patients [89]

6. Hypertension and Stroke in CKD

Hypertension is a highly prevalent comorbidity in CKD patients [93,94]. In a meta-
analysis of 85 studies, long-term blood pressure burden mediated the CKD and stroke risk
association [95]. In a cohort study, hypertensive patients with incident CKD had a 10-year
probability of 13.3% to present with stroke during a 13-year follow-up period [96]. Among
patients with incident eGFR < 60 mL/min/1.73 m2, the risk of incident stroke was greater,
as systolic blood pressure (SBP) rose in patients aged < 80 years, but the association was not
present in younger patients [97]. However, compared with patients with a time-averaged
on-treatment SBP of 135–140 mmHg, the incidence of first stroke (1.7 vs. 3.3%, HR 0.51,
95% CI 0.26–0.99) and ischemic stroke (1.3 vs. 2.8%, HR 0.46, 95% CI 0.22–0.98) decreased
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in those with a time-averaged SBP of ≤135 mmHg in hypertensive patients with eGFR
30–60 mL/min/1.73 m2 and/or proteinuria [98].

Visit-to-visit variability of BP is associated with CVD and mortality [99,100]. There was
a positive relationship between visit-to-visit SBP variability with the risk of subsequent first
stroke (odds ratio per SD increment 1.41, 95% CI: 1.17–1.69) and first ischemic stroke in CKD
patients [101], and higher visit-to-visit variability of BP was independently associated with
higher rates of hemorrhagic stroke (HR 1.91, 95% CI 1.36–2.68) in patients with moderate
to advanced CKD not yet on dialysis [102]. Furthermore, blood pressure variability was
associated with early neurological deterioration in minor ischemic stroke patients with
renal impairment compared with patients with normal renal function [103].

7. Dyslipidemia and Stroke in CKD

Patients with CKD are characterized by a specific lipid profile termed “uremic dyslipi-
demia”, which corresponds to nearly normal low-density lipoprotein cholesterol (LDL-C),
low high-density lipoprotein cholesterol (HDL-C), and high triglyceride levels [104]. Dur-
ing a 3-year follow-up in patients with stage 3 CKD receiving statin treatment, the group
with LDL-C levels between 70 and 100 mg/dL exhibited lower risk of ischemic stroke
and intracerebral hemorrhage compared with patients with LDL-C levels ≥ 100 mg/dL.
In contrast, compared with patients with LDL-C levels ≥ 100 mg/dL, those with LDL-C
levels < 70 mg/dL had lower risk of ischemic stroke but no difference in intracerebral
hemorrhage [105].Compared with non-CKD patients in the lowest LDL-C quartile, the
multivariable-adjusted risk of severe stroke increased 2.9-fold (95% CI 1.48–5.74) in patients
with CKD in the highest LDL-C quartile [106]. A meta-analysis demonstrated that as eGFR
declines, there is a trend for smaller relative risk reduction for major coronary events and
stroke with statin therapy, even after adjusting for smaller reductions in LDL-C levels in
patients with more advanced CKD [107]. In a meta-analysis of six RCTs with 10,993 patients
with CKD, the stroke rate was reduced in the high-intensity statin therapy group [108]. As
the CKD stage deteriorates, statins appear to have no effect on ischemic and hemorrhagic
stroke [109]. Uremia leads to several modifications of the structure of HDL, which has an
adverse effect on its functionality [110].

8. Carotid Atherosclerosis and Stroke in CKD

In observational studies, deterioration in renal function was independently associated
with increased carotid intima-media thickness (cIMT) [111,112]. cIMT and eGFR were
inversely correlated in patients with stroke, whilemean cIMT, plaque size, and internal
carotid artery stenosis were associated with symptomatic ischemic stroke [113]. Further-
more, decreased kidney function was associated with a faster increase in carotid cIMT [114].
Similar findings were observed in a 4-year study that reported an increase in cIMT with
decreasing eGFR in CKD patients [115]. However, proteinuria and eGFR were associated
with cIMT but not with the presence of calcified plaque in patients with mild or moderate
CKD [116]. Moreover, eGFR was negatively correlated with the degree of carotid stenosis
(r = 0.03; p < 0.05) in patients with acute stroke [117]. In contrast, another study did not
demonstrate a difference in carotid atherosclerosis between CKD and healthy individu-
als [118]. It has been suggested that atherosclerosis is associated with increased levels of
endotoxin and inflammatory markers [119–121]. The atheromatous lesions of CKD patients
were also more frequently unstable or ruptured more often compared with patients without
CKD [122,123].

9. Uremic Toxins and Stroke in CKD

Uremic toxins can induce a number of cardiac and vascular abnormalities, including
cardiac fibrosis, atherosclerosis, thrombosis, vascular calcification, and microvascular
rarefaction, which lead to stroke and other CVD complications [124]. Patients with CKD
are exposed to systemically derived toxins such as asymmetric dimethylarginine (ADMA),
homocysteine, thiocyanate, tumor-necrosis factor α, and interleukin 6 [125]. CKD and
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uremic toxins potentiate cerebral tissue activation through inflammatory and oxidative
pathways, inhibition of antioxidant and cytoprotective systems, and erosion of cerebral
capillary junctional complex—events that contribute to central nervous system dysfunction
and impaired blood–brain barrier [126–129]. It has been suggested that disruptions of
the blood–brain barrier and edema formation both participate in the development of
neurological dysfunction in acute and chronic cerebral ischemia [130].

10. Anemia, Erythropoietin Stimulating Agents, and Stroke in CKD

In a meta-analysis of 24 RCTs, in the high hemoglobin target vs. low hemoglobin
target trials, there was a higher risk of stroke in the high hemoglobin target groups both in
non-dialysis and dialysis CKD patients [131]. However, in another meta-analysis of 13 RCTs
in predialysis CKD patients, no significant difference was found in stroke rates between the
higher hemoglobin group and the lower [132]. Moreover, despite an association between
low hemoglobin concentrations and a high risk of hemorrhagic stroke, no correlation
with ischemic stroke was found in patients undergoing hemodialysis [133]. A higher
erythropoietin resistance was associated with an increased risk of brain hemorrhage, but
not with brain infarction, in patients receiving maintenance hemodialysis [134]. In a large
national sample of anemic patients with CKD, treatment with erythropoietin-stimulating
agents was associated with an increased risk of acute stroke [135]. On the contrary, increased
risks of stroke and its subtypes were not reported with even large annual defined daily
doses of erythropoietin in CKD [136]. Current guidelines suggest caution when initiating
erythropoietin-stimulating agents in CKD patients with high risk of stroke [137].

11. Hyperphosphatemia and Stroke in CKD

Dysregulation of calcium and phosphate metabolism is common in CKD patients,
and results in vascular calcification [136]. In an attempt to explain the phenomenon of
vascular calcification under hyperphosphatemic conditions, several studies showed that
elevated serum phosphate levels directly drive vascular smooth muscle cells to undergo
phenotypic changes that predispose to calcification [137–139]. An observational study
demonstrated that phosphate levels are associated with the coexistence of subclinical
atheromatosis in non-dialysis CKD patients [140]. Notably, even phosphate levels within
the normal range were associated with an increased risk of subclinical atheromatosis in
men, whereas in women this risk only increased with serum levels above the upper limit
of normal [140]. Data from the NEFRONA study suggested that the presence of athero-
matic plaque was associated with high phosphate levels in stage 4–5 CKD but there was a
U-shaped association in patients on dialysis [141]. Higher serum phosphate levels were
associated with an increased risk of brain hemorrhage, whereas low levels were associ-
ated with an increased risk of brain infarction in hemodialysis patients followed-up for
a median of 3.9 years [142]. In a small observational study, patients undergoing dialysis
with serum phosphate levels < 4.5 mg/dL had a 3.40-fold higher risk of ischemic stroke
in comparison with patients with average serum phosphate levels ≥ 4.5 mg/dL [143].
However, other studies did not show an association between phosphate levels and risk of
ischemic and hemorrhagic stroke in hemodialysis patients [144,145]. Apart from phospho-
rus, biomolecules involved in mineral bone disease such as fibroblast growth factor-23 and
klotho are associated with the incidence of stroke [146,147].

12. Dialysis and Stroke

Patients undergoing dialysis have an increased risk of stroke [148]. In incident
hemodialysis patients, stroke rates rose within a month and gradually stabilized at approxi-
mately twice the baseline rate at 1 year after initiation of dialysis [11]. Stroke also appears to
be more common after the long (three-day) interdialytic interval, when fluid and electrolyte
abnormalities are at their peak [149]. During dialysis, every 10 mmHg drop from baseline
in mean BP is associated with a 3% rise in cerebral ischemia (p < 0.001), and the incidence of
ischemic events increased rapidly below an absolute mean BP of 60 mmHg [150]. There is
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also an association between a higher ultrafiltration volume and lower intradialytic cerebral
blood flow [151]. Apart from the circulatory stress of dialysis in combination with ultra-
filtration that result in recurrent ischemic brain injury, repetitive dialysis-induced cardiac
injury might also impair the regulation of cerebral perfusion [152,153].

13. Conclusions

It appears that patients with CKD are at high risk of stroke. This association is stronger
in advanced CKD and in the presence of proteinuria. The association between CKD and
stroke is a result of both traditional and renal disease-specific risk factors. This is the major
strength of the present review, i.e., that it provides a detailed discussion of most stroke
risk factors in this population. However, a limitation of the review is that it does not cover
the management of these risk factors in patients with CKD. Further studies are needed to
clarify the underlying mechanisms of this relationship, which in turn might help identify
novel therapeutic targets and reduce stroke-related disability and mortality.
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