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Abstract: Coronary artery disease (CAD) remains one of the leading causes of cardiovascular morbid-
ity and mortality worldwide. The maintenance of endothelial homeostasis and vitamin D metabolism
play an important role in CAD pathogenesis. This study aimed to determine the association of
endothelial homeostasis and vitamin D metabolism gene polymorphism with CAD severity. A total
of 224 low-risk patients (SYNTAX score ≤ 31) and 36 high-risk patients (SYNTAX score > 31) were
recruited for this study. The serum level of E-, L- and P-selectins; endothelin; eNOS; 25OH; and
1.25-dihydroxy vitamin D was measured using an enzyme-linked immunosorbent assay (ELISA).
Polymorphic variants in SELE, SELP, SELPLG, END1, NOS3, VDR and GC were analyzed using a
polymerase chain reaction (PCR). We found no differences in the serum levels of the studied markers
between high- and low-risk patients. Three polymorphic variants associated with CAD severity
were discovered: END1 rs3087459, END1 rs5370 and GC rs2298849 in the log-additive model. More-
over, we discovered a significantly decreased serum level of 1.25-dihydroxy vitamin D in high-risk
CAD patients with the A/A–A/G genotypes of the rs2228570 polymorphism of the VDR gene, the
A/A genotype of the rs7041 polymorphism of the GC gene and the A/A genotype of the rs2298849
polymorphism of the GC gene.

Keywords: cardiovascular diseases; coronary artery disease; SYNTAX; endothelial homeostasis;
vitamin D; genetic polymorphism; ELISA

1. Introduction

Coronary artery disease (CAD) is characterized by chronic hypoxia and an insufficient
supply of nutrients to the heart resulting from the accumulation of lipids and immune cells
in the subendothelial space of the coronary arteries, which is caused by atherosclerosis
and atherosclerotic plaque formation [1]. CAD remains one of the leading causes of
cardiovascular morbidity and mortality worldwide and, although the mortality of CAD
has decreased in recent decades, it still presents a significant economic burden [2–4].

CAD pathogenesis is genetically determined. According to an analysis of genome-
wide association studies (GWAS), 396 single-nucleotide polymorphisms (SNPs) were as-
sociated with this disease [5]. Generally, CAD-associated genes can be classified into
three groups: disease-causing genes (LDLR, APOB, PCSK9, CYP7A1, ARH and ABCA1);
susceptibility genes (USF1 and LTA); and disease-linked genes (ICAM2, PIM2, ECGF1,
CXCR4, BL34, GOS8, ARHGAP4, RARA, RARB and ARRB2) [1]. In 2011, GWAS and
consortia-based studies performed in the UK, the US and Europe described 45 genes in-
volved in CAD pathogenesis, including SORT1, MIA3, WDR12, PCSK9, CDKN2A, CDKN2B,
MRAS, ANRIL, PHACTRI1, PTPN11, ATXN2, CXCL12, SL5A3, SH2BS, LDLR, KCNE2 and
MRPS6 [6]. Moreover, several novel genes involved in CAD pathogenesis (LIPA, PDGFB,
ADAMTS7-MORF4L and KIAA1462) were identified in South Asian patients [7].
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Endothelial dysfunction caused by the violation of endothelial homeostasis is one of
the most important links in CAD pathogenesis. The inflammatory activation of endothelial
cells leads to the overexpression of cell adhesion molecules followed by the adhesion
of mononuclear cells from the blood to the endothelium, which, in turn, is a trigger for
atherosclerosis [8,9]. Endothelial cells also produce the vasodilator and vasoconstrictor
molecules nitric oxide (NO) and endothelin. Imbalance in the production of these molecules
leads to the loss of the vasodilatory abilities of endothelium and, ultimately, endothelial
dysfunction [10–13].

In the last decade, vitamin D levels have been described as a novel risk factor for a
number of cardiovascular diseases (CVDs), including CAD [14–17]. 25OH vitamin D can
reduce CVD-associated inflammation via the stimulation of anti-inflammatory cytokine
release. In kidneys, macrophages, endothelial cells and smooth muscle cells, 25OH vitamin
D is metabolized into 1.25-dihydroxy vitamin D (calcitriol), which downregulates renin
expression and renin-angiotensin-aldosterone system activity and reduces cardiovascular
risk [18].

Despite the previously obtained results, some issues related to the genetics of CAD,
especially the genetic determination of CAD severity, are still poorly investigated. Therefore,
this study aimed to determine the association of endothelial homeostasis and vitamin D
metabolism gene polymorphism with CAD severity.

2. Materials and Methods
2.1. Group Description

A total of 260 Caucasian patients living long-term (for at least two generations) in
the Kemerovo region (Russian Federation) and hospitalized at the Research Institute
for Complex Issues of Cardiovascular Diseases (Kemerovo, Russia) were recruited for
this study. Stable CAD was confirmed through coronary angiography according to the
guideline of the Russian Society of Cardiology on the diagnosis and treatment of stable
angina. According to the SYNTAX score, 224 patients were assigned to the low-risk group
(SYNTAX score ≤ 31), and 36 patients were assigned to the high-risk group (SYNTAX
score > 31). Patients with cancer, autoimmune and mental and inflammatory diseases were
excluded from this study. The full clinical and demographic characteristics of the patients
recruited in this study are presented in Table 1.

The study design was approved by the Institutional Review Board of the Research
Institute for Complex Issues of Cardiovascular Diseases (Kemerovo, Russia). All patients
recruited in the presented study provided written informed consent to participate in the
examination. This study complies with the Declaration of Helsinki (ethical principles
for medical research involving human participants, amended in 2000) and Good Clinical
Practice guidelines.

2.2. Enzyme-Linked Immunosorbent Assay

Whole blood was collected from cubital vein in vacuum tubes containing coagulation
activator, centrifuged for 10 min at 2500 rpm, aliquoted in 1.5 mL Eppendorf tubes and
stored at −80 ◦C. Serum levels of E-, L- and P-selectins, endothelin, eNOS, 25OH vitamin
D and 1.25-dihydroxy vitamin D were measured via enzyme-linked immunosorbent assay
(ELISA) using Human sE-selectin Platinum ELISA Kit (eBioscience, San Diego, CA, USA),
Human sL-selectin Platinum ELISA Kit (eBioscience), Human sP-selectin Platinum ELISA
Kit (eBioscience), Endothelin-1 Quantikine ELISA Kit (R&D Systems, Minneapolis, MN,
USA), Human eNOS DuoSet ELISA Kit (R&D Systems, USA), 25OH Vitamin D Total ELISA
Kit (DiaSource Diagnostics, Louvain-la-Neuve, Belgium) and 1.25-Dihydroxy Vitamin D
EIA Immunoassay (Immunodiagnostic Systems, East Boldon, UK) in accordance with the
manufacturers’ protocols. Optical density of samples was measured using a Multiskan Sky
Microplate Spectrophotometer (ThermoScientific, Waltham, MA, USA).
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Table 1. Clinical and demographic characteristics of patients.

Index
Number (%)

p-LevelGeneral Group
(N = 260)

Low-Risk Group
(N = 224)

High-Risk Group
(N = 36)

Male 209 (80.38) 183 (81.69) 26 (72.22) 0.26

Female 51 (19.62) 41 (18.31) 10 (27.78) 0.26

Age ≤ 60 years 140 (53.85) 119 (46.88) 21 (58.33) 0.68

Age over 60 years 120 (46.15) 105 (53.23) 15 (41.67) 0.68

Angina classes III–IV 131 (50.38) 107 (47.77) 24 (66.67) 0.054

Chronic heart failure class II–III 254 (97.69) 218 (97.32) 36 (100.00) 0.40

Myocardial infarction 183 (70.38) 152 (67.86) 31 (86.11) 0.017

Atrial fibrillation 26 (10.00) 21 (9.38) 5 (13.89) 0.28

Arterial hypertension 248 (95.38) 213 (81.92) 35 (97.22) 0.48

Isolated coronary artery ectasia 80 (30.76) 68 (30.36) 12 (33.33) 0.42

Multifocal atherosclerosis 180 (69.24) 156 (69.64) 24 (66.67) 0.42

Stenosis of brachiocephalic arteries over 50% 141 (54.23) 121 (54.02) 20 (55.56) 0.50

Stenosis of lower limb arteries 103 (39.62) 88 (39.29) 15 (41.67) 0.46

Acute ischemic stroke 18 (6.92) 15 (6.69) 3 (8.33) 0.72

Body mass index ≤ 30 105 (40.38) 90 (40.18) 15 (41.67) 0.50

Type 2 diabetes 39 (15.00) 32 (14.29) 7 (19.44) 0.28

Impaired glucose tolerance 37 (14.23) 31(13.83) 6 (16.67) 0.40

Chronic obstructive pulmonary disease 5 (1.92) 4 (1.54) 1 (2.78) 0.52

Chronic renal failure 88 (33.84) 77 (39.29) 11 (30.56) 0.40

Chronic pyelonephritis and/or urolithiasis 83 (31.92) 72 (32.14) 11 (30.56) 0.50

Note: Statistically significant differences between low-risk and high-risk groups are highlighted in bold.

2.3. Molecular Genetic Testing

Whole blood was collected from cubital vein in vacuum tubes containing K3EDTA
and stored at −80 ◦C. Genome DNA was extracted using the routine phenol-chloroform
extraction method.

Single-nucleotide polymorphisms (SNPs) were selected according to the following cri-
teria: (i) location within genes involved in the maintenance of endothelial homeostasis and
vitamin D metabolism; (ii) minor allele frequency > 5% in Caucasian populations; (iii) func-
tional consequences and related studies on their role in CAD pathogenesis. Based on these
criteria, thirteen SNPs in seven genes were selected: SELE (rs5361 and rs1805193), SELP
(rs6136), SELPLG (rs2228315), EDN1 (rs5370 and rs3087459), NOS3 (rs1799983 and rs2070744),
VDR (rs2228570 and rs731236) and GC (rs7041, rs1155563 and rs2298849) (Table 2).

Polymorphic variants in the selected genes were analyzed with allele-specific real-time
polymerase chain reaction (real-time PCR) with fluorescently labeled TaqMan primers (Applied
Biosystems, Waltham, MA, USA). Per analyzed sample, 10 µL of reaction mixture containing
1.25 µL of TaqMan primers (Applied Biosystems), 1 mM of dNTP (Life Technologies, Carlsbad,
CA, USA), 1 U of Taq DNA polymerase (Life Technologies) and 100 ng of genome DNA template
was prepared. The amplification was performed using a ViiA 7 Real-Time PCR System (Applied
Biosystems) as follows: 10 min at 95 ◦C, 15 s at 95 ◦C and 60 s at 60 ◦C (40 cycles). The PCR
quality was controlled by repeated genotyping of 10% of samples.
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Table 2. Characteristics of the selected polymorphic variants.

Gene Encoding Protein Reference SNP
Number

Chromosomal
Position

Nucleotide
Change Variant Type

SELE
(Selectin E) E-Selectin

rs5361 chr1:169731919 T > G Missense Variant
Ser149Arg

rs1805193 chr1:169733631 C > A 5 Prime UTR Variant

SELP
(Selectin P) P-Selectin rs6136 chr1:169594713 T > G Missense Variant

Thr756Pro

SELPLG
(Selectin P Ligand)

P-Selectin
Glycoprotein

Ligand 1
rs2228315 chr12:108624122 C > T Missense Variant

Met78Ile

EDN1
(Endothelin 1) Endothelin-1

rs5370 chr6:12296022 G > T Missense Variant
Lys198Asn

rs3087459 chr6:12289406 A > C Intron Variant

NOS3
(Nitric Oxide
Synthase 3)

Endothelial Nitric
Oxide Synthase

rs1799983 chr7:150999023 T > A, G Missense Variant
Asp298Glu

rs2070744 chr7:150992991 C > G, T Intron Variant

VDR
(Vitamin D
Receptor)

Vitamin D3
Receptor

rs2228570 chr12:47879112 A > C, G, T Missense Variant
Met1Arg/Thr/Lys

rs731236 chr12:47844974 A > G Synonymous Variant
Ile352Ile

GC
(GC Vitamin D

Binding Protein)
Gc-Globulin

rs7041 chr4:71752617 A > C, T Missense Variant
Asp432Glu

rs1155563 chr4:71777771 T > A, C Intron Variant

rs2298849 chr4:71783134 A > G Intron Variant

2.4. Statistical Analysis

Statistical analysis was performed using Prism 8 (version 8.4.3) software package
(GraphPad Software, Boston, USA). The D’Agostino–Pearson normality test was used to
verify the compliance of the obtained data with normal distribution. For quantitative data,
median (m), lower (Q1) and upper (Q3) quartiles were calculated. Significant differences
between groups were assessed with the Mann–Whitney U test and the Kruskal–Wallis H
test. The genotyping results were analyzed using the SNPStats web tool and presented as
odds ratio (OR) and 95% confidence interval (CI) calculated for dominant, recessive and
log-additive inheritance models. The full description of inheritance models is presented in
SNPstats tutorial (https://www.snpstats.net/tutorial.htm, accessed on 11 April 2023). The
most likely inheritance model for each SNP was determined using the Akaike’s information
criterion (AIC). The differences were considered statistically significant at p < 0.05.

3. Results
3.1. Association of Polymorphism in the Endothelial Homeostasis and Vitamin D Metabolism
Genes with CAD Severity

Three risk SNPs associated with CAD severity in the log-additive inheritance model
were discovered: two variants in the maintenance of endothelial homeostasis genes—EDN1
rs5370, OR = 2.18, 95% CI = 1.23–3.88, p = 0.008 and EDN1 rs3087459, OR = 1.89, 95%
CI = 1.04–3.44, p = 0.04; and one variant in the vitamin D metabolism genes—GC rs2298849
(OR = 2.26, 95% CI = 1.28–3.99, p = 0.006) (Table 3). Dominant and recessive inheritance
models were characterized by no significant risk/protective effects on CAD severity.

https://www.snpstats.net/tutorial.htm


Biomedicines 2023, 11, 2382 5 of 12

Table 3. Association of genetic polymorphism with CAD severity.

Gene
(Reference

SNP Number)

Dominant Model Recessive Model Log-Additive Model

OR (95% CI) AIC p-Value OR (95% CI) AIC p-Value OR (95% CI) AIC p-Value

SELE (rs5361) 0.84 (0.28–2.57) 213.1 0.76 0.00 (0.00–NA) 212.7 0.46 0.81 (0.28–2.32) 213 0.68

SELE
(rs1805193) 0.93 (0.30–2.84) 213.2 0.90 0.00 (0.00–NA) 212.7 0.46 0.88 (0.31–2.51) 213.2 0.80

SELP (rs6136) 1.35 (0.59–3.09) 212.7 0.49 0.00 (0.00–NA) 212.4 0.37 1.21 (0.56–2.62) 213 0.63

SELPLG
(rs2228315) 1.36 (0.48–3.85) 212.9 0.57 7.24

(0.44–119.44) 211.5 0.20 1.52 (0.62–3.74) 212.4 0.38

EDN1 (rs5370) 1.72 (0.85–3.50) 211 0.13 9.70
(2.74–34.36) 201.7 0.001 2.18 (1.23–3.88) 206.3 0.008

EDN1
(rs3087459) 1.86 (0.91–3.81) 210.4 0.09 4.21

(0.95–18.63) 210.1 0.08 1.89 (1.04–3.44) 209 0.04

NOS3
(rs1799983) 0.62 (0.31–1.28) 211.6 0.20 1.08 (0.44–2.64) 213.2 0.87 0.82 (0.50–1.35) 212.6 0.43

NOS3
(rs2070744) 0.78 (0.38–1.59) 212.8 0.50 1.08 (0.44–2.64) 213.2 0.87 0.91 (0.56–1.48) 213.1 0.71

VDR
(rs2228570) 1.03 (0.48–2.22) 211.5 0.13 0.34 (0.10–1.19) 211.4 0.15 0.78 (0.46–1.31) 212.6 0.35

VDR (rs731236) 1.39 (0.65–2.98) 212.7 0.39 0.93 (0.36–2.40) 213.5 0.87 1.13 (0.69–1.86) 213.2 0.62

GC (rs7041) 0.68 (0.33–1.42) 211.7 0.31 1.01 (0.43–2.37) 212.8 0.32 0.85 (0.52–1.39) 212.4 0.52

GC (rs1155563) 0.76 (0.37–1.55) 212.2 0.45 1.02 (0.28–3.72) 212.8 0.97 0.85 (0.48–1.50) 212.4 0.56

GC (rs2298849) 2.11 (1.03–4.35) 208.7 0.04 7.13
(1.93–26.30) 205.9 0.005 2.26 (1.28–3.99) 205.2 0.006

Note: Statistically significant results after applying the Akaike’s information criterion (AIC) are highlighted in bold.

3.2. Serum Level of Endothelial Homeostasis and Vitamin D Metabolism Markers

ELISA results revealed no significant differences in the concentration of E-, L- and
P-selectins, endothelin, eNOS, 25OH vitamin D and 1.25-dihydroxy vitamin D in the serum
blood obtained from the low-risk and high-risk CAD patients (Table 4).

Table 4. Serum level of endothelial homeostasis and vitamin D metabolism markers in the CAD
patients from low-risk and high-risk groups.

Marker Low-Risk Group, m (Q1–Q3) High-Risk Group, m (Q1–Q3) p-Value

sE-selectin, pg/mL 24.36 (14.82–33.31) 24.33 (10.37–37.69) 0.7693

sL-selectin, pg/mL 1668 (1384–1933) 1670 (1398–2204) 0.5556

sP-selectin, pg/mL 123.9 (89.8–176.8) 165.1 (97.1–197.9) 0.1984

Endothelin, pg/mL 1.55 (1.32–2.04) 1.92 (1.48–2.47) 0.1559

eNOS, pg/mL 105.9 (61.17–160.6) 124.9 (59.32–214.9) 0.1686

25OH vitamin D, nmol/mL 16.22 (12.83–21.64) 14.28 (12.56–21.98) 0.5317

1.25-dihydroxy vitamin D, pg/mL 66.59 (32.47–102.1) 40.36 (20.01–78.96) 0.0918

After stratification of the patients included in the presented study according to the carried
genotype, we discovered a significantly lower serum level of 1.25-dihydroxy vitamin D in
the high-risk CAD patients compared with the low-risk ones, with the A/A–A/G genotypes
of the rs2228570 polymorphism of the VDR gene (33.17 pg/mL vs. 67.47 pg/mL), the A/A
genotype of the rs7041 polymorphism (12.36 pg/mL vs. 72.39 pg/mL) and the A/A genotype
of the rs2298849 polymorphism (36.43 pg/mL vs. 73.24 pg/mL) of the GC gene (Table 5).
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Table 5. Serum level of endothelial homeostasis and vitamin D metabolism markers in the carriers of
different polymorphic variants in the studied genes.

Gene Reference SNP Number Genotype Low-Risk Group,
m (Q1–Q3)

High-Risk Group,
m (Q1–Q3) p-Value

sE-selectin, pg/mL

SELE

rs5361
T/T 24.36 (14.77–33.71) 26.77 (16.31–51.85) 0.55

G/G-T/G 23.28 (15.68–35.32) 9.45 (8.54–10.37) 0.07

rs1805193
C/C 24.29 (14.66–33.51) 26.77 (16.31–51.85) 0.52

A/A-C/A 25.54 (19.21–40.96) 9.45 (8.54–10.37) 0.09

sP-selectin, pg/mL

SELP rs6136
T/T 130 (98.15–181) 175.6 (134–203.5) 0.11

T/G-G/G 107 (81.82–130.8) 97.1 (41.7–197.9) 0.88

SELPLG rs2228315
C/C 123.8 (88–170.5) 165.1 (89.6–195.7) 0.36

C/T-T/T 138.9 (122.1–211.8) 185.9 (165–206.8) 0.53

Endothelin, pg/mL

EDN1 rs3087459
A/A 1.59 (1.34–2.19) 2.083 (1.57–2.48) 0.14

A/C-C/C 1.43 (1.27–1.79) 1.57 (1.21–1.92) 0.95

EDN1 rs5370
G/G 1.59(1.34–2.19) 1.71 (1.40–2.47) 0.65

G/T-T/T 1.44 (1.30–1.76) 2.08 (1.57–2.49) 0.10

eNOS, pg/mL

NOS3

rs2070744

C/C 127.5
(73.93–187.29) 104.3 (55.71–304.6) 0.69

C/T 105.9 (63.33–168.2) 156.8 (48.92–288.9) 0.30

T/T 100.5 (45.44–143.8) 129.9 (65.39–174.5) 0.22

rs1799983

G/G 105.2 (47.07–165.8) 92.38 (63.13–154.3) 0.86

T/G 105.6 (60.74–143) 134.9 (58.21–172.3) 0.27

T/T 113.4 (73.93–167.9) 285 (42.24–459.2) 0.12

25OH vitamin D, nmol/mL

VDR

rs2228570
A/A-A/G 16.51 (13.13–22.41) 14.25 (12.09–21.67) 0.29

G/G 15.86 (11.94–21.58) 23.55 (23.55) 0.64

rs731236
A/A 17 (13.14–23.07) 13.99 (12.56–23.55) 0.65

A/G-G/G 16.49 (12.45–22.95) 18.44 (11.57–21.88) 0.71

GC

rs7041
A/A-A/C 15.97 (11.91–20.35) 15.47 (10.34–22.77) 0.94

C/C 19.39 (15.08–26.58) 14.25 (13.1721.86) 0.09

rs1155563
C/C-C/T 16.1 (12.31–19.31) 14.02 (9.23–21.53) 0.47

T/T 17.79 (13.09–24.68) 14.28 (13.99–21.98) 0.50

rs2298849

A/A 16.51 (13.16–21.31) 18.52 (13.29–23.05) 0.76

A/G 15.98 (11.72–25.41) 14.25 (14.05–20.64) 0.76

G/G 47.43 (9.28–85.58) 10.69 (8.12–21.98) 0.80
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Table 5. Cont.

Gene Reference SNP Number Genotype Low-Risk Group,
m (Q1–Q3)

High-Risk Group,
m (Q1–Q3) p-Value

1.25-dihydroxy vitamin D, pg/mL

VDR

rs2228570
A/A-A/G 67.41 (35.36–86.39) 33.17 (12.98–68.62) 0.012

G/G 57.08 (26.98–120.1) 54.11 (40.66–78.62) 0.41

rs731236

A/A 60 (32.47–117.2) 47.73 (25.69–78.5) 0.97

A/G 72.38 (38.43–107.3) 49.21 (18.93–84.13) 0.14

G/G 61.39 (28.17–91.05) 36.48 (12.39–38.65) 0.15

GC

rs7041

A/A 72.39 (43–119.5) 12.36 (9.54–36.43) 0.008

A/C 65.89 (31.1–93.81) 51.3 (36.45–155.2) 0.69

C/C 55.89 (32.03–110.1) 36.48 (18.93–86.34) 0.43

rs1155563

C/C 79.77 (55.83–171.5) 44.91 (36.43–53.39) 0.17

C/T 61.55 (32.16–85.62) 42.07 (12.78–141) 0.38

T/T 64.77 (30.31–134.2) 38.65 (21.08–85.24) 0.29

rs2298849

A/A 73.24 (37.76–113) 36.43 (12.36–59) 0.010

A/G 57.68 (27.82–87.47) 83.14 (36.48–141) 0.35

G/G 50.9 (28.14–302.1) 28.79 (18.93–38.65) 0.53

Note: Statistically significant results are highlighted in bold.

4. Discussion

The maintenance of endothelial homeostasis is critical for a normal functioning of the
endothelium, which performs the most important physiological functions (transmission of
different molecules into subendothelial space, regulation of hemostasis and vascular tone,
prevention of platelet aggregation, etc.) [13]. The violation of endothelial homeostasis can
lead to endothelial disfunction, underlying atherogenesis and its clinical manifestation—
CAD [19]. Endothelial dysfunction can be defined as a loss of the anti-inflammatory,
anti-thrombotic and vasodilatory abilities of endothelial cells [20].

Regulation of vascular tone is extremely important for the prevention of various cardio-
vascular diseases. In response to external mechanical (e.g., shear stress) and chemical (e.g.,
acetylcholine, bradykinin and ATP) stimuli, the endothelium produces different vasodilator
(nitric oxide, prostacyclin and endothelium-derived hyperpolarization factor) and vasocon-
strictor factors (thromboxane A2 and endothelin-1) that regulate the vascular tone [21–23].
Endothelin-1, encoded by the EDN1 gene, is characterized by long-lasting action and
remains the most important vasoconstrictor in the human cardiovascular system [24].
Endothelin-1 is continuously synthesized by endothelial cells from pre-proendothelin
(preproET-1). The release of endothelin-1 is controlled by the transcription and post-
transcription levels, with the implication of numerous transcription factors (AP-1, NF-κB,
FOXO1, VezF1, HIF-1 and GATA2), physical and chemical stimuli (shear stress, hypoxia,
thrombin, angiotensin II, etc.) [25–27]. Transforming growth factor beta (TGF-β) can be
described as another regulator of endothelin-1 production in endothelial cells. It has been
shown that TGF-β signaling via the ALK5/Smad3 pathway leads to an increased expression
of preproET-1 [28].

The serum level of endothelin-1 has been studied as a potential risk marker for adverse
cardiovascular events (atherosclerosis, CAD, arterial hypertension, myocardial infarction,
heart failure, increased left atrial diameter and left ventricular mass) [29,30]. Endothelin-1
plays an important role in CAD pathogenesis via involvement in endothelial dysfunction,
inflammation, atherosclerotic plaque formation, myocardial necrosis, arrhythmogenesis
and, finally, left ventricular remodeling and fibrosis [31]. Endothelin-1 can induce endothe-
lial dysfunction via the inhibition of NO pathway activity, increases in oxidative stress
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and inflammation and the dysregulation of glucose and lipid metabolism [32]. Moreover,
endothelin-1 can inhibit the activity of endothelial NO synthase (eNOS), resulting in a de-
crease in NO bioavailability and NO-dependent vasorelaxation [33]. Endothelin-1 enhances
ROS-induced local oxidative stress in the vascular wall via a Ras-dependent pathway [33]
accompanied by local inflammation and followed by an increase in vascular permeability,
leukocyte infiltration and atherosclerotic plaque formation [34,35]. Endothelin-1 can also ac-
celerate the progression of atherosclerosis via upregulation of the mitogen-activated protein
kinase pathway [36]. In addition, endothelin-1 can upregulate lipid metabolism genes and
promote atherosclerotic lesions characterized by overexpression of endothelial-targeted
endothelin-1 in mice; the blockage of the endothelin-A receptor leads to the restoration of
endothelial function and the inhibition of atherosclerosis development in ApoE knockout
mice [37,38].

According to molecular genetic studies, polymorphism in the EDN1 gene is associated
with the risk of CAD. It was shown that carriers of the T allele of the 5665G > T poly-
morphic variant, the CC and CT genotypes of the rs6458155 variant and the haplotype
rs6458155–rs4145451 containing the C allele of the rs6458155 variant of the EDN1 gene
were characterized by increased CAD risk. In addition, the CT genotype of the rs6458155
variant was associated with the increased serum level of endothelin-1 compared with the
TT genotype. Carriers of the homozygous variant allele of the EDN1 gene −839T > G
polymorphism were characterized by decreased CAD risk [39,40]. At the same time, there
are no studies describing the role of a genetic polymorphism in the EDN1 gene in CAD
severity. In our study, we have found the associations of genetic polymorphism in the
EDN1 gene with CAD severity with a simultaneous absence of associations between genetic
polymorphism and the serum level of endothelin-1. We suppose that the carriage of risk
alleles of the EDN1 gene does not lead to a quantitative change in the level of endothelin-1,
but it does modify its activity, which, in turn, affects CAD progression.

25OH vitamin D is mainly synthesized endogenously from 7-dehydrocholesterol un-
der exposure to ultraviolet radiation and is metabolized in the kidneys into their active form
1.25-dihydroxy vitamin D (calcitriol) [17,41]. Calcitriol is characterized by several systemic
effects, including anti-inflammatory, anti-thrombotic and anti-atherosclerotic actions [42]. It
has been shown that vitamin D deficiency is associated with a number of negative cardiovas-
cular events including hypertension [43], myocardial injury [44] and CAD progression [45].
At the molecular level, vitamin D downregulates the NF-κB pathway in epicardial adipose
tissue (EAT) and thereby attenuates CAD progression [45]. EAT adipocytes are deeply
involved in CAD pathogenesis through the release of pro-inflammatory cytokines IL-6,
IL-8 and TNF-α [46–48]. Membrane transporter KPNA4, expressed by EAT adipocytes,
stimulates the transfer of NF-κB into the nucleus, where it acts as a transcription factor
that upregulates the expression of pro-inflammatory cytokines [49,50]. It has been shown
that the liganded 1.25-dihydroxy vitamin D receptor (VDR) can reduce atherogenesis-
associated inflammatory responses via downregulating the transcription and translation of
KPNA4 in EAT cells, followed by the compromised transfer of NF-κB into the nucleus [46].
Moreover, vitamin D and VDR can regulate NO synthesis via regulation of eNOS bioac-
tivity in a PI3K/Akt-dependent manner and prevent oxidative stress-induced endothelial
dysfunction [51].

Scientists have discovered more than 470 SNPs in the VDR gene, and thoroughly
studied the role of four SNPs, rs2225870, rs1544410, rs7975232 and rs731236, in the patho-
genesis of different diseases (cancer, diabetes, Parkinson’s disease, myocardial infarction
and CAD) [52–55]. Studies have shown that genetic polymorphism in the VDR gene is as-
sociated with CAD risk in different populations. The rs731236 polymorphism is associated
with increased CAD risk in Pakistani and Croatian populations [56,57]. At the same time,
researchers from Spain and South Iran reported no correlation between this polymorphic
variant and susceptibility to CAD development [58,59]. Contradictory data have been
obtained for the rs1544410 polymorphism— the A allele may have both risky [60] and
protective effects [59] in relation to CAD development. In the Spanish population, the
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rs1544410 polymorphism is not associated with the risk of CAD [58]. For the rs2225870
polymorphism, the TT genotype and CAC haplotype are associated with increased CAD
risk in patients from Spain [58], but not from Croatia [57]. Moreover, this polymorphism
may be predisposed to the development of premature CAD in healthy people with a family
history of this disease over the next years [61]. According to the latest meta-analysis, the
polymorphic variants rs2225870, rs1544410 and rs731236 are characterized by risk of CAD
development, but the role of the rs7975232 polymorphism is ambiguous [62,63]. The role
of genetic polymorphism in the VDR gene in CAD severity has been studied in only one
article—the authors reported no associations between the rs1544410 and rs731236 polymor-
phisms with the severity of this disease [59]. In our research, we have found no associations
of the rs2225870 and rs731236 polymorphisms with CAD severity, but registered signifi-
cantly lower serum level of 1.25-dihydroxy vitamin D in the high-risk CAD patients with
the A/A-A/G genotypes of the rs2225870 polymorphism. This polymorphic variant is
known to be involved in the modulation of the response to vitamin D supplementation via
regulation of calcitriol signaling [64].

The main transport protein of vitamin D in the plasma is vitamin D-binding protein
(VDBP) encoded by the GC gene. The serum level of vitamin D is strongly correlated with
the VDBP concentration [65]. The formation of the VDBP/25OH vitamin D complex, its
filtration and reabsorption through VDR are important factors affecting the maintenance
of optimal serum levels of vitamin D [66]. It was reported that the rs7041 polymorphism
in the GC gene can be a risk factor for CAD and vascular calcification [60,67–69]. In the
presented research, we have found that polymorphism in the GC gene is associated with
CAD severity and decreased serum levels of calcitriol, which indicates a violation of vitamin
D metabolism in carriers of risk alleles of this gene.

It should be noted that this study has limitations: the group of high-risk CAD patients
is relatively small, and the studied population is homogenous.

5. Conclusions

Genetic polymorphism in the endothelial homeostasis and vitamin D metabolism
genes is associated with CAD severity in Caucasian patients. The obtained results can
be used to assess the personalized risk of complications in CAD patients and develop
appropriate early-prevention strategies in high-risk groups of patients.
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