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Abstract: Green synthesis of metallic nanoparticles is an auspicious method of preparing nanopar-
ticles using plant extracts that have lesser toxicity to animal cells and the host. In the present
work, we analyzed the antibacterial activity of Citrullus colocynthis and Psidium guajava-mediated
silver nanoparticles (Cc-AgNPs and Pg-AgNPs, respectively) against Aeromonas hydrophila (A. hy-
drophila) in an in vivo assay employing Labeo rohita (L. rohita). L. rohita were divided into six
groups for both Cc-AgNPs and Pg-AgNPs treatments separately: Control, A. hydrophila infected,
A. hydrophila + Ampicillin, A. hydrophila + Cc/Pg-AgNPs (25 µg/L), A. hydrophila + Cc/Pg-AgNPs
(50 µg/L), and A. hydrophila + Cc/Pg-AgNPs (75 µg/L). Changes in different bio-indicators such
as hematological, histological, oxidative stress, and cytokine analysis were observed. Interestingly,
the infected fish treated with both types of AgNPs (Cc-AgNPs and Pg-AgNPs) exhibited a higher
survival rate than the untreated infected fish and demonstrated signs of recovery from the infection,
providing a compelling indication of the positive impact of phytosynthesized AgNPs. Disruptions
in hematological and histological parameters were found in the infected fish. Both Cc-AgNPs and
Pg-AgNPs showed recovery on the hematological and histological parameters. Analysis of oxidative
stress and cytokine markers also revealed provoking evidence of the positive impact of Cc-AgNPs
and Pg-AgNPs treatment against disease progression in the infected fish. The major finding of the
study was that the higher concentrations of the nanoparticles (50 µg/L in the case of Cc-AgNPs and
75 µg/L in the case of Pg-AgNPs) were more effective in fighting against disease. In conclusion, our
work presents novel insights for the use of green-synthesized AgNPs as economic and innocuous
antibacterial candidates in aquaculture.

Keywords: phytosynthesis; silver nanoparticles; Labeo rohita; Citrullus colocynthis; Psidium guajava;
antibacterial activity

1. Introduction

A growing range of scientific industries use various technologies to produce engi-
neered nanomaterials, involving various chemical, physical, and biological techniques [1].
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Silver (Ag) has long been used in medicine, highlighting its pharmaceutical value [2,3].
Moreover, in recent years, silver nanoparticles (AgNPs) have gained considerable attention
for their exciting applications in functionalized surfactants and biocompatible materials.
The growing interest in AgNPs reflects the exploration of their potential in the medical
field [4,5].

Aeromonas hydrophila (A. hydrophila) is one of the most common fish pathogens that
causes serious illnesses in fish. These bacteria frequently cause diseases in freshwater
fish, including epizootic ulcerative syndrome, gill rot, tail fin rot, dropsy, septicemia,
and ulcers [6]. Furthermore, A. hydrophila has developed resistance to several antibiotics,
including ampicillin, rifampin, amoxicillin, lincomycin, novobiocin, penicillin, tetracycline,
and oxacillin [7]. The rising prevalence of antibiotic resistance has led to an increase
in microbial infections and recurrent attacks, necessitating the development of new or
modified antimicrobial agents due to the continuous changes in microorganisms through
mutation [8]. Therefore, efforts to identify antibiotic alternatives are gaining momentum [7].

Through the implementation of green technology, the use of potentially harmful chem-
icals and solvents has been significantly reduced, leading to the use of non-toxic products
and improving material and energy efficiency in various chemical processes. Applying
these methods to nanoscience will make it easier to create and work with nanomaterials
and nanostructured technologies that are nature-friendly [8]. Synthesizing nanoparticles
using biological organisms, such as bacteria and plants, has been proven to be economical,
ecologically sustainable, and non-toxic [9,10]. Nanoparticles from plant extracts are now
being recognized as potential antibiotic substitutes [11].Plant extracts can be utilized for
NPs production on a large scale [12]. Various plant extracts, such as orange peel, Carica
papaya fruit, Ziziphus joazeiro leaf, Azadirachta indica leaf, Ocimum sanctum leaf, Stevia leaf,
Annona reticulata leaf, Justicia adhatoda L. leaf, Citrus lemon leaf, Petroselinum crispum leaf,
living peanut seedling, and Coleus aromaticus leaf, have been utilized as bioreducing agents
for the synthesis of nanoparticles. These extracts not only stabilize the nanoparticles but
also reduce the metal cations [13,14].

Citrullus colocynthis (Cc) leaves are recognized for their antibacterial, antifungal, and
anti-inflammatory effects, attributed to the presence of alkaloids and flavonoids in them [15].
Psidium guajava (Pg) leaves do not come behind, also have a history of traditional medicinal
use, and are known for their antibacterial, anti-inflammatory, and antioxidant properties
due to the presence of bioactive compounds such as flavonoids and phenols [16].

In the present study, leaf extracts of Cc and Pg were used to prepare Citrullus colocynthis
silver nanoparticles (Cc-AgNPs) and Psidium guajava silver nanoparticles (Pg-AgNPs). The
therapeutic potential of both types of nanoparticles was tested for disease treatment in
L. rohita against A. hydrophila infection. L. rohita is an economically important fish and
is popular for its taste and nutritional significance. Finding new therapeutic measures
to control infections in L. rohita will hugely benefit the aquaculture industry. We believe
that our study presents useful insights for the exploration of novel nanomedicines for
combating bacterial infections in aquaculture [17–19].

2. Materials and Methods
2.1. Fish Studies

Healthy fingerlings of L. rohita (20 ± 2.0 g, 15 ± 0.5 cm) were obtained from Hi-
malaya Fish Hatchery, Muridke, Pakistan. The fish were transferred randomly to glass
aquaria containing 60 L of tap water and equipped with aerators (VENUSAQUA AP-
308A, Zhongshan, China). The fish were acclimatized for two weeks before starting the
experiment. Pelleted feed (Hi-Tech Aqua Feeds, Pvt. Ltd., Gujranwala, Pakistan) was
provided to the fish twice daily at a feeding rate of approximately 3% of their body weight.
The 50% water was exchanged daily throughout the experimental period to prevent the
deterioration of water quality.
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2.2. AgNPs Synthesis

Cc and Pg leaves were collected, washed, and completely shade dried. The dried
leaves of Cc and Pg were ground in an electric blender to make a fine powder (Figure 1).
A 15 g powder was mixed with 100 mL of ethanol and placed in a Soxhlet apparatus
(EAM-9201-06, Seoul, Republic of Korea). It was filtered through Whatman No. 1 filter
paper after three hours. The resulting extract was stored at 4 ◦C for further use.
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Figure 1. (a–d) Preparation of Citrullus colocynthis-mediated silver nanoparticles (Cc-AgNPs).
(e–h) Preparation of Psidium guajava-mediated silver nanoparticles (Pg-AgNPs). (a,e) Fresh leaves of
both plants. (b,f) Washed and shade dried. (c,g) Leaves grinded into fine powder. (d,h) Extract prepared,
and color change observed after mixing with AgNO3 solution when Cc-AgNPs and Pg-AgNPs formed.

In 10 mL of distilled water, 0.2 g of the prepared extract was added and thoroughly
mixed before being placed in the rotary apparatus. The solution was filtered using What-
man No. 1 filter paper, and the filtrate was used to reduce silver ions in the AgNO3 solution.
1.7 g of AgNO3 was mixed with 100 mL of distilled water. 10 mL of this prepared AgNO3
solution was mixed with a 4 mL extract solution to synthesize Cc-AgNPs and Pg-AgNPs.
After 10 min of continuous stirring and heating at 70 ◦C, the color of the solution began to
change. This color change indicated the formation of AgNPs in the solution (Figure 1d,h).

2.3. Characterization of AgNPs

X-ray Diffraction (XRD) (JSX 3201M, Jeol, Tokyo, Japan) was used to determine the
crystalline structure of Cc-AgNPs and Pg-AgNPs. The formation of AgNPs was confirmed
by measuring UV-Visible spectra (Shimadzu, UV-1800, Kyoto, Japan). Cc-AgNPs and Pg-
AgNPs were also examined by Fourier transform infrared (FTIR) spectroscopy (IRTracer-
100, Shimadzu, Japan) to determine the attached functional groups. The information about
the surface topography and composition of AgNPs was collected using Scanning Electron
Microscopy (SEM) (FEI Nova NanoSEM 450, Waltham, MA, USA).

2.4. A. Hydrophila Infection Challenge Assay

A. hydrophila culture was prepared with approximately 1.3% nutrient broth (HiMedia
Kennett Square, PA, USA) dissolved in 100 mL of distilled water. The beakers and test tubes
were sterilized in an autoclave at 120 lb. per square inch for 45 min. The bacterial culture
was poured into the test tubes and placed in a shaker incubator overnight. The bacterial
suspension was confirmed by observing turbidity in the culture test tube, while the blank
culture remained clear. The optical density (OD) of the culture was measured using a UV
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spectrophotometer at a wavelength of 345 nm, and PBS was used to dilute the culture to
reach the corresponding concentration of 2 × 106 CFU/mL. Fish were intramuscularly
injected with 0.5 mL of the bacterial suspension, and the control group was treated with
phosphate-buffered saline (PBS) only. The concentration of AgNPs was kept constant
during the whole experimental period, and the experiment was conducted for 10 days.

2.4.1. Cc-AgNPs Treatment

Three different concentrations of Cc-AgNPs were given to the fish viz., 25 µg/L, 50 µg/L,
and 75 µg/L. Fish were divided into six groups (n = 15 per group): Control, A. hydrophila, A.
hydrophila + Ampicillin (75 µg/L), A. hydrophila + Cc-AgNPs (25 µg/L), A. hydrophila + Cc-
AgNPs (50 µg/L), and A. hydrophila + Cc-AgNPs (75 µg/L).

2.4.2. Pg-AgNPs Treatment

Three different concentrations of Cc-AgNPs were given to the fish viz., 25 µg/L, 50 µg/L,
and 75 µg/L. Fish were divided into six groups (n = 15 per group): Control, A. hydrophila, A.
hydrophila + Ampicillin (75 µg/L), A. hydrophila + Pg-AgNPs (25 µg/L), A. hydrophila + Pg-
AgNPs (50 µg/L), and A. hydrophila + Pg-AgNPs (75 µg/L).

2.5. Sample Collection

After the fifth and tenth days post-infection (dpi), fish from all the groups were
anesthetized with clove oil (100 µg/L for 40 to 60 s). Blood samples were obtained through
cardiovascular punctures for hematological analysis. The gills, liver, and kidney were
collected and preserved in 10% formalin for histological analysis. To prepare the liver
and gill samples for analysis, they were washed with 9 mL of 0.1 M PBS (pH 7.4). The
tissues were then homogenized using a Teflon tissue homogenizer. The homogenate was
centrifuged at 4 ◦C for 10 min at 12,000 rpm, and the supernatant was collected for oxidative
stress analysis. Blood was centrifuged at 5000 rpm for 30 min using serum separator gel
tubes for cytokine analysis. The resulting tissues and serum supernatant were stored at
−20 ◦C for subsequent analysis.

2.6. Hematological Evaluation

Hematological parameters such as Hemoglobin, White Blood Cells (WBCs), Red
Blood Cells (RBCs), Mean Corpuscular Volume (MCV), Hematocrit value, Platelets, Mean
Corpuscular Hemoglobin (MCH), and Mean Corpuscular Hemoglobin Concentration
(MCHC) were analyzed using an automated blood analyzer (Sysmex KX-21, Kobe, Japan).

2.7. Histopathological Evaluation

For histopathological analysis, the organs were dehydrated using graded alcohol
solutions. Subsequently, the dehydrated tissues were embedded in paraffin wax and
sectioned into thin slices using a microtome. The obtained tissue sections were mounted
onto glass slides to enhance cellular visualization and subjected to a series of staining
procedures, viz; hematoxylin and eosin staining. Finally, the prepared slides were observed
under an optical microscope (Optika B-150DB, Ponteranica, Italy).

2.8. Oxidative and Immune Stress Responses

Sodium Dismutase (SOD) (Product Code: A001-1) and Catalase (CAT) (Serial No:
A007-1) activities in the tissue homogenate were measured using ELISA kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) at a wavelength of 450 nm using
the microplate ELISA reader. The Malondialdehyde (MDA) content was measured by
a commercial General MDA ELISA kit (Cat: ELK7832) according to the manufacturer’s
protocol (ELK Biotechnology Co., Ltd., Denver, CO, USA). Interleukin-1 beta (IL-1β) (Cat:
EH0185) was measured by an ELISA kit (Wuhan Fine Biotech. Co., Ltd., Wuhan, China).
Tumor Necrosis Factor-alpha (TNF-α) (Cat: ELK1396) was measured by an ELISA kit (ELK
Biotechnology Co., Ltd., Denver, CO, USA).
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2.9. Statistical Analysis

The experimental data was analyzed using GraphPad Prism software (Version 9).
ANOVA and Tukey’s post hoc test were performed to analyze group variability. Re-
sults with p < 0.05 or lower were designated statistically significant (* indicates p < 0.05;
** indicates p < 0.01; *** indicates p < 0.001; **** indicates p < 0.0001).

3. Results
3.1. Analysis of Cc-AgNPs and Pg-AgNPs
3.1.1. XRD Analysis

The XRD analysis provided insights about the structural properties and crystallite sizes
of Cc-AgNPs and Pg-AgNPs. The crystallite size of both types of AgNPs was determined
using the Debye–Scherrer equation [15]. The crystallite size of Cc-AgNPs was determined
to be 7 nm, while for Pg-AgNPs, it was found to be 15 nm (Figure 2a,b). The XRD patterns
exhibited distinct diffraction planes, confirming the metallic nature of both Cc-AgNPs and
Pg-AgNPs. The diffraction patterns also indicated the presence of a face-centered cubic
(FCC) crystalline structure in both types of AgNPs, according to COD ID No. 9013046 [15].
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Figure 2. (a) XRD patterns of Cc-AgNPs. (b) XRD patterns of Pg-AgNPs. Characteristic peaks
confirmed the FCC (Face-centered cubic) crystalline structure of AgNPs.

3.1.2. UV-Vis

In Figure 3, the UV-Vis spectra of precursor solution (AgNO3), leaf extracts of both
plants (Cc-extract and Pg-extract), and AgNPs synthesized using these extracts are pre-
sented. No observable peak occurred in the case of the AgNO3 solution. The non-
appearance of any noticeable peak in the case of precursor solution (AgNO3) revealed the
absence of any type of AgNPs production without extracting biomolecules. However, some
peaks may appear below 300 nm due to silver ions (Ag+), as reported in the literature [20].
The noticeable peaks started occurring around 300 nm in both extracts. A relatively broad
single Surface Plasmon Resonance (SPR) band appeared around 424 nm for Cc-AgNPs
(Figure 3a), while a comparatively sharp SPR band around 429 nm was observed for Pg-
AgNPs (Figure 3b). The occurrence of characteristic SPR spectra in the range of 424 nm to
429 nm confirmed the pure silver metallic nature of colloidal nanoparticles (Cc-AgNPs and
Pg-AgNPs).
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3.1.3. FTIR

The FTIR is a well-known technique for the identification of different functional groups
and chemical bonds. The FTIR analysis of green synthesized NPs can be helpful in studying
the chemical composition of synthesized NPs. For this purpose, FTIR analysis of Cc-AgNPs
and Pg-AgNPs was conducted, and the obtained spectra are presented in Figure 4. The
absorption bands of primary significance were observed for Cc-AgNPs at wavenumbers
3240, 2350, 1604, 1403, 1047, and 784 cm−1 (Figure 4a). While Pg-AgNPs exhibited absorp-
tion bands at wavenumbers 3280, 2929, 2358, 1635, 1374, 1012, and 741 cm−1 (Figure 4b). In
the case of Cc-AgNPs (Figure 4a), a weak but very broad band occurred around 3240 cm−1

that can be due to the presence of an O–H functional group owing to alcoholic or phenolic
biomolecules in the Cc-extract. The dagger type band around 2350 cm−1 can be assigned to
C≡N nitriles, while a weak absorption band appearing around 1604 cm−1 may indicate
the stretching vibration of C–C aromatic groups. Another weak band around 1403 cm−1

can represent the C–H bending vibrations due to alkane. A strong and prominent absorp-
tion band around 1047 cm−1 might be due to C–O stretching vibrations representing the
presence of alcoholic, carboxylic acid, esters, or ether biomolecules. A small band around
784 cm−1 can be assigned to N–H waging vibrations due to primary and secondary amines.
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In the case of Pg-AgNPs (Figure 4b), a reasonably strong but broad band around
3280 cm−1 can be attributed to the O–H stretching vibrations, signifying the presence of
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alcoholic, phenolic, and carboxylic acid molecules of Pg-extract on the Pg-AgNPs. The
medium absorption band around 2929 cm−1 can be designated to the stretching vibration
of C–H due to alkaline. The medium-sharp band around 1635 cm−1 can be assigned
to N–H bending vibration due to 1◦ amines. The broad medium bands between 1360
and 1290 cm−1 can be attributed to N–O symmetry stretching owing to nitro compounds.
Similarly, a very strong and sharp band around 1008 cm−1 can be assigned to C–H bending
vibration because of alkanes. The small bands around 725 cm−1 can be assigned to C–H
rocking vibrations as a result of alkane molecules [15,21,22].

The FTIR analysis confirmed the manifestation of different functional groups on the
surfaces of Cc-AgNPs and Pg-AgNPs. The absorption band signified the existence of
extracted biomolecules on the synthesized AgNPs.

3.1.4. SEM

The SEM analysis revealed the morphological characteristics of both Cc-AgNPs and
Pg-AgNPs (Figure 5). Cc-AgNPs exhibited a pronounced morphology with a round shape
and polydispersed distribution, measuring between 15 and 20 nm in size (Figure 5a).
Pg-AgNPs displayed a similar morphology, being round and polydispersed, but with a
relatively smaller size range of 10–15 nm (Figure 5a). However, in both types of AgNPs, at
some places, agglomeration of nanoparticles can be noticed, which results in larger-sized
particles (Figure 5b,e). The average size of Cc-AgNPs and Pg-AgNPs, as inferred from
the particle size distribution histograms (Figure 5c,f), was found to be 18 ± 4 nm and
13 ± 3 nm, respectively. Considering the limitations of SEM accuracy, the size ranges of
both types of AgNPs seem to be virtually comparable.
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Figure 5. (a) SEM analysis of Cc-AgNPs. (b) Magnified view of Cc-AgNPs revealing the morphology
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histogram. The insect was viewed at ×20,000 magnifications with a 3.9 mm scale (scale bar 100 nm).

3.2. Behavioral Changes

The behavior of the fish was observed twice daily during both treatments (Table 1). The
control group fish exhibited normal behavior (swimming energetically and feeding normally).
The A. hydrophila-infected fish, on the other hand, moved fast and in an abnormal manner,
with less feed intake and irregular fin movement. Their altered feeding behavior showed that
they were under stress. In the A. hydrophila + Cc-AgNPs (25 µg/L) treatment, the fish was
active, swimming, and taking food slowly. The fish infected with A. hydrophila + Cc-AgNPs
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(50 µg/L) were energetic, and their swimming behavior was comparable to that of the
control group. The A. hydrophila + Cc-AgNPs (75 µg/L) treated group also showed regular
swimming and normal feeding behavior.

Table 1. Behavioral attributes recorded after A. hydrophila challenge in both Cc-AgNPs and Pg-AgNPs
treatments. Normal (+), Severe (−), Mild (+−).

Groups Swimming Feed Intake Fin Movement Hovering Behavior

Control + + + +

A. hyd − − +− −

A. hyd + Amp (75 µg/L) − + +− +

A. hyd + Cc-AgNPs (25 µg/L) + +− + +

A. hyd + Cc-AgNPs (50 µg/L) + + + +

A. hyd + Cc-AgNPs (75 µg/L) +− +− +− +

A. hyd + Pg-AgNPs (25 µg/L) + +− + +

A. hyd + Pg-AgNPs (50 µg/L) + + − +−

A. hyd + Pg-AgNPs (75 µg/L) + + +− +

When fish were treated with A. hydrophila + Pg-AgNPs (25 µg/L), their swimming
was normal as compared to the infected fish. A. hydrophila + Pg-AgNPs (50 µg/L) fish were
observed to show normal swimming and mild hovering behavior. Fish treated with A.
hydrophila + Pg-AgNPs (75 µg/L) showed improved responses, as indicated by their normal
swimming and feeding as compared to the control group. While lower concentrations of
both Cc-AgNPs and Pg-AgNPs showed some improvements, the highest concentrations
of both types of nanoparticles (50 µg/L and 75 µg/L) appeared to have the most notable
positive effect on fish behavior. These findings suggest a dose-dependent relationship, in
which higher concentrations may yield more substantial improvements in fish behavior for
combating infection.

3.3. Hematological Analysis

A. hydrophila challenge caused a significant increase in platelets and MCH at 5 dpi.
However, when treated with the Cc-AgNPs (50 µg/L) MCH% was recovered. In the Pg-
AgNPs assay, only platelet numbers were significantly increased in the infected fish, and
Pg-AgNPs treatment recovered the platelet number at the highest concentration (75 µg/L).
The other blood parameters showed fluctuations in all the infected groups (Figures 6 and 7).

On 10 dpi in the Cc-AgNPs hemoglobin assay, WBCs, RBCs, MCV, and HCT signifi-
cantly raised in the infected fish. It was noticed that Cc-AgNPs recovered RBC at all three
concentrations, while MCV was recovered by the lowest dose (25 µg/L) of Cc-AgNPs.
MCH and MCHC were significantly lower in the infected fish infection as compared to the
control. The lowest dose of Cc-AgNPs was again found to restore the normal values of
MCH and MCHC. In the Pg-AgNPs assay, HCT, platelets, and MCHC were significantly
raised following the challenge. Pg-AgNPs showed a recovery trend in HCT, while other
parameters did not show treatment effects (Figures 6 and 7). The hematological parameters
also showed variations 1 dpi (Table S1).
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3.4. Histological Studies
3.4.1. Gills

The gills of the control fish showed normal histology with no observable pathological
signs. Normal chloride cells, gill filaments, pavement cells, and primary and secondary gill
lamellae were present (Figure 8a). Gills of A. hydrophila-infected fish showed pathological
alterations such as fusion of secondary lamellae, dilated club tips, blood congestion, and
proliferation of epithelial cells (Figure 8b). In the ampicillin-treated group, dilated club tips,
delocalized lamella, proliferation of epithelial cells, interstitial oedema, and hyperplasia
were present (Figure 8c). Gills of A. hydrophila + Cc-AgNPs (25 µg/L) showed dilated club
tips, shortening of lamellae, and fusion of secondary lamellae (Figure 8d). Fish infected with
A. hydrophila + Cc-AgNPs (50 µg/L) exhibited some degree of vacuolation and shrinkage
of secondary lamella (Figure 8e). Fish infected with A. hydrophila + Cc-AgNPs (75 µg/L)
showed minor proliferation of epithelial cells (Figure 8f). Fish treated with Pg-AgNPs
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(25 µg/L) showed proliferation of epithelial cells, shortening of lamellae, and dilated club
tips (Figure 8g). A. hydrophila + Pg-AgNPs (50 µg/L) group fish showed fusion of secondary
lamellae and shortening of lamellae (Figure 8h). A. hydrophila + Pg-AgNPs (75 µg/L) group
gills showed proliferation of epithelial cells (Figure 8i).
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Figure 8. (a) Gills of the control group. (b) A. hydrophila-infected group. (c) Ampicillin-treated fish
groups. (d) A. hydrophila + Cc-AgNPs (25 µg/L). (e) A. hydrophila + Cc-AgNPs (50 µg/L). (f) A. hy-
drophila + Cc-AgNPs (75 µg/L). (g) A. hydrophila + Pg-AgNPs (25 µg/L). (h) A. hydrophila + Pg-AgNPs
(50 µg/L). (i) A. hydrophila + Pg-AgNPs (75 µg/L). CH—Chloride Cells; PL—Primary Lamellae;
SL—Secondary Lamellae; PC—Pavement Cells; ShL—Shortening of lamellae; SSL—Shrinkage of
secondary Lamellae; DCT—Dilated club tips; HP—Hyperplasia; FSL—Fusion of secondary lamellae;
V—Vacuolation; IO—Interstitial Oedema; DCT—Dilated club tips; PEC—Proliferation of Epithelial
cells; BC—Blood congestion; DL—Delocalized Lamellae. Scale bar = (a–i): 100 µm.

3.4.2. Liver

The liver of the control group showed normal hepatocytes with polygonal shapes and
hepatic portal veins (Figure 9a). The liver of A. hydrophila-infected fish showed different
deformities such as infiltration, vacuolation, and a focal area of necrosis (Figure 9b). In
the ampicillin-treated group, degenerated hepatocytes, and swollen hepatocytes were
seen (Figure 9c). The liver of fish treated with Cc-AgNPs (25 µg/L) showed vacuolation
(Figure 9d). Cc-AgNPs (50 µg/L)-treated groups had polygonal hepatocytes and some
interstitial spaces (Figure 9e). A. hydrophila + AgNPs (75 µg/L) liver showed morphology
comparable to the control group (Figure 9f). The livers of fish in the A. hydrophila + Pg-
AgNPs (25 µg/L) group carried vacuolation (Figure 9g). The group treated with Pg-
AgNPs (50 µg/L) had some infiltration and seemingly normal hepatocytes (Figure 9h).
A. hydrophila + Pg-AgNPs (75 µg/L) in the liver showed vacuolation (Figure 9i). The higher
concentration of Cc/Pg-AgNPs proved to be the most effective in reversing the effects of
A. hydrophila in fish, with the liver showing a similar appearance to the control group.
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Figure 9. (a) Liver of the control group. (b) A. hydrophila infected group. (c) Ampicillin-treated
fish groups. (d) A. hydrophila + Cc-AgNPs (25 µg/L). (e) A. hydrophila + Cc-AgNPs (50 µg/L).
(f) A. hydrophila + Cc-AgNPs (75 µg/L). (g) A. hydrophila + Pg-AgNPs (25 µg/L). (h) A. hydrophila + Pg-
AgNPs (50 µg/L). (i) A. hydrophila + Pg-AgNPs (75µg/L). PH—Polygonal Hepatocytes; IFL—Infiltration,
V—Vacuolation; SH—Swollen Hepatocytes; DHP—Degenerated hepatocyte. Scale bar = (a–i): 100 µm.

3.4.3. Kidney

The kidney tissue of the control group displayed normal renal tubules with regular
glomerulus and hematopoietic tissues (Figure 10a). The kidneys of fish infected with A. hy-
drophila had severe pathological alterations such as necrosis, atrophy, glomerulus shrinkage,
vacuolization, and hyperplasia (Figure 10b). In the ampicillin-treated group, necrosis, Bow-
man space enlargement, vacuolization, glomerulus shrinkage, and hyperplasia were seen
(Figure 10c). The kidneys of A. hydrophila + Cc-AgNPs (25 µg/L) fish showed vacuoliza-
tion and hyperplasia (Figure 10d). The A. hydrophila + Cc-AgNPs (50 µg/L) group had
inflammation and minor structural alterations (Figure 10e). Fish treated with Cc-AgNPs
(75 µg/L) showed vacuolization, glomerulus shrinkage, and necrosis (Figure 10f). A. hy-
drophila + Pg-AgNPs (25 µg/L) fish showed inflammation and minor tubular alterations
(Figure 10g). The kidneys of fish treated with Pg-AgNPs (50 µg/L and 75 µg/L) showed
mild inflammation and restored renal structures (Figure 10h,i).
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3.5. Antioxidant Analysis 
3.5.1. SOD 

The SOD was significantly decreased in the liver tissue following A. hydrophila chal-
lenge in both treatments, viz., Cc-AgNPs and Pg-AgNPs, in comparison to the control 
group (Figure 11a,b). The level of SOD was recovered by both Cc-AgNPs and Pg-AgNPs 
at all concentrations (25, 50, and 75 µg/L). The SOD was also significantly decreased in the 
infected fish gills; both Ampicillin and Pg-AgNPs (at all three concentrations) recovered 
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Figure 10. (a) Kidney of Control group. (b) A. hydrophila infected group. (c) Ampicillin-treated
fish groups. (d) A. hydrophila + Cc-AgNPs (25 µg/L). (e) A. Hydrophila + Cc-AgNPs (50 µg/L).
(f) A. Hydrophila + Cc-AgNPs (75 µg/L). (g) A. hydrophila + Pg-AgNPs (25 µg/L). (h) A. hydrophila + Pg-
AgNPs (50 µg/L). (i) A. hydrophila + Pg-AgNPs (75 µg/L). G—Glomerulus; HT—hematopoietic tissues;
A—Atrophy; BSE—Bowman space enlargement; V—Vacuolization; HP—Hyperplasia; TA—Tubular
Alterations; I—Inflammation; SA—Structural Alteration; GS—Glomerulus shrinkage. Scale bar = (a–i):
100 µm.

3.5. Antioxidant Analysis
3.5.1. SOD

The SOD was significantly decreased in the liver tissue following A. hydrophila chal-
lenge in both treatments, viz., Cc-AgNPs and Pg-AgNPs, in comparison to the control
group (Figure 11a,b). The level of SOD was recovered by both Cc-AgNPs and Pg-AgNPs at
all concentrations (25, 50, and 75 µg/L). The SOD was also significantly decreased in the
infected fish gills; both Ampicillin and Pg-AgNPs (at all three concentrations) recovered
the normal levels of SOD in the gills (Figure 11b).

3.5.2. CAT

A significant decrease in CAT activity was observed in the infected group’s liver as
compared to the control (Figure 11c,d). Both Cc-AgNPs and Pg-AgNPs, recovered CAT
levels at all concentrations. Ampicillin also recovered the CAT levels. (Figure 11c,d). CAT
was also decreased significantly in the gills (Figure 11c), which was recovered by Cc-AgNPs
at the highest concentration (75 µg/L) (Figure 11c). No significant variations in the CAT
level in gills were observed in the case of the Pg-AgNPs assay (Figure 11d).
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3.5.3. MDA

Interestingly, the MDA levels were significantly enhanced in the infected fish liver
(Figure 11e,f). In the case of Cc-AgNPs, 25 and 50 concentrations recovered the MDA levels,
while in the case of Pg-AgNPs, 25 and 75 concentrations restored the normal level of MDA.
Gills also showed a significant increase in MDA following infection (Figure 11e,f). Only
Pg-AgNPs (with all three concentrations) recovered the normal values of MDA (Figure 11f).
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Figure 11. (a) Superoxide dismutase (SOD) analysis of Cc-AgNPs treatment. (b) SOD analysis of Pg-
AgNP treatment. (c) Catalase (CAT) activity of Cc-AgNPs treatment. (d) CAT activity of Pg-AgNPs
treatment. (e) Malondialdehyde (MDA) level of Cc-AgNPs treatment. (f) MDA level of Pg-AgNPs
treatment. Upon Cc/Pg-AgNPs treatment, a significant difference was observed between groups.
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

3.6. Cytokines Analysis

IL-1β was significantly downregulated in the infected fish (Figure 12a,b). Ampicillin
and Cc-AgNPs at all three concentrations recovered the IL-1β levels. Pg-AgNPs also
showed a recovery trend in the increasing values of IL-1β in the Pg-AgNP-treated groups
(Figure 12b). On the other hand, TNF-α increased significantly after challenge (Figure 12c,d).
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Cc-AgNPs (at concentrations 75 µg/L) and Pg-AgNPs (at concentrations 25 µg/L and
75 µg/L) effectively recovered the TNF-α levels (Figure 12c,d).
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4. Discussion

Using phytosynthesized nanoparticles is a sustainable and environmentally friendly
way to treat diseases without using chemicals or antimicrobial drugs. In addition to being
harmful to the environment and people’s health, these chemicals also promote the growth of
antibiotic-resistant bacterial strains and weaken the immune system. As a result, developing
other strategies to combat bacterial challenges is necessary [23]. The antibacterial activities
of AgNPs have previously been demonstrated to be effective against Escherichia coli [24].
In the current study, the phytoreduction approach was employed to synthesize AgNPs
using the leaf extracts of Citrullus colocynthis and Psidium guajava. Both extracts served
as reducing as well as stabilizing agents, while silver nitrate was used as a precursor. As
the precursor dissolved into the water, it produced silver ions (Ag+), the introduction of
extract biomolecules into the solution under optimized experimental conditions provided
the required electrons to complete “bioreduction” process. The free silver atoms (Ag0)
produced the silver nuclei under van der Waals interactions and Brownian motion. During
the nucleation and growth processes, AgNPs synthesis reaction is accomplished. In addition
to the reducing and stabilizing agents, the extracted biomolecules may deposit on the
surface of AgNPs to enhance their effectiveness in various applications.

The characterization results of XRD, UV-Vis, FTIR, and SEM techniques confirmed
the successful formation of Cc-AgNPs and Pg-AgNPs. The XRD analysis demonstrated
the crystalline nature of both types of silver nanoparticles. Furthermore, XRD analysis
also indicated a slight variation in the crystallite size of both types of AgNPs. The UV-Vis
spectra revealed characteristic absorption peaks at 424 nm for Cc-AgNPs and 429 nm for
Pg-AgNPs, indicative of their pure silver nature. The broadness of the SPR band can be
related to the size distribution of metallic NPs. The broader SPR band of Cc-AgNPs in
comparison with that of Pg-AgNPs indicated that Cc-AgNPs are relatively larger in size
and have a wider size distribution, while Pg-AgNPs are comparatively smaller in size
and are more uniform in their size distribution. The SEM morphological analysis of both
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types of AgNPs again confirmed the size variation. However, as mentioned above, this
difference in size between Cc-AgNPs and Pg-AgNPs can be considered virtually similar.
So, we believe that the biological activity of green synthesized AgNPs can be attributed to
the synergistic effect of silver NPs and the presence of extract biomolecules. Further studies
are recommended for precise investigations in this regard.

These bioactive substances also acted as stabilizing/capping agents and catalysts for
the redox processes [25,26]. Through synergistic effects, the presence of these phytochemi-
cals on nanoparticle surfaces may improve the efficacy of AgNPs as antibacterial agents. In
the precursor solution (AgNO3), no noticeable peak can be seen in the visible region (about
400–700 nm). However, some peaks may appear below 300 nm due to silver ions (Ag+),
as reported in the literature [20]. The AgNPs hydrogel that has been developed exhibits
promising potential as a secure wound treatment modality, with the ability to effectively
eradicate infections and offer a safe and efficacious approach to the management of infected
wounds [27].

As blood responds to internal and external environmental changes, hematological
parameters help diagnose diseases and determine how healthy an organism is [28]. Our
investigation revealed noteworthy positive changes on the hematological parameters fol-
lowing the administration of Cc-AgNPs and Pg-AgNPs in infected fish. These findings
indicate that both types of nanoparticles, at similar doses, may have differential effects on
the hematological indices of A. hydrophila-infected fish. Cc-AgNPs exhibited a more pro-
nounced influence on specific blood parameters, while Pg-AgNPs demonstrated a distinct
impact on others. The observed variations may be attributed to the unique physicochemical
properties and composition of each type of nanoparticle. Moreover, the recovery of blood
parameters by the Cc-AgNPs and Pg-AgNPs indicated that they may enhance the fish’s
immune response, enabling them to better withstand the bacterial challenge. The NPs made
with biological extracts exhibit a stronger antibacterial impact than those made through
chemical reduction [29]. AgNPs synthesized via biosynthesis utilizing Aspergillus niger
were observed in relation to Escherichia coli, wherein a complete disruption of the bacterial
membrane was observed after contact [30].

Histopathological examinations of fish tissues may offer valuable insights into the
response to nanoparticle treatments. A. hydrophila-infected fish showed significant patho-
logical alterations in the gills, liver, and kidney. Treatment with both Cc-AgNPs and
Pg-AgNPs ameliorated some of these effects, particularly at higher doses. It has been
found previously that silver nanoparticles exhibit effective bactericidal activity within the
concentration range of 62–250 µg/mL while demonstrating fungicidal activity at higher
concentrations of 125–500 µg/mL [31]. The antibacterial and antioxidant properties of
the green-generated AgNPs from the Terminalia chebula fruit on zebrafish embryos further
suggest their potential as medicinal agents [32]. In the present study, the kidney of L. rohita
infected with A. hydrophila exhibited glomerulus shrinkage, hyperplasia, vacuolization,
and inflammation. However, when treated with Cc/Pg-AgNPs at different concentrations,
these symptoms were observed to be mitigated and recovered. Rhamnus triquetra leaves
were used as a stabilizing agent in the formation of nickel oxide nanoparticles, which
exhibited antimicrobial efficacy against various bacterial and fungal strains and had a
recovery effect [33].

The antitumor activity of AgNPs in animals has been demonstrated to be a result
of their capacity to obstruct the function of abnormally expressed signaling proteins [34].
Antioxidants are considered necessary components that prevent or lessen free radical re-
actions, prevent or stop cellular damage, and play a crucial role in preventing oxidative
stress in organ damage [35]. In antioxidant systems, SOD and CAT serve as the initial lines
of defense [36]. Superoxide anion radical dismutation into water and hydrogen peroxide,
which catalyzes and reduces to water and oxygen for the elimination of ROS, is the pri-
mary activity of the SOD enzyme [37]. In the present study, a significant decrease in SOD
activity was observed in the gill and liver tissues of the infected group compared to the
control. However, treatment with Cc/Pg-AgNPs resulted in an increase in SOD activity,
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indicating a potential role in increasing ROS scavenging and reducing ROS accumulation,
thereby mitigating tissue damage. With 50 µg/L of the AgNPs solution, silver nanoparti-
cles bio-synthesised with plant extracts such as Ocimum tenuiflorum, Citrus sinensis, and
Syzygium cumini had a growth inhibition zone between 12 and 17 mm when used against
Staphylococcus aureus [38].

After 10 dpi, a significant decrease in CAT activity in the infected group as compared to
the control group was seen, which recovered with Cc/Pg-AgNPs treatment in their gill and
liver tissue. This improvement in antioxidant defense may be based on increased oxygen-
free radical production, encouraging antioxidant activities to shield cells from free radical
damage [39]. Cyprinus carpio treatment with AgNPs showed variations in antioxidant
enzyme activity [40]. The superoxide radical may have been inactivated because of copper
exposure, which caused the CAT activity in the gill to decrease significantly. Until day two,
the CAT activity of diverse tissues treated with 50 mg/L AgNPs showed a slight decline,
and after that, a significant increase was seen [41].

Oxidative stress is a common cellular damage mechanism in tissues present after
challenge with A. hydrophila. One early response released by macrophages and monocytes
and circulating in the blood is IL-1β. IL-1β expression was observed to increase after
treatment with Cc-AgNPs and Pg-AgNPs, recovering the effect of A. hydrophila infection.
According to a different study, Moringa oleifera leaf extracts significantly reduced the
generation of nitric oxide and other inflammatory markers like interleukin-6 (IL-6) and
IL-1β [42]. MDA contents in the gill and liver tissues of L. rohita subjected to infection were
observed to be significantly increased compared to the control. However, following the
tenth day of exposure to 25, 50, and 75 µg/L of Cc/Pg-AgNPs, a significant decrease in
MDA content in the gills and liver was observed, restoring the effect of infection, which
increased after infection.

All three concentrations of 25 µg/L, 50 µg/L, and 75 µg/L AgNPs showed positive
effects for infection clearance; however, the highest recovery was seen at 50 and 75 µg/L.
It is noteworthy that as an internal control, we also administered solely Cc-AgNPs and
Pg-AgNPs (with their highest concentrations used in the study: 75 µg/L) to uninfected fish
to check their effects on the physiological markers. However, we did not find any signifi-
cant differences between the control and sole Cc-AgNPs and Pg-AgNPs treated groups on
any parameter described in this study, thereby indicating their safe administration to the
fish. The antibacterial efficacy of AgNPs has been observed to be dose-dependent and to
exhibit a higher potency against Gram-negative bacteria in comparison to Gram-positive
bacteria [43]. Infections in aquatic animals caused by A. hydrophila can be treated with phy-
tosynthesized AgNPs, which are cheaper and better than antibiotics and other biocides [44].
Therefore, we suggest that phytosynthesized Cc-AgNPs at our high concentration and
Pg-AgNPs at our medium concentration caused a decrease in fish infection by enhancing
the immune status of fish. The effect is more on the adaptive part of the immune system.
The higher concentration of Cc/Pg-AgNPs proved to be the most effective in reversing
the effects of A. hydrophila in fish, with the liver showing a similar appearance to the
control group.

5. Conclusions

In the present study, we investigated the therapeutic potential of phytosynthesized Cc-
AgNPs and Pg-AgNPs against A. hydrophila infection in L. rohita. Our results demonstrated
that Cc-AgNPs and Pg-AgNPs show recovery in hematology, histology, antioxidant enzyme
activity, and cytokine activity in the infected fish. Moreover, our results highlight the dose-
dependent response of the AgNP effect. Higher concentrations of Cc-AgNPs (75 µg/L) and
medium concentrations of Pg-AgNPs (50 µg/L) exhibited the best efficacy against infection.
The use of Cc-AgNPs and Pg-AgNPs as alternatives to antibiotics in the aquaculture
industry hold great promise. Future research should be conducted to explore the efficacy of
other biologically synthesized AgNPs for developing novel bacterial infection treatments
through green nanomedicines.
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