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Abstract: Data on genetic and immunophenotypical characteristics of uterine mesonephric-like
adenocarcinoma (MLA) remain limited. Therefore, we aimed to investigate the clinicopathological,
immunohistochemical, and molecular features of uterine MLA. We performed targeted sequencing,
array comparative genomic hybridization, and immunostaining in 17, 13, and 17 uterine MLA
cases, respectively. Nine patients developed lung metastases. Eleven patients experienced disease
recurrences. The most frequently mutated gene was Kirsten rat sarcoma viral oncogene homolog
(KRAS; 13/17). Both the primary and matched metastatic tumors harbored identical KRAS (3/4) and
phosphatase and tensin homolog deleted on chromosome 10 (1/4) mutations, and did not harbor
any additional mutations. A total of 2 of the 17 cases harbored tumor protein 53 (TP53) frameshift
insertion and deletion, respectively. Chromosomal gains were detected in 1q (13/13), 10 (13/13),
20 (10/13), 2 (9/13), and 12 (6/13). Programmed cell death-ligand 1 overexpression or mismatch
repair deficiency was not observed in any of the cases. Initial serosal extension and lung metastasis
independently predicted recurrence-free survival with hazard ratios of 6.30 and 7.31, respectively.
Our observations consolidated the clinicopathological and molecular characteristics of uterine MLA.
Both clinicians and pathologists should consider these features to make an accurate diagnosis of
uterine MLA and to ensure appropriate therapeutic management of this rare entity.

Keywords: uterus; mesonephric-like adenocarcinoma; targeted sequencing; immunohistochemistry;
programmed cell death-ligand 1; mismatch repair

1. Introduction

Endometrial carcinoma (EC) is the sixth leading cause of carcinoma-related death
among women worldwide [1–3]. The incidence rates of EC have been steadily increasing,
particularly in developed countries [4,5]. The diagnosis of EC subtypes is based on their
distinct morphological features [6]. Endometrioid carcinoma accounts for the majority
of EC cases, followed by serous carcinoma, clear cell carcinoma, carcinosarcoma, and
undifferentiated carcinoma [6]. The histological type and grade as well as the Interna-
tional Federation of Gynecology and Obstetrics (FIGO) staging guides EC prognosis [6,7];
however, histological features overlap significantly between some subtypes, which makes
accurate classification difficult. Consequently, continued efforts have been made to develop
ancillary techniques, such as immunohistochemical staining (IHC) and molecular analyses,
to stratify EC patients.

Mesonephric-like adenocarcinoma (MLA) is a rare but distinct gynecological malig-
nancy, primarily arising in the uterine corpus and adnexa. MLA was recently introduced as
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a new histological type in the 2020 version of the World Health Organization Classification
of Female Genital Tumors [6]. Uterine MLA exhibits morphological, immunophenotypical,
and genetic characteristics similar to those of mesonephric adenocarcinoma (MA), which
is a rare malignant tumor derived from the mesonephric remnants located in the lateral
wall of the vagina and uterine cervix [8]. The term MLA has been used for malignant
mesonephric lesions arising in the uterine corpus [3,9,10], because it still debated whether
they are of mesonephric origin. Both clinicians and pathologists should be aware of the
clinical, pathological, and molecular features of uterine MLA to make an accurate diagnosis
and to ensure appropriate therapeutic management.

Next-generation sequencing (NGS), also known as massively parallel sequencing,
allows for the effective capture of a substantial amount of genomic information regard-
ing tumor development, progression, and biological behavior [11]. NGS is inextricably
intertwined with the realization of precision medicine in oncology. While it is unlikely to
obviate traditional pathological diagnosis in its current state, NGS allows a more complete
picture of carcinogenesis, progression, and metastasis than can be seen with any other
modality. Recent advances in sequencing technologies have provided substantial insights
into the mutated carcinoma-related genes and mutational processes operative in EC [12,13].
Novel classification systems that incorporate molecular features have been developed to
provide objective and reproducible EC categorization [14]. The addition of molecular and
immunohistochemical markers allows for the identification of clinically relevant subgroups,
with potential therapeutic implications [15]. However, despite significant advances directed
toward elucidating molecular mechanisms and developing clinical trials for patients with
EC, data on specific genetic alterations and molecular characteristics of uterine MLA remain
limited [3,16,17].

Immune checkpoints and inhibitory immunoreceptors, including programmed cell
death protein 1 (PD-1) and its ligand (PD-L1), have gained attention as therapeutic tar-
gets [18]. PD-L1 expression on tumor and immune cells can be detected using IHC and
different PD-L1 commercial clones. PD-1 and PD-L1 play progressively important roles in
our understanding of tumor immunology and antitumor treatment [19]. Binding of PD-L1
to its receptor PD-1 leads to T-cell inactivation in a variety of carcinomas [20]. Therefore,
anti-PD-1/PD-L1 treatment deregulates the adverse impact of tumor-infiltrating T-cells,
which in turn may reverse the tumor immune resistance [19]. Several clinical and exper-
imental studies have investigated PD-L1 expression in EC and its prognostic values as
well as its efficacy as an immunotherapy for EC [21–23]; however, these studies focused on
endometrioid carcinomas and did not consider MLA as a separate or independent group.
In addition, clinical trials that investigated the anti-PD-1 antibody, pembrolizumab, as a
treatment for advanced or recurrent EC [24] did not separate MLA from other histological
EC types.

Microsatellite instability (MSI), caused by mismatch repair deficiency (MMRd), in-
duces high numbers of mismatches, insertions, and deletions. MSI/MMRd identifica-
tion in EC is clinically important because it may guide adjuvant therapy and improve
prognosis [25–27]. MSI/MMRd tumors are more immunogenic; therefore, they are more
responsive to immune checkpoint inhibitors [28,29]. When screening MMRd cases, IHC is
the standard for detecting MMR protein expression [30–32]. In addition, polymerase chain
reaction (PCR)-based MSI testing is also used; however, less frequently.

Our group has steadily documented the clinical manifestations, cytological and his-
tological features, immunophenotypes, and mutational profiles of uterine MLA using
IHC and molecular analyses [2,3,33–40]. However, get a deep insight into their rele-
vance, the results need to be consolidated and completely analyzed. Therefore, in this
study, we comprehensively investigated the clinicopathological, immunohistochemical,
and molecular characteristics of uterine MLA and determined their relationships and
prognostic significance.
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2. Materials and Methods
2.1. Case Selection and Clinicopathological Data Collection

We collected 17 cases of uterine MLA from the institutional databases. Two board-
certified pathologists reviewed all the available slides to confirm the diagnosis of primary
uterine MLA, based on the following morphological, immunophenotypical, and molecu-
lar characteristics: (1) architectural diversity (Figure 1A,B); (2) a compact proliferation of
small-to-medium-sized tubules lined by cuboidal-to-low columnar epithelia (Figure 1C);
(3) eosinophilic, hyaline- or colloid-like secretions noted within the tubular lumina and
dilated duct-like structures (Figure 1D); (4) negative or focally positive expression for
hormone receptors (Figure 1E); (5) wild-type p53 immunostaining pattern (Figure 1F);
(6) non-diffuse p16 positivity (Figure 1G); (7) either at least focally positive expression for
one or more mesonephric markers, including transcription termination factor 1 (Figure 1H),
GATA-binding protein 3 (Figure 1I), cluster of differentiation 10, or the identification of
pathogenic Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation, as previously
described [2,3,8–10,34,36,37,39–44]. We reviewed the electronic medical records and pathol-
ogy reports to collect the following clinical information: age, initial biopsy diagnosis,
surgical procedure, hysterectomy diagnosis, uterine serosal extension, lymph node metas-
tasis, distant metastasis, initial FIGO stage, post-operative treatment and recurrence, initial
or recurrent lung metastasis, recurrence-free survival (RFS), survival status, and overall
survival (OS).
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Figure 1. Histological and immunophenotypical features of uterine mesonephric-like adenocarci-
noma. (A) Tubular and glandular patterns showing compactly aggregated small-to-medium-sized
tubules and elongated ductal structures. (B) Solid and tubular patterns showing solid cellular sheets
and slit-like tubular lumina. (C) Complex small tubular proliferation with back-to-back arrange-
ment. (D) Eosinophilic, hyaline- or colloid-like intraluminal secretions. (E) Lack of estrogen receptor
expression. (F) Wild-type p53 immunostaining pattern. (G) Non-diffuse p16 positivity. (H) Moderate-
to-strong nuclear immunoreactivity for transcription termination factor 1. (I) Uniform and strong
GATA-binding protein 3 expression.
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2.2. NGS

We used Axen Cancer Panel 2 (Macrogen, Seoul, Republic of Korea) to perform
targeted sequencing. We chose the most representative slide, and formalin-fixed, paraffin-
embedded (FFPE) tissues were microdissected manually on unstained sections under the
microscope. The tumor purity ranged between 75% and 95%. Genomic DNA was extracted
using the QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany). Coding exons and
the flanking regions of 171 genes were enriched using the extracted genomic DNA as
the template and the SureSelectXT Reagent Kit (Agilent Technologies, Santa Clara, CA,
USA). The products were sequenced on a HiSeq 2500 Sequencing System (Illumina, San
Diego, CA, USA). We used the Burrows–Wheeler Alignment-maximum exact match (https:
//bio-bwa.sourceforge.net/; accessed on 10 August 2023) to align the reads to a reference
genome sequence (Genome Reference Consortium Human Build 37), obtained from the
University of California Santa Cruz Genome Browser database (https://genome.ucsc.edu/;
accessed on 10 August 2023). We removed adapter sequences from the raw sequencing
reads using Cutadapt (https://cutadapt.readthedocs.io/; accessed on 10 August 2023).
Poorly mapped reads were removed using SAMtools (https://samtools.sourceforge.net/;
accessed on 10 August 2023). We identified single nucleotide variants (SNVs), insertions
and deletions (indels) using MuTect2 (https://gatk.broadinstitute.org/hc/en-us; accessed
on 10 August 2023). Finally, all of the detected variants were annotated using SnpEff and
SnpSift (http://pcingola.github.io/SnpEff/; accessed on 10 August 2023) as well as dbNSFP
(http://database.liulab.science/dbNSFP; accessed on 10 August 2023). Since this study did
not include the matched germline samples, variants satisfying the following criteria were
excluded (from the results to reduce the proportion of false-positive or possible germline
variants): (1) variants with <5% allele frequency and <100× read depth; (2) variants
with an allele frequency >1% in the Genome Aggregation Database (formerly known as
the Exome Aggregation Consortium; https://gnomad.broadinstitute.org/; accessed on
10 August 2023); (3) all synonymous, intronic, 30- and 50-untranslated region variants; and
(4) variants previously reported to be benign or likely benign with ascertained criteria in the
ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/; accessed on 10 August 2023). Finally,
pathogenic mutations, described in the Catalogue Of Somatic Mutations In Cancer (https:
//cancer.sanger.ac.uk/cosmic; accessed on 10 August 2023), and truncating mutations of
tumor suppressor genes were selected in analysis. Copy number variation (CNV) log2
ratios were generated using a depth of coverage normalized that of normal uterine tissues.

2.3. Array Comparative Genomic Hybridization (CGH)

For each experiment, purified FFPE DNA (500 ng) and reference DNA (500 ng)
(NA10851; Coriell Institute for Medical Research, Camden, NJ, USA) were differentially
labeled with cyanine 5 (Cy5) and cyanine 3 (Cy3) fluorescent dyes using Universal Linkage
System technology (Agilent Technologies), a non-enzymatic direct labeling method. Un-
reacted dye was removed using KREApure purification columns (Agilent Technologies).
DNA labeling efficiency was assessed by NanoDrop 2000 spectrophotometry (ND-2000;
Thermo Fisher Scientific, Waltham, MA, USA). The degree of labeling (DoL, the number
of fluorophore molecules per 100 nucleotides) was calculated using post-labeling DNA
yield and fluorophore concentration. DoL values ranging from 0.75% to 2.5% and 1.75%
to 3.5% were considered optimal for Cy5- and Cy3-labeled DNA, respectively. Cy5- and
Cy3-labeled DNA hybridization was performed using dual-color array containing 60-mer
oligonucleotide probes (SurePrint G3 Human CGH Microarray 8 × 60 K; Agilent Technolo-
gies). Following hybridization, the arrays were scanned using a Dual Laser Microarray
Scanner (G2565CA; Agilent Technologies). The images were extracted and analyzed using
Feature Extraction software version 10.5.1.1 (Agilent Technologies) and DNA Analytics
software version 4.0.73 (Agilent Technologies).
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http://database.liulab.science/dbNSFP
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https://www.ncbi.nlm.nih.gov/clinvar/
https://cancer.sanger.ac.uk/cosmic
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2.4. MSI Testing

MSI status was determined by multiplex PCR amplification of five quasi-monomorphic
mononucleotide repeat markers (BAT-25, BAT-26, NR-21, NR-24, and NR-27) [38,45]. Ge-
nomic DNA was isolated from the FFPE sections using a QIAamp DNA Mini Kit (Qiagen).
Sense primers were labeled with fluorescent dyes. Amplicons were analyzed on an ABI
PRISM 3130 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Allelic size was
estimated using GeneMapper Software v4.1 (Applied Biosystems), and tumors with allelic
size variation in 0, 1, and ≥2 microsatellites were classified as MSS, MSI-low (MSI-L), and
MSH-high (MSI-H), respectively.

2.5. PD-L1 22C3 Pharmdx IHC

FFPE tissue blocks were cut into 4µm sections which were subsequently mounted on
Superfrost Plus Microscope Slides (Thermo Fisher) dried at 60 ◦C for 1 hour. PD-L1 IHC
was carried out on a Dako Autostainer Link 48 system (Agilent Technologies) using a Dako
PD-L1 IHC 22C3 pharmDx kit (Agilent Technologies), with EnVision FLEX visualization
system [46]. PD-L1 protein expression was assessed using the combined proportion score
(CPS). CPS was calculated as the number of PD-L1-stained cells (tumor cells, lymphocytes,
and macrophages) divided by the total number of tumor cells, multiplied by 100. The
specimen was considered to have positive PD-L1 expression if CPS ≥ 1 [35,42,46].

2.6. MMR IHC

IHC was performed using the Bond Polymer Intense Detection System (Leica Biosys-
tems, Buffalo Grove, IL, USA). Briefly, the 4 µm thick sections cut from FFPE tissue blocks
were deparaffinized in xylene and rehydrated through a series of graded alcohols. After
antigen retrieval, endogenous peroxidases were quenched with hydrogen peroxide. Next,
the sections were incubated with primary antibodies against the MMR proteins MutL
homolog 1 (MLH1; prediluted, clone M1, Ventana Medical Systems, Roche, Oro Valley, AZ,
USA), MutS homolog 2 (MSH2; dilution 1:500, clone G219-1129, Cell Marque), MutS ho-
molog 6 (MSH6; dilution 1:500, clone 44/MSH6, BD Biosciences, Franklin Lakes, NJ, USA),
and postmeiotic segregation increased, Saccharomyces cerevisiae 2 (PMS2; dilution 1:20, clone
MRQ-28, Cell Marque). A biotin-free polymeric horseradish peroxidase-linker antibody
conjugate system was used with a Bond-max automated immunostainer (Leica Biosystems,
Buffalo Grove, IL, USA). After chromogenic visualization using 3,3′-diaminobenzidine,
the sections were counterstained with hematoxylin, dehydrated in graded alcohols and
xylene, and then embedded in a mounting solution. Appropriate controls were stained
concurrently. MMRp high-grade serous carcinoma of the ovary served as the positive
control. Negative controls were prepared by substituting non-immune serum for primary
antibodies, which resulted in undetectable staining.

2.7. IHC Interpretation

PD-L1 immunoreactivity in uterine MLA was assessed using the CPS interpretation
guideline, as previously described [47]. CPS was calculated as the number of PD-L1-
stained cells (viable tumor cells, lymphocytes, and macrophages) divided by the total
number of viable tumor cells, multiplied by 100. A minimum of 100 viable tumor cells
was considered adequate for evaluating PD-L1 positivity. For tumor cells, partial or
complete membranous staining at any intensity was regarded as a positive expression.
Membranous and/or cytoplasmic staining at any intensity was regarded as positive for
tumor-associated immune cells. MMR protein expression in uterine MLA was classified
into three categories: preserved, loss, and subclonal loss [41,48,49]. A lack of one or more
MMR protein expression was defined as MMRd, and preserved expression of all four MMR
proteins was defined as MMRp. We regarded the complete absence of nuclear staining (0%),
in the tumor cells with appropriate internal control staining (positive nuclear expression in
the stromal non-neoplastic cells or lymphocytes), as loss of expression [32].
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2.8. Statistical Analysis

Pearson’s chi-squared test, Fisher’s exact test, or linear-by-linear association test was
used to determine the association between recurrent pathogenic mutations and clinico-
pathological characteristics of patients with uterine MLA. Univariate survival analysis,
with the log-rank test and Kaplan–Meier plots (RFS and OS), was conducted to evaluate the
prognostic significance of recurrent pathogenic mutations and clinicopathological charac-
teristics. Multivariate survival analysis was performed using the Cox proportional hazards
model (95% confidence interval) with the backward stepwise elimination method. All
statistical analyses were performed using IBM SPSS Statistics for Windows, version 23.0
(IBM Corporation, Armonk, NY, USA). Statistical significance was defined as p < 0.05.

3. Results
3.1. Clinicopathological Characteristics

Table 1 summarizes the clinicopathological characteristics of 17 patients with uterine
MLA. During the initial biopsy, only two patients were correctly diagnosed with MLA.
Four patients were misdiagnosed with endometrioid carcinoma. In seven patients whose
biopsy specimens were interpreted as adenocarcinoma (6/7) or poorly differentiated carci-
noma (1/7), the histological type could not be determined. All patients (17/17) underwent
either total (13/17) or radical (4/17) hysterectomy with bilateral salpingo-oophorectomy.
Fourteen cases were correctly diagnosed as MLA or mesonephric-like carcinosarcoma;
however, three patients were misdiagnosed with endometrioid carcinoma even after hys-
terectomy. Simultaneously, pelvic lymph node dissection (12/17) and para-aortic lymph
node dissection (9/17) or sampling (3/17) was conducted. Four patients had uterine
serosal extension, and three had lymph node metastases. The initial FIGO stages were
distributed as follows: IA (3/17), IB (6/17), IIIB (3/17), IIIC (2/17), and IVB (3/17). More
than two-thirds of patients (12/17) received post-operative treatment, including concur-
rent chemoradiation therapy (7/12), chemotherapy (2/12), or radiation therapy (3/12).
Five of the nine patients with FIGO stage I tumors did not receive any adjuvant treatment.
Three of these patients developed recurrent tumors. Overall, 11 patients experienced
recurrent disease, primarily in the lung (9/11). Six patients died from the disease. RFS
and OS ranged from 1.1 to 66.5 months (median = 15.7 months) and 14.5 to 94.6 months
(median = 53.8 months), respectively.

3.2. NGS Results

Twenty-one tissue samples obtained from 17 primary and four metastatic tumors
were available for SNV analysis, while 13 cases were available for CNV interpretation
(Table 2 and Figure 2). Thirteen primary and three metastatic tumors harbored KRAS
mutations: c.35G>A (6/16), c.35G>T (5/16), c.34G>T (3/16), c.53G>C (1/16), and c.37G>T
(1/16). In order of frequency, five mutations (c.804C>A, 2/5; c.892C>T, 2/5; c.70G>C, 1/5)
in phosphatase and tensin homolog deleted on chromosome 10 (PTEN), three (c.317G>T,
1/3; c.1633G>A, 1/3; c.2740G>A, 1/3) in phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit alpha (PIK3CA), three (c.303C>A) in guanine nucleotide binding pro-
tein subunit alpha Q (GNAQ), as well as two tumor protein 53 (TP53) frameshift indels
(c.210_211insG, 1/2; c.216delC, 1/2) were detected. Other pathogenic mutations were
identified in the breakpoint cluster region (BCR; 2/21), neurofibromin 1 (NF1; 2/21),
retinoblastoma 1 (RB1; 2/21), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1;
1/21), AT-rich interactive domain 1A (ARID1A; 1/21), catenin beta 1 (CTNNB1; 1/21),
cadherin 1 (CDH1; 1/21), and isocitrate dehydrogenase 1 (IDH1; 1/21). Both primary and
matched metastatic tumors were analyzed in four cases, in which the same KRAS (3/4) or
PTEN (1/4) mutations were detected. Regarding CNV, frequently amplified genes included
neurotrophic receptor tyrosine kinase 1 (NTRK1; 10/13), discoidin domain receptor tyro-
sine kinase 2 (DDR2; 8/13), fibroblast growth factor receptor 2 (FGFR2; 8/13), anaplastic
lymphoma receptor tyrosine kinase (ALK: 5/13), erb-B2 receptor tyrosine kinase 4 (ERBB4;
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4/13), and DNA methyltransferase 3 alpha (DNMT3A; 4/13). Three cases exhibited CN
loss of Janus kinase 1 (JAK1), JAK2, CTNNB1, PIK3CA, and repressor of silencing 1 (ROS1).
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Figure 2. Illustrations of targeted sequencing and immunohistochemical staining (IHC) displaying
programmed cell death-ligand 1 (PD-L1) expression, presence of mismatch repair (MMR) proteins,
microsatellite instability (MSI) status, and clinicopathological features of uterine mesonephric-like
adenocarcinoma (MLA). Most of the MLA cases harbor Kirsten rat sarcoma viral oncogene homolog
(KRAS) mutations. Frameshift mutations of tumor protein 53 (TP53) are detected in two cases
of uterine MLA. None of the examined cases show PD-L1 overexpression. All MLAs are MMR-
proficient, microsatellite-stable tumors. During initial biopsy, only 2 of the 17 patients are correctly
diagnosed as MLA, whereas the remaining 15 patients are misdiagnosed as endometrioid carcinoma
(EC) or carcinosarcoma (CS). Both post-operative recurrences and lung metastases are identified
in more than half of uterine MLA patients. ADC—adenocarcinoma; ARID1A—AT-rich interactive
domain 1A; BCR—breakpoint cluster region; CDH1—cadherin 1; CPS—combined proportion score;
CTNNB1—catenin beta 1; Dx—diagnosis; GNAQ—guanine nucleotide binding protein subunit
alpha Q; IDH1—isocitrate dehydrogenase 1; LN—lymph node; MSS—microsatellite-stable; NF1—
neurofibromin 1; PCR—polymerase chain reaction; PDC—poorly differentiated carcinoma; PIK3CA—
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PIK3R1—phosphoinositide-3-
kinase regulatory subunit 1; PTEN—phosphatase and tensin homolog deleted on chromosome 10;
RB1—retinoblastoma 1.
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Table 1. Baseline clinicopathological characteristics of uterine mesonephric-like adenocarcinoma (MLA).

Case No Age
(Years)

Initial Bx
Dx Surgical Procedure

Initial
Hysterectomy

Dx

Initial
Serosal

Extension

Initial LN
Metastasis

Initial
Distant

Metastasis

Initial
Stage

Post-
Operative
Treatment

Post-
Treatment
Recurrence

Initial or
Recurrent

Lung
Metastasis

RFS
(Months)

Survival
Status

OS
(Months)

1 54 ADC TH, BSO MLA Yes No No IIIB CCRT Yes Yes 1.1 Dead 28.2

2 65 MLA TH, BSO, PLND,
PALND MLA No No No IB RT Yes Yes 51.6 Alive 63.6

3 70 EC-G3 TH, BSO, PLND,
PALND, PRT MLA No No No IB RT No No 66.5 Alive 66.5

4 53 ADC/DDx TH, BSO, PLND,
PALNS MLA No No No IA No No No 63.5 Alive 63.5

5 60 CS TH, BSO, PLND,
PALND CS No No No IA CTx Yes Yes 8.0 Dead 25.1

6 52 ADC RH, BSO, PLND,
PALND EC-G1 No No No IB No Yes Yes 8.9 Dead 85.6

7 61 MLA TH, BSO, PLND,
PALND MLA No No No IB CTx No No 63.1 Alive 63.1

8 65 ADC/DDx RH, RSO, PRT MLA Yes No Yes IVB CCRT Yes No 1.3 Alive 53.8

9 61 PDC
RH, BSO, PALND,
COL, PRT, OMT,

APP
MLA Yes No Yes IVB CTx Yes Yes 9.2 Dead 32.7

10 52 EC-G2 TH, BSO, PLND,
PRT MLA No Yes No IIIC CCRT No No 39.3 Alive 39.3

11 67 CS TH, BSO, PLND,
PRT CS No No No IB No Yes Yes 13.4 Alive 14.5

12 59 ADC/DDx TH, BSO, PLND,
PALNS MLA No No No IA No No No 60.0 Alive 60.0

13 75 CS TH, BSO, PALNS CS No No No IB No Yes Yes 15.6 Dead 17.3

14 55 EC-G2 TH, BSO, OMT EC-G2 No No Yes IVB CCRT Yes Yes 15.7 Alive 94.6

15 57 ADC/DDx RH, BSO, PLND,
PALND, APP CS Yes Yes No IIIC CCRT Yes Yes 12.1 Alive 65.4

16 52 NA TH, BSO, PLND,
PALND, OMT, APP MLA No No No IIIB CCRT No No 45.1 Alive 45.1

17 60 EC-G2 TH, BSO, PLND,
PALND EC-G3 No Yes No IIIB CCRT Yes No 16.1 Dead 35.3

Abbreviations: ADC—Adenocarcinoma; APP—appendectomy; BSO—bilateral salpingo-oophorectomy; Bx—biopsy; CCRT—concurrent chemoradiation therapy; COL—colectomy;
CS—carcinosarcoma; CTx—chemotherapy; Dx—diagnosis; DDx—differential diagnosis; EC-G1—endometrioid carcinoma, grade 1; EC-G2—endometrioid carcinoma, grade 2; EC-
G3—endometrioid carcinoma, grade 3; LN—lymph node; NA—not applicable; OMT—omentectomy; PALND—para-aortic lymph node dissection; PALNS—para-aortic lymph node
sampling; PLND—pelvic lymph node dissection; PDC—poorly differentiated carcinoma; PRT—peritonectomy; OMT—omentectomy; OS—overall survival; RT—radiation therapy;
PRT—peritonectomy; RH—radical hysterectomy; RFS—recurrence-free survival; RSO—right salpingo-oophorectomy; TH—total hysterectomy.
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Table 2. Single nucleotide variations (SNVs) and copy number variations (CNVs) detected using targeted sequencing.

Case No Tumor Location
SNV CNV

Gene Sequence Change Amino Acid Change VAF (%) Type Gene Gain Gene Loss

1 Uterus KRAS c.34G>T p.G12C 40.5 MS NTRK1, ARID1B, JAK2, GNAQ, RET, HNF1A, SRC, GNAS JAK1, CTNNB1,
PIK3CA, ROS1

2 Uterus

KRAS c.34G>T p.G12C 84.7 MS

NTRK1, DDR2, ALK, ERBB4, IDH1, RET, FGFR2, MDM2,
SRC None

PTEN c.804C>A p.D268E 20.6 MS

NF1 c.4942A>G p.T1648A 42.2 MS

ARID1A c.863_875del p.Q288Pfs*71 60.3 FS

GNAQ c.303C>A p.Y101* 7.9 NS

3 Uterus KRAS c.34G>T p.G12C 62.2 MS NTRK1, DDR2, ALK, ERBB4, FGFR2, RET, SRC, TOP1,
GNAS None

4 Uterus

KRAS c.35G>T p.G12V 71.8 MS

NTRK1, HNF1A, CSF1R, CDKN2A, GNAQ, PTCH1, JAK3 None
TP53 c.210_211insG p.P71fs*78 47.6 FS

RB1 c.1861C>A p.R621S 52.5 MS

GNAQ c.303C>A p.Y101* 6.6 NS

5 Uterus
KRAS c.37G>T p.G13C 78.4 MS NTRK1, DDR2, ALK, ERBB4, CSF1R, CDKN2A, GNAQ,

FGFR2, TOP1, GNAS None
TP53 c.216delC p.V73fs 72.3 FS

6 Uterus
KRAS c.35G>A p.G12D 97.4 MS

NA NA
BCR c.3316G>A p.D1106N 9.8 MS

7 Uterus

KRAS c.35G>T p.G12V 39.9 MS

NA NA
CTNNB1 c.134C>T p.S45F 4.1 MS

IDH1 c.623A>G p.Y208C 53 MS

GNAQ c.303C>A p.Y101* 7.9 NS

8 Uterus

KRAS c.53G>C p.G12A 65.9 MS

NA NARB1 c.1666C>T p.R556* 28.1 NS

BCR c.3316G>A p.D1106N 10.6 MS

9 Uterus KRAS c.35G>T p.G12V 58 MS NA NA

10 Uterus

KRAS c.35G>A p.G12D 61.2 MS

NA NAPIK3CA c.1633G>A p.E545K 41.3 MS

CDH1 c.2638G>A p.E880K 6.8 MS

11 Uterus
PIK3CA c.317G>T p.G106V 49.2 MS

NA NA
NF1 c.2991-1G>C NA 21.1 SS

12 Uterus
PTEN c.804C>A p.D268E 17.9 MS

NA NA
PIK3R1 c.1690A>G p.N564D 6.4 MS
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Table 2. Cont.

Case No Tumor Location
SNV CNV

Gene Sequence Change Amino Acid Change VAF (%) Type Gene Gain Gene Loss

13 Uterus
PTEN c.70G>C p.D24H 95.5 MS

NA NA
PIK3CA c.2740G>A p.G914R 94.8 MS

14-1 Uterus KRAS c.35G>T p.G12V 56.56 MS NTRK1, DNMT3A, RET, FGFR2, RAB35, POLE JAK1

14-2 Lung KRAS c.35G>T p.G12V 39.31 MS NTRK1, DDR2, ABL2, FGFR2, ERBB3, POLE None

15-1 Uterus KRAS c.35G>A p.G12D 83.25 MS NTRK1, MDM4, AKT3, ALK, DNMT3A, MYCN, ERBB4,
RET, FGFR2 None

15-2 LN KRAS c.35G>A p.G12D 45.73 MS ALK, DNMT3A, MAP3K4, FGFR2 None

16-1 Uterus KRAS c.35G>A p.G12D 12.52 MS DDR2, SMAD4 JAK2

16-2 Ovary KRAS c.35G>A p.G12D 34.27 MS NTRK1, DDR2, ABL2, DNMT3A, FGFR2 None

17-1 Uterus PTEN c.892C>T p.Q298* 32.56 NS DDR2, ABL2, MDM4 None

17-2 LN PTEN c.892C>T p.Q298* 28.09 NS NTRK1, DDR2 None

Abbreviations: ABL2—Abelson murine leukemia viral oncogene homolog 2; AKT3—Akt murine thymoma viral oncogene homolog 3; ALK—anaplastic lymphoma receptor tyrosine
kinase; ARID1A—AT-rich interactive domain 1A; ARID1B—AT-rich interactive domain 1B; BCR—breakpoint cluster region; CDH1—cadherin 1; CDKN2A—cyclin-dependent
kinase inhibitor 2A; CSF1R—colony-stimulating factor 1 receptor; CTNNB1—catenin beta 1; DDR2—discoidin domain receptor tyrosine kinase 2; del—deletion; DNMT3A—DNA
methyltransferase 3 alpha; ERBB3—erb-B2 receptor tyrosine kinase 3; ERBB4—erb-B2 receptor tyrosine kinase 4; FGFR2—fibroblast growth factor receptor 2; FS—frameshift; GNAQ—
guanine nucleotide binding protein subunit alpha Q; GNAS—guanine nucleotide binding protein, alpha stimulating activity polypeptide 1; HNF1A—hepatocyte nuclear factor
1-alpha; IDH1—isocitrate dehydrogenase 1; ins—insertion; JAK1—Janus kinase 1; JAK2—Janus kinase 2; JAK3—Janus kinase 3; KRAS—Kirsten rat sarcoma viral oncogene homolog;
LN—lymph node; MAP3K4—mitogen-activated protein kinase 4; MDM2—mouse double minute 2 proto-oncogene; MDM4—mouse double minute 4 regulator of p53; MS—missense;
MYCN—myelocytomatosis viral oncogene neuroblastoma derived homolog; NA—not applicable; NF1—neurofibromin 1; NS—nonsense; NTRK1—neurotrophic receptor tyrosine kinase
1; PIK3CA—phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PIK3R1—phosphoinositide-3-kinase regulatory subunit 1; POLE—DNA polymerase epsilon catalytic
subunit; PTCH1—patched 1; PTEN—phosphatase and tensin homolog deleted on chromosome 10; RAB35—Ras-related protein Rab-35; RB1—retinoblastoma 1; RET—rearranged
during transfection; ROS1—repressor of silencing 1; SMAD4—mothers against decapentaplegic homolog 4; SRC—v-src avian sarcoma (Schmidt–Ruppin A-2) viral oncogene homolog;
SS—splice site mutation; TOP1—DNA topoisomerase I; TP53—tumor protein p53; VAF—variant allele frequency.



Biomedicines 2023, 11, 2269 11 of 22

3.3. CGH Results

Thirteen tissue samples obtained from nine primary and four metastatic tumors were
available for array CGH analysis. The generated CN plots obtained are shown in Figure 3.
The most common alterations observed in MLA were the gains of chromosomes 1q (13/13),
10 (13/13), 20 (10/13), 2 (9/13), and 12 (6/13). These findings were consistent with those of
targeted sequencing, demonstrating CN gains in NTRK1, DDR2, mouse double minute 2
proto-oncogene (MDM4), and Abelson murine leukemia viral oncogene homolog 2 (ABL2)
located in 1q; FGFR2 and rearranged during transfection (RET) in 10q; v-src avian sarcoma
(Schmidt–Ruppin A-2) viral oncogene homolog (SRC) and guanine nucleotide binding
protein, alpha stimulating activity polypeptide 1 (GNAS) in 20q; ALK and DNMT3A in 2p;
and ERBB4 in 2q. CN losses were identified in 1p (3/13), 9p (2/13), 6q (1/13), 9q (1/13),
chromosome 19 (1/13), and chromosome 22 (1/13).
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Figure 3. Diagram depicting chromosomal copy number variations, determined using array com-
parative genomic hybridization. Copy number variations are indicated in green or red for gain or
loss in copy number, respectively. All cases of uterine mesonephric-like adenocarcinoma exhibit
gains of chromosome 1q (yellow arrow) and 10 (orange arrow), and most of the cases exhibit gains of
chromosome 2 (blue arrow) and 20 (purple arrow).

3.4. PD-L1 Expression, MMR Protein Expression, MSI Status, and Tumor Mutational Burden

Table 3 summarizes the results of PD-L1 expression by IHC and MMR protein detec-
tion by multiplex PCR for MSI status determination. Representative photomicrographs,
illustrating immunostaining, are depicted in Figure 4. In the majority of cases (14/17),
PD-L1 in tumor and tumor-associated inflammatory cells (CPS 0) was not expressed. In the
three cases that did express PD-L1, the PD-L1 CPS values were 0.5 (2/3) and 0.1 (1/3). In
one of the cases with PD-L1 CPS 0.5, some tumor and inflammatory cells expressed PD-L1
with variable staining intensity. On high-power view, the cells exhibited weak membranous
PD-L1 immunoreactivity as well as a paranuclear dot-like and Golgi staining pattern. In
the other case with CPS 0.5, stromal lymphocytes and plasma cells expressed PD-L1. While
the neoplastic glands were negative for PD-L1, the inflammatory cells surrounding the
neoplastic glands and clusters of tumor cells reacted with PD-L1. In the case with PD-L1
CPS 0.1, only a small number of tumor cells expressed PD-L1 with weak-to-moderate
staining intensity. Regarding MMR protein expression, all cases (17/17) retained MMR pro-
tein staining (for all four MMR proteins), indicating MMRp. Consistent with this finding,
15 cases tested for MSI were interpreted as MSS. Tumor mutational burden was measured
using NGS (Table 3). We observed low tumor mutational burden in all examined cases,
with a megabase range of 2.70 to 4.72 (median = 3.57).



Biomedicines 2023, 11, 2269 12 of 22

Table 3. Results of immunohistochemical staining (IHC) for programmed cell death-ligand 1 (PD-L1)
and mismatch repair (MMR) proteins, microsatellite instability (MSI) testing, and tumor mutational
burden (TMB) quantification.

Case No MSI Status PD-L1 22C3 Pharmdx CPS MMR IHC TMB (per Mb)

1 MSS 0 MMR-proficient 3.28

2 MSS 0 MMR-proficient 3.99

3 MSS 0 MMR-proficient 4.05

4 MSS 0 MMR-proficient 4.15

5 MSS 0 MMR-proficient 4.38

6 MSS 0 MMR-proficient 2.70

7 NA 0 MMR-proficient NA

8 NA 0 MMR-proficient NA

9 MSS 0 MMR-proficient 3.44

10 MSS 0 MMR-proficient 3.47

11 MSS 0.5 MMR-proficient 3.51

12 MSS 0.5 MMR-proficient 3.54

13 MSS 0 MMR-proficient 3.57

14 MSS 0 MMR-proficient 3.67

15 MSS 0.1 MMR-proficient 4.15

16 MSS 0 MMR-proficient 4.72

17 MSS 0 MMR-proficient 3.38
Abbreviations: CPS—Combined proportion score; Mb—mega base; MSS—microsatellite-stable; NA—not applicable.
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arrows) are positive for PD-L1 with weak-to-moderate staining intensity. (C) Case 11: CPS 0.5.
Some tumor cells (yellow and blue arrows) and inflammatory cells (green arrows) react with PD-L1
with variable staining intensity. (D) Case 11: CPS 0.5. high-power magnification of the left lower
corner of image (C). Some tumor cells show weak PD-L1 immunoreactivity with membranous and
a paranuclear dot-like or Golgi staining pattern. (E) Case 12: CPS 0.5. Stromal lymphocytes and
plasma cells express PD-L1. (F) Case 12: CPS 0.5. The neoplastic glands (purple arrows) are negative
for PD-L1, whereas the surrounding inflammatory cells are positive for PD-L1. (H) Preserved MutL
homolog 1 expression. (I) Preserved MutS homolog 2 expression. (J) Preserved MutS homolog
6 expression. (K) Preserved postmeiotic segregation increased, Saccharomyces cerevisiae 2 expression.

3.5. Clinicopathological and Prognostic Significance of Recurrent Pathogenic Mutations

Based on the pathogenic mutational status, there were no significant differences in
clinicopathological characteristics (Table 4) and patient outcomes (Table 5). Univariate
survival analysis revealed that initial serosal extension (p < 0.001) and initial or recurrent
lung metastasis (p = 0.002) were significant predictors for RFS. Using multivariate survival
analysis, we found that serosal extension and initial or recurrent lung metastasis were inde-
pendent factors for RFS prediction, with hazard ratios of 6.30 (p = 0.037) and 7.31 (p = 0.02),
respectively. None of the clinicopathological characteristics and recurrent pathogenic
mutations were significantly associated with OS. Figures 5 and 6 display Kaplan–Meier
plots, with RFS and OS stratified by clinicopathological characteristics and pathogenic
mutations, respectively.

Table 4. Clinicopathological significance of recurrent pathogenic mutations.

Characteristic
KRAS PTEN PIK3CA PTEN or PIK3CA

Wild Type Mutant p-Value Wild Type Mutant p-Value Wild Type Mutant p-Value Wild Type Mutant p-Value

Age (years)
<60 1 (12.5) 7 (87.5)

0.66
7 (87.5) 1 (12.5)

0.66
7 (87.5) 1 (12.5)

1.00
6 (75.0) 2 (25.0)

0.74
≥60 3 (33.3) 6 (66.7) 6 (66.7) 3 (33.3) 7 (77.8) 2 (22.2) 5 (55.6) 4 (44.4)

Initial serosal
extension

No 4 (30.8) 9 (69.2)
0.55

9 (69.2) 4 (30.8)
0.55

10 (76.9) 3 (23.1)
0.76

7 (53.8) 6 (46.2)
0.28

Yes 0 (0.0) 4 (100.0) 4 (100.0) 0 (0.0) 4 (100.0) 0 (0.0) 4 (100.0) 0 (0.0)

Initial lymph
node metastasis

No 4 (26.7) 11 (73.3)
1.00

11 (73.3) 4 (26.7)
1.00

13 (86.7) 2 (13.3)
0.77

10 (66.7) 5 (33.3)
1.00

Yes 0 (0.0) 2 (100.0) 2 (100.0) 0 (0.0) 1 (50.0) 1 (50.0) 1 (50.0) 1 (50.0)

Initial distant
metastasis

No 4 (28.6) 10 (71.4)
0.76

10 (71.4) 4 (28.6)
0.76

11 (78.6) 3 (21.4)
0.96

8 (57.1) 6 (42.9)
0.46

Yes 0 (0.0) 3 (100.0) 3 (100.0) 0 (0.0) 3 (100.0) 0 (0.0) 3 (100.0) 0 (0.0)

Initial or recurrent
lung metastasis

No 2 (25.0) 6 (75.0)
1.00

6 (75.0) 2 (25.0)
1.00

7 (87.5) 1 (12.5)
1.00

5 (62.5) 3 (37.5)
1.00

Yes 2 (22.2) 7 (77.8) 7 (77.8) 2 (22.2) 7 (77.8) 2 (22.2) 6 (66.7) 3 (33.3)

Initial stage

I 3 (33.3) 6 (66.7)

0.49

6 (66.7) 3 (33.3)

0.49

7 (77.8) 2 (22.2)

0.67

5 (55.6) 4 (44.4)

0.37
II 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

III 1 (20.0) 4 (80.0) 4 (80.0) 1 (20.0) 4 (80.0) 1 (20.0) 3 (60.0) 2 (40.0)

IV 0 (0.0) 3 (100.0) 3 (100.0) 0 (0.0) 3 (100.0) 0 (0.0) 3 (100.0) 0 (0.0)

Post-treatment
recurrence

No 1 (16.7) 5 (83.3)
1.00

5 (83.3) 1 (16.7)
1.00

5 (83.3) 1 (16.7)
1.00

4 (66.7) 2 (33.3)
1.00

Yes 3 (27.3) 8 (72.7) 8 (72.7) 3 (27.3) 9 (81.8) 2 (18.2) 7 (63.6) 4 (36.4)

Abbreviations: KRAS—Kirsten rat sarcoma viral oncogene homolog; LN—lymph node; PIK3CA—phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit alpha; PTEN—phosphatase and tensin homolog deleted on chromo-
some 10.

Table 5. Clinicopathological significance of recurrent pathogenic mutations.

Characteristic

Recurrence-Free Survival Overall Survival

Univariate Multivariate Univariate Multivariate

p-Value p-Value HR (95% CI) p-Value p-Value HR (95% CI)

Initial serosal extension
Present

<0.001 * 0.037 *
6.30

(1.12–35.45) 0.40 NA NA
Absent

Initial lymph node metastasis
Present

0.80 NA NA 0.36 NA NA
Absent

Initial distant metastasis
Present

0.07 NA NA 0.63 NA NA
Absent
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Table 5. Cont.

Characteristic

Recurrence-Free Survival Overall Survival

Univariate Multivariate Univariate Multivariate

p-Value p-Value HR (95% CI) p-Value p-Value HR (95% CI)

Initial or recurrent lung metastasis
Present

0.002 * 0.02 *
7.31

(1.38–38.75) 0.09 NA NA
Absent

Initial stage
III−IV

0.25 NA NA 0.91 NA NA
I−II

KRAS mutation
Present

0.99 NA NA 0.13 NA NA
Absent

PTEN mutation
Present

0.72 NA NA 0.36 NA NA
Absent

PIK3CA mutation
Present

0.98 NA NA 0.35 NA NA
Absent

PTEN or PIK3CA mutation
Present

0.72 NA NA 0.63 NA NA
Absent

Abbreviations: CI—Confidence interval; HR—hazard ratio; KRAS—Kirsten rat sarcoma viral oncogene homolog;
LN—lymph node; PIK3CA—phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PTEN—
phosphatase and tensin homolog deleted on chromosome 10. * Statistically significant.
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metastasis significantly predict worse RFS of patients with uterine MLA. KRAS—Kirsten rat sarcoma
viral oncogene homolog; PIK3CA—phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
alpha; PTEN—phosphatase and tensin homolog deleted on chromosome 10. * Statistically significant.
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4. Discussions

In this study, we investigated the genetic features of 17 uterine MLA cases from a single
institution. Seventeen primary and four matched metastatic tumors were available for
SNV analysis. The most frequently mutated gene was KRAS, followed by PTEN, PIK3CA,
GNAQ, CTNNB1, and ARID1A. The obtained results were consistent with that of previous
data [3,40,50–52], where KRAS mutations were found in the majority of uterine MLA cases
(16/21). In recent studies, we demonstrated that all examined uterine (6/6) and ovarian
(4/4) MLA cases harbored pathogenic KRAS mutations [3,10]. In addition, we summarized
previously reported genetic abnormalities associated with ovarian MLA [10] and found that
the most frequently mutated gene was KRAS (23/28), while PIK3CA, NRAS, and ARID1A
mutations were uncommon. da Silva et al. [52] reported that the majority of the ovarian
and uterine MLAs harbored mutations in KRAS (25/28) and genes frequently mutated in
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Mullerian tumors, including PIK3CA, CTNNB1, and PTEN. Collectively, the data support
the concept found by Kolin et al. [51], which states that KRAS mutations can be considered
as one of the defining features of MLA. Although KRAS mutations are not unique to
MLA [3,10,39,40,53] and can be identified in 20–30% of the endometrial endometrioid
carcinoma [54–56], with the additional use of histological features and immunophenotypes
characteristic of MLA, the identification of KRAS mutations can confirm MLA diagnosis.

We demonstrated that both the primary and matched metastatic tumors harbored
identical KRAS (3/4) and PTEN (1/4) mutations, and did not harbor any additional muta-
tions. da Silva et al. [52] analyzed the mutational profiles of two primary uterine MLAs
and their respective distant metastases. Consistent with our result, in one case, both the
primary and metastatic tumors harbored an identical KRAS mutation, without additional
mutations. However, in the other case, the metastatic tumor exhibited identical KRAS
mutations to the primary tumor and harbored additional mutations in genes related to the
mitogen-activated protein kinase pathway (mitogen-activated protein kinase kinase kinase
13, mesenchymal epithelial transition, and mitogen-activated protein kinase 3). The latter
finding suggests that the progression from primary to metastatic MLA may involve the
acquisition of additional mutations.

Previous studies have reported that uterine or ovarian MLA and cervical MA showed
chromosomal gains of 1q, 2, 10, 12, and 20 [40,50,52,57]. Our observation of gain of 1q,
in all examined cases (13/13), is in agreement with that of our previous study, which
revealed 1q gain in all except one case of uterine MLA (11/12) [40]. In addition, we
previously found that the most common alterations observed in cervical MA were gains of
chromosome 1q (4/4) and 10 (4/4), followed by gains of chromosome 2 (3/4), 12 (3/4), and
20 (3/4) [58]. In MLAs and MAs, da Silva et al. [52] observed frequent gains of 1q (32/36)
and 10 (16/36). Interestingly, they also reported that ovarian MLAs (10/15) exhibited gain
of chromosome 12 more frequently than cervical MA (2/8) or uterine MLA (2/13), while
loss of chromosome 9 was more frequently identified in cervical MA (4/8) than in ovarian
(1/15) or uterine MLA (1/13).

To the best of our knowledge, this study is the second to report PD-L1 expression
in uterine MLA. Horn et al. [59] first reported PD-L1 negativity in four cases of uterine
MLA. In line with this finding, we observed that the majority of cases (14/17) exhibited a
complete lack of PD-L1 immunoreactivity in both the tumor and immune cells (CPS 0). The
remaining three cases focally expressed PD-L1, with CPS < 1. In addition, our observations
of retained MMR protein expression and MSS in all examined cases are consistent with our
previous findings [41]. We re-examined some uterine MLA cases misinterpreted as MMRd
during the initial diagnosis and found that they should have been interpreted as MMRp
tumors, confirming that they were MSS. A PD-1 inhibitor, pembrolizumab, was approved
for advanced, recurrent, or metastatic MSI-H/MMRd ECs as a second-line treatment.
Recently, the combination of pembrolizumab with an oral multikinase inhibitor, lenvatinib,
has shown remarkable results, with an objective response rate of 36% and median OS of 16.4
months for advanced non-MSI-H/MMRp ECs [24]. Although the effectiveness of lenvatinib
and pembrolizumab combination therapy for uterine MLA has not been fully elucidated,
there have been a few case reports documenting excellent and durable responses to this
combination therapy in patients with uterine MLA [60–62]. Considering that the treatment
of patients with advanced or recurrent uterine MLA may differ depending on MSI status,
MMR IHC in uterine MLA requires careful interpretation. Repeat IHC and MSI testing
may improve diagnosis of challenging cases.

The Proactive Molecular Risk Classifier for Endometrial Cancer introduced four sub-
groups of EC: (1) DNA polymerase epsilon, catalytic subunit (POLE)-mutant subgroup,
harboring mutations in the exonuclease domain in exons 9–14; (2) MMRd subgroup, show-
ing the loss of expression for one or more MMR proteins; (3) p53-abnormal subgroup,
demonstrating aberrant p53 expression pattern indicating pathogenic TP53 mutation; and
(4) no specific molecular profile (NSMP) subgroup [63–65]. Even though the vast majority
of NSMP ECs is low-grade endometrioid carcinoma, the NSMP subgroup also encompasses
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high-grade EC, clear cell carcinoma, undifferentiated carcinoma, carcinosarcoma, and
MLA [36,40,50,51,53,57,65–68]. In this study, the majority of MLA cases harbored activating
KRAS mutations but not POLE-mutant signatures, MMR deficiency, or TP53 mutation;
confirming that these cases belong to the NSMP subgroup. Since the biological behavior of
uterine MLA is consistently described as aggressive [36,67,69], the inclusion of this entity
in the high-risk non-endometrioid group appears to be justified. Several studies have
identified that the high expression of the L1 cell adhesion molecule (L1CAM) and CTNNB1
mutation can add significant prognostic information to the molecular classification of
EC [70–74]. The significance of L1CAM expression or CTNNB1 mutation in MLA patients
has not been elucidated. Based on relatively poor MLA prognosis, compared to other
histological types belonging to the NSMP subgroup [3,67], it is likely to exhibit L1CAM
overexpression or harbor the CTNNB1 mutation. Further studies with a larger cohort
of uterine MLA patients are necessary to clarify the clinicopathological and prognostic
significance of L1CAM expression and the CTNNB1 mutation.

We found that 2 of the 17 uterine MLA cases harbor frameshift TP53 mutations.
One patient with stage IA MLA did not experience recurrence and is alive at 63.5 months
postoperatively, while the other patient with stage IA disease developed recurrence at
8.0 months after surgery and died of disease at 25.1 months postoperatively. The TP53 mu-
tation is known to be extremely uncommon in malignant mesonephric lesions [37,52,57,75]
and its clinicopathological significance in patients with uterine MLA has not yet been inves-
tigated. We recently experienced a case of dedifferentiated uterine MLA harboring the TP53
mutation [39]. IHC revealed that the dedifferentiated component overexpressed p53, while
the MLA component exhibited a wild-type p53 expression pattern. We cannot conclude the
prognostic implication of the TP53 mutation in uterine MLA because only a few cases were
found. However, based on our observations that the majority of uterine MLA cases did not
harbor the TP53 mutation and that the clinical course of the two patients with early-stage,
TP53-mutant MLA was inconsistent, we believe that there is an urgent need to determine
the clinicopathological and prognostic significance of the TP53 mutation in uterine MLA.
Similar to previous results showing that the TP53 mutation in ‘multiple-classifier’ EC cases
does not significantly affect disease development or prognosis [76], we hypothesize that
the TP53 mutation occurs during late stage of MLA progression and does not affect the
molecular landscape, since only two frameshift TP53 mutations were detected in this study
of uterine MLAs with pathogenic KRAS mutations and the two cases displayed different
outcomes. Further investigations are required to investigate whether TP53 mutation as a
significant predictor for patient outcome of uterine MLA or merely a passenger event with
no impact on biological behavior.

Therapeutic strategies tailored to both the genetic and epigenetic features of EC are the
basis of precision medicine in gynecological oncology [77]. Aberrant expression of several
cancer-related gene sets has been consistently reported to be a significant contributor
for EC progression [78]. In addition to those mutational changes, epigenetic alterations,
including methylation, acetylation, and phosphorylation of nuclear chromatin, play a
central role in EC development and progression [78,79]. Particularly, non-coding RNAs
(ncRNAs) are involved in the regulation of cellular metabolism, growth, and neoplastic
transformation [78,80]. They have very little or no protein-coding capability [81,82], but
their expression patterns can modulate the function of oncogenes and tumor suppressors,
resulting in either promotion or suppression of tumorigenesis and progression [77]. Their
regulation of gene expression can occur in different steps, at epigenetic, transcriptional,
and post-transcriptional levels [78]. Accumulating evidence shows that the abnormal
expression of ncRNAs is associated with the prevalence and prognosis of many different
types of human cancers [82,83]. Some deregulated ncRNAs have recently been suggested
as potential risk factors that can better define the biological behavior of EC and be used as
prognostic markers to guide the risk stratification of EC patients. It is surprising to note that
the association between ncRNA and EC has only recently been emerging in the literature,
and that most of the papers regarding this association have been concentrated into the
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last three years [77]. The following competing endogenous RNAs seemed to be associated
with poor prognosis of EC: AC074212.1, ADARB2-AS1, C2orf48, C8orf49, C10orf91, FER1L4,
FP671120.4, GLIS3-AS1, HOXB-AS1, LINC00483, LINC00491, LINC01143, LINC01352,
LINC01410, LINC02381, MIR503HG, PCAT1, RP11-357H14.17 and RP11 89K21.1 [77]. In
contrast, LINC00237, LINC00475, LINC00958, and LNCTAM34A were reported to exhibit a
favorable prognostic effect in EC patients. The expressions of these molecules were found
to be deregulated in EC compared to normal endometrial tissue. Identifying deregulated
microRNAs (miRs) remains an ongoing endeavor. miRs are short molecules of ncRNA
that function as post-transcriptional regulators of gene expression [84]. In a meta-analysis
by Delangle et al. [85], a number of significantly deregulated miRs were identified and
classified as onco-miRs, suppressor miRs, and those with discordant functions. Similarly,
a recent systematic review by Bloomfield et al. [86] revealed the deregulated levels of
circulating miRs in the serum and plasma of EC patients. These studies suggest that
adequate combinations of miR expression with conventional pathological parameters
of EC may serve as prognostic markers that can help in predicting risk stratification of
patients. Taken together, epigenetic modifications are gaining increasing importance for
the characterization of EC. A group of molecules is emerging as identifiable risk factors
that aid in establishing an accurate diagnosis and assessing clinical prognosis. Particularly,
there is a significant correlation between the alterations of several ncRNAs and miRs and
the clinical course of EC patients, representing the possibility of including these molecules
in stratifying patients at greater risk of relapse and worse outcome [82]. A comprehensive
analysis of these molecules is the way to pursue towards personalized medicine, in which
each patient is characterized by a specific set of epigenetic alterations, whose targets are well
defined, and for whom drawing a therapeutic strategy would yield better results [80,82].

5. Conclusions

We comprehensively investigated the clinicopathological and immunophenotypical
features of 17 consecutive cases of uterine MLA from a single institution. We confirmed
that uterine MLA is an aggressive malignancy, showing advanced stage, frequent post-
operative disease recurrence, and frequent lung metastasis. Initial serosal extension and
lung metastasis were independent prognostic factors for RFS prediction, while none of the
clinicopathological or molecular features were significantly associated with OS of uterine
MLA patients. IHC revealed that none of the cases overexpressed PD-L1 or were MMR
deficient. We conducted targeted sequencing to analyze the molecular features of uterine
MLA. We found that the majority of cases harbored pathogenic KRAS mutations. Two cases
harboring the frameshift TP53 mutation were also identified, but the clinicopathological
and prognostic significance of TP53 mutation could not be determined. The most frequent
abnormalities were gains of chromosome 1q, 2, 10, and 20. Both clinicians and pathologists
should be aware of these features to establish an accurate diagnosis of uterine MLA and to
ensure appropriate therapeutic management of this rare entity.
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