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Abstract: This review explores the biological activity and structural diversity of steroids and related
isoprenoid lipids, with a particular focus on compounds containing an oxirane ring. These natural
compounds are derived from fungi, fungal endophytes, as well as extracts of plants, algae, and marine
invertebrates. To evaluate their biological activity, an extensive examination of refereed literature
sources was conducted, including in vivo and in vitro studies and the utilization of the QSAR
method. Notable properties observed among these compounds include strong anti-inflammatory,
antineoplastic, antiproliferative, anti-hypercholesterolemic, antiparkinsonian, diuretic, anti-eczematic,
anti-psoriatic, and various other activities. Throughout this review, 3D graphs illustrating the
activity of individual steroids are presented, accompanied by images of selected terrestrial or marine
organisms. Furthermore, this review provides explanations for specific types of biological activity
associated with these compounds. The data presented in this review are of scientific interest to the
academic community and carry practical implications in the fields of pharmacology and medicine.
By analyzing the biological activity and structural diversity of steroids and related isoprenoid lipids,
this review offers valuable insights that contribute to both theoretical understanding and applied
research. This review draws upon data from various authors to compile information on the biological
activity of natural steroids containing an oxirane ring.

Keywords: steroids; triterpenoids; isoprenoid lipids; antineoplastic; anti-inflammatory; antifungal;
antibacterial; antiviral; fungal endophytes; plants; marine invertebrates

1. Introduction

The oxirane ring, known as an epoxy group, also named epoxide group, is an impor-
tant functional group in organic chemistry [1]. It consists of an oxygen atom bonded to two
adjacent carbon atoms through single covalent bonds, forming a three-membered epoxide
ring [1,2]. The strained three-membered ring of the oxirane makes it highly reactive. The
oxygen atom is electron-rich and can undergo various reactions, such as a nucleophilic at-
tack, ring-opening reactions, and rearrangements [3,4]. Oxiranes can undergo ring-opening
reactions with nucleophiles, such as amines, alcohols, and thiols. This process leads to the
formation of new carbon–oxygen and carbon–nucleophile bonds [4,5]. Epoxidation is a
common reaction that introduces an oxirane ring into a molecule. It involves the addition of
an oxygen atom to a double bond using oxidizing agents like peracids, peroxyacids, or per-
oxides [5,6]. Oxirane rings have widespread applications in organic synthesis and industry.
They are used as intermediates in the production of various chemicals, pharmaceuticals,
polymers, and coatings. The ring-opening reactions of oxiranes also find applications in
organic synthesis to introduce functional groups into molecules [6–8].

Steroids bearing an oxirane ring or an α,β-epoxy group are natural or synthetic com-
pounds that possess a reactive epoxy (oxirane) ring structure at the α and β positions of the
steroid backbone [2,9,10]. This α,β-epoxy group adds chemical reactivity and contributes
to the unique properties and potential biological activities of these compounds. Steroids
with an α,β-epoxy group can be found in various natural sources, including fungi, plants,
animals, and microorganisms [11–15]. They have also been synthesized in the laboratory for
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pharmaceutical and research purposes. These compounds often exhibit diverse pharmaco-
logical activities and are of interest in drug discovery and development. Steroids bearing an
α,β-epoxy group exhibit unique chemical reactivity and can interact with various biological
targets, including enzymes, receptors, and signaling pathways. Their potential biological
activities and therapeutic applications continue to be explored in fields such as medicine,
pharmacology, and biochemistry [14–20].

The presented steroids bearing an α,β-epoxy group can be categorized into six groups
based on the position of the epoxy group (ring). These groupings provide a systematic
classification of these compounds. The groups and their respective positions are stated in
the following: Group 1: 4,5-epoxy steroids, Group 2: 5,6-epoxy steroids, Group 3: 7,8- and
8,9-epoxy steroids, Group 4: 9,11- and 11,12-epoxy steroids, Group 5: 17,20-epoxy steroids
and 24,25-epoxy steroids, and Group 6: miscellaneous epoxy steroids.

The positioning of the epoxy group within the steroid molecule plays a significant
role in the compound’s structure, reactivity, and potential biological activities. Understand-
ing the precise location of the epoxy group is essential for studying the properties and
interactions of these compounds. To facilitate the identification and numbering of steroids,
Figure 1 displays the recommended numbering system by the International Union of Pure
and Applied Chemistry (IUPAC). This numbering system assists in standardizing the
representation and communication of steroid structures, ensuring clarity and consistency
in the scientific literature and research.
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The data presented in Tables 1–10 are taken from published data and obtained using
the German computer software PASS (http://www.akosgmbh.de/mobile/pass.htm). This
program is in the public domain and is used by more than 26,000 scientists from around
the world annually. The site of this program provides complete information on the use, as
well as the interpretation, of the data obtained.

http://www.akosgmbh.de/mobile/pass.htm
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Table 1. Biological activities of steroids bearing 4,5-epoxy group (1–5).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

1

Apoptosis agonist (0.931)
Antineoplastic (0.926)

Antineoplastic (liver cancer) (0.743)
Prostate cancer treatment (0.626)

Antineoplastic (lymphocytic leukemia) (0.614)

Anti-hypercholesterolemic (0.852)
Immunosuppressant (0.835)

Hepatic disorders treatment (0.822)
Anti-eczematic (0.791)
Anti-psoriatic (0.777)

2

Antineoplastic (0.873)
Apoptosis agonist (0.860)

Antimetastatic (0.774)
Antineoplastic (lymphocytic leukemia) (0.715)

Respiratory analeptic (0.885)
Antifungal (0.812)

Immunosuppressant (0.811)
Anti-inflammatory (0.737)

3
Antineoplastic (0.855)

Angiogenesis inhibitor (0.707)
Apoptosis agonist (0.698)

Hepatic disorders treatment (0.851)
Antifungal (0.792)

Immunosuppressant (0.788)

4
Antineoplastic (0.900)

Proliferative diseases treatment (0.784)
Apoptosis agonist (0.664)

Respiratory analeptic (0.880)
Immunosuppressant (0.866)

Antifungal (0.817)

5 Antineoplastic (0.896)
Apoptosis agonist (0.886)

Antifungal (0.730)
Anti-inflammatory (0.705)

* Only activities with Pa > 0.6 are shown.

Table 2. Biological activities of steroids bearing 5,6-epoxy group (6–20).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

6 Respiratory analeptic (0.911)
Hypolipemic (0.779)

Apoptosis agonist (0.867)
Antineoplastic (0.851)

7 Apoptosis agonist (0.954)
Antineoplastic (0.895)

Anti-osteoporotic (0.789)
Anti-psoriatic (0.774)

8 Apoptosis agonist (0.950)
Antineoplastic (0.886)

Anti-hypercholesterolemic (0.931)
Atherosclerosis treatment (0.712)

9 Apoptosis agonist (0.890)
Antineoplastic (0.853)

Anti-hypercholesterolemic (0.872)
Atherosclerosis treatment (0.746)

10 Antifungal (0.738) Anti-inflammatory (0.733)

11 Apoptosis agonist (0.782) Anti-inflammatory (0.756)

12 Antibacterial (0.704) Antifungal (0.633)

13 Antibacterial (0.691) Antifungal (0.577)

14 Apoptosis agonist (0.907)
Antineoplastic (0.860)

Anti-eczematic (0.732)
Anti-psoriatic (0.659)

15 Apoptosis agonist (0.844)
Antineoplastic (0.796)

Anesthetic (0.689)
Antipruritic, allergic (0.632)

16 Apoptosis agonist (0.900)
Antineoplastic (0.866)

Respiratory analeptic (0.819)
Anti-hypercholesterolemic (0.803)

17 Apoptosis agonist (0.866)
Antineoplastic (0.863)

Respiratory analeptic (0.835)
Hypolipemic (0.820)

18 Apoptosis agonist (0.954)
Antineoplastic (0.914)

Anti-hypercholesterolemic (0.906)
Atherosclerosis treatment (0.741)

19 Antineoplastic (0.798)
Apoptosis agonist (0.751)

Immunosuppressant (0.759)
Respiratory analeptic (0.679)

20 Respiratory analeptic (0.953) Anti-hypercholesterolemic (0.874)
* Only activities with Pa > 0.7 are shown.
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Table 3. Biological activities of steroids bearing 5,6-epoxy group (21–34).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

21 Antineoplastic (0.797) Antibacterial (0.788)

22 Respiratory analeptic (0.934) Anti-hypercholesterolemic (0.874)

23 Antineoplastic (0.798)
Apoptosis agonist (0.751)

Immunosuppressant (0.759)
Hypolipemic (0.732)

24 Respiratory analeptic (0.979)
Immunosuppressant (0.832)

Antineoplastic (0.872)
Apoptosis agonist (0.861)

25 Apoptosis agonist (0.913)
Antineoplastic (0.907)

Anti-eczematic (0.844)
Anti-psoriatic (0.813)

26 Apoptosis agonist (0.950)
Antineoplastic (0.886)

Anti-hypercholesterolemic (0.931)
Atherosclerosis treatment (0.712)

27 Respiratory analeptic (0.973)
Immunosuppressant (0.795)

Apoptosis agonist (0.896)
Antineoplastic (0.880)

28 Respiratory analeptic (0.974)
Immunosuppressant (0.788)

Antineoplastic (0.874)
Apoptosis agonist (0.868)

29 Anti-hypercholesterolemic (0.934)
Hypolipemic (0.864)

Apoptosis agonist (0.929)
Antineoplastic (0.861)

30 Respiratory analeptic (0.948)
Immunosuppressant (0.828)

Apoptosis agonist (0.941)
Antineoplastic (0.924)

31 Antineoplastic (0.791)
Apoptosis agonist (0.731) Immunosuppressant (0.747)

32 Antineoplastic (0.816)
Apoptosis agonist (0.732)

Antifungal (0.784)
Anti-inflammatory (0.735)

33 Antineoplastic (0.796)
Apoptosis agonist (0.729)

Antifungal (0.738)
Anti-inflammatory (0.733)

34 Anti-inflammatory (0.817)
Antifungal (0.770)

Antineoplastic (0.800)
Apoptosis agonist (0.749)

* Only activities with Pa > 0.7 are shown.

Table 4. Biological activities of steroids bearing 7,8-epoxy group (35–51).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

35 Apoptosis agonist (0.906)
Antineoplastic (0.879)

Respiratory analeptic (0.796)
Immunosuppressant (0.769)

36 Apoptosis agonist (0.945)
Antineoplastic (0.918)

Anti-eczematic (0.852)
Anti-psoriatic (0.772)

37
Hepatoprotectant (0.994)

Anti-hypercholesterolemic (0.897)
Immunosuppressant (0.836)

Respiratory analeptic (0.990)
Antithrombotic (0.883)

Antidiabetic (0.720)

38
Antineoplastic (0.874)

Apoptosis agonist (0.753)
Prostate disorders treatment (0.549)

Anti-eczematic (0.841)
Anti-inflammatory (0.648)

Anti-psoriatic (0.629)

39 Respiratory analeptic (0.961)
Immunosuppressant (0.780)

Apoptosis agonist (0.856)
Antineoplastic (0.812)

40 Respiratory analeptic (0.961)
Antiviral (Influenza) (0.667)

Apoptosis agonist (0.856)
Antineoplastic (0.812)

41 Respiratory analeptic (0.955)
Anti-inflammatory (0.870)

Antineoplastic (0.843)
Apoptosis agonist (0.752)



Biomedicines 2023, 11, 2237 5 of 61

Table 4. Cont.

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

42
Respiratory analeptic (0.937)

Anti-inflammatory (0.747)
Anesthetic (0.711)

Apoptosis agonist (0.812)
Antineoplastic (0.812)
Antithrombotic (0.681)

43 Apoptosis agonist (0.872)
Antineoplastic (0.848)

Anti-osteoporotic (0.656)
Proliferative diseases treatment (0.601)

44
Respiratory analeptic (0.910)
Immunosuppressant (0.797)

Anti-hypercholesterolemic (0.612)

Apoptosis agonist (0.859)
Antineoplastic (0.847)

Proliferative diseases treatment (0.650)

45
Respiratory analeptic (0.897)
Immunosuppressant (0.792)

Cardiotonic (0.626)

Apoptosis agonist (0.859)
Antineoplastic (0.806)

Proliferative diseases treatment (0.633)

46
Anti-inflammatory (0.880)

Respiratory analeptic (0.849)
Septic shock treatment (0.681)

Antineoplastic (0.842)
Anti-hypercholesterolemic (0.739)

Apoptosis agonist (0.712)

47
Respiratory analeptic (0.978)
Immunosuppressant (0.792)

Proliferative diseases treatment (0.679)

Anti-eczematic (0.952)
Antineoplastic (0.912)

Apoptosis agonist (0.911)

48 Apoptosis agonist (0.901)
Proliferative diseases treatment (0.702)

Anti-eczematic (0.870)
Anti-psoriatic (0.753)

49 Apoptosis agonist (0.894)
Atherosclerosis treatment (0.745)

Anti-eczematic (0.825)
Anti-psoriatic (0.738)

50 Antineoplastic (0.867)
Apoptosis agonist (0.754)

Anti-eczematic (0.797)
Anti-psoriatic (0.706)

51
Chemopreventive (0.900)

Antineoplastic (0.848)
Apoptosis agonist (0.811)

Anti-hypercholesterolemic (0.852)
Respiratory analeptic (0.827)

Hypolipemic (0.760)
* Only activities with Pa > 0.7 are shown.

Table 5. Biological activities of steroids bearing 8,14-, 9,11-, and 11,12-epoxy groups (52–72).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

52 Respiratory analeptic (0.961)
Immunosuppressant (0.800)

Apoptosis agonist (0.914)
Proliferative diseases treatment (0.693)

53 Respiratory analeptic (0.950)
Immunosuppressant (0.795)

Antineoplastic (0.910)
Apoptosis agonist (0.908)

54 Apoptosis agonist (0.920)
Proliferative diseases treatment (0.708)

Respiratory analeptic (0.843)
Hypolipemic (0.679)

55
Antineoplastic (0.908)

Apoptosis agonist (0.906)
Proliferative diseases treatment (0.656)

Respiratory analeptic (0.872)
Anti-hypercholesterolemic (0.786)

Cholesterol synthesis inhibitor (0.647)

56 Respiratory analeptic (0.909)
Immunosuppressant (0.779)

Antineoplastic (0.882)
Apoptosis agonist (0.843)

57 Respiratory analeptic (0.961)
Immunosuppressant (0.800)

Antineoplastic (0.916)
Apoptosis agonist (0.914)

58 Respiratory analeptic (0.909)
Immunosuppressant (0.779)

Antineoplastic (0.882)
Apoptosis agonist (0.843)

59 Respiratory analeptic (0.922)
Immunosuppressant (0.799)

Antineoplastic (0.908)
Apoptosis agonist (0.874)

60 Antineoplastic (0.908)
Apoptosis agonist (0.896)

Respiratory analeptic (0.881)
Immunosuppressant (0.788)
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Table 5. Cont.

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

61 Antineoplastic (0.890)
Apoptosis agonist (0.683)

Anti-hypercholesterolemic (0.791)
Cholesterol synthesis inhibitor (0.712)

62 Antineoplastic (0.890)
Apoptosis agonist (0.743)

Anti-hypercholesterolemic (0.793)
Atherosclerosis treatment (0.738)

63 Antineoplastic (0.927)
Apoptosis agonist (0.692)

Respiratory analeptic (0.587)
Cardiovascular analeptic (0.556)

64 Inhibitor rheumatoid arthritis (0.928)
Inhibitor pregnane x receptor (0.729)

Alzheimer’s disease treatment (0.676)
Anti-nephrotoxic (0.637)

65
Chemopreventive (0.890)

Antineoplastic (0.850)
Apoptosis agonist (0.781)

Anti-hypercholesterolemic (0.816)
Atherosclerosis treatment (0.722)

Biliary tract disorders treatment (0.667)

66 Antifungal (0.887)
Antibacterial (0.804)

Antileukemic (0.756)
Prostate disorders treatment (0.735)

67 Antifungal (0.845)
Antibacterial (0.794)

Antileukemic (0.730)
Prostate disorders treatment (0.717)

68 Antifungal (0.845)
Antibacterial (0.794)

Antileukemic (0.730)
Prostate disorders treatment (0.717)

69 Antiprotozoal (0.944)
Genital warts treatment (0.811)

Antineoplastic (0.766)
Antimetastatic (0.642)

70 Antifungal (0.911)
Antibacterial (0.822)

Antileukemic (0.714)
Prostate disorders treatment (0.696)

71 Antiviral (0.912)
Antiviral (Influenza) (0.901)

Respiratory analeptic (0.855)
Immunosuppressant (0.721)

72 Anti-inflammatory (0.893)
Antiviral (Influenza) (0.787)

Antifungal (0.865)
Antibacterial (0.814)

* Only activities with Pa > 0.7 are shown.

Table 6. Biological activities of steroids bearing 17,20-epoxy group (73–87).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

73
Anesthetic general (0.928)

Angiogenesis inhibitor (0.918)
Respiratory analeptic (0.916)

Antineoplastic (0.914)
Anti-hypercholesterolemic (0.857)

Immunosuppressant (0.762)

74 Angiogenesis inhibitor (0.910)
Anesthetic general (0.774)

Respiratory analeptic (0.848)
Anti-hypercholesterolemic (0.841)

75 Anesthetic general (0.928)
Angiogenesis inhibitor (0.892)

Respiratory analeptic (0.916)
Antineoplastic (0.903)

76 Angiogenesis inhibitor (0.890)
Analeptic (0.872)

Anti-hypercholesterolemic (0.813)

77 Angiogenesis inhibitor (0.916)
Analeptic (0.834)

Anti-hypercholesterolemic (0.785)
Anti-inflammatory (0.705)

78 Angiogenesis inhibitor (0.825)
Anesthetic general (0.666)

Anti-osteoporotic (0.820)
Antiallergic (0.710)

79 Angiogenesis inhibitor (0.869)
Immunosuppressant (0.716)

Antineoplastic (0.858)
Apoptosis agonist (0.651)

80 Angiogenesis inhibitor (0.920)
Anesthetic general (0.783)

Respiratory analeptic (0.855)
Anti-hypercholesterolemic (0.823)

81 Angiogenesis inhibitor (0.877)
Immunosuppressant (0.744)

Antineoplastic (0.889)
Apoptosis agonist (0.687)
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Table 6. Cont.

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

82 Angiogenesis inhibitor (0.891)
Immunosuppressant (0.733)

Antineoplastic (0.836)
Apoptosis agonist (0.677)

83 Angiogenesis inhibitor (0.897)
Analeptic (0.837)

Anti-hypercholesterolemic (0.765)
Anti-inflammatory (0.765)

84 Angiogenesis inhibitor (0.902)
Analeptic (0.866)

Anti-hypercholesterolemic (0.777)
Anti-inflammatory (0.754)

85
Anesthetic general (0.931)

Angiogenesis inhibitor (0.922)
Respiratory analeptic (0.921)

Antineoplastic (0.923)
Anti-hypercholesterolemic (0.862)

Immunosuppressant (0.774)

86 Angiogenesis inhibitor (0.878)
Immunosuppressant (0.736)

Antineoplastic (0.828)
Apoptosis agonist (0.633)

87 Antiprotozoal (0.944)
Antiprotozoal (Plasmodium) (0.937)

Genital warts treatment (0.767)
Antineoplastic (0.722)

* Only activities with Pa > 0.7 are shown.

Table 7. Biological activities of steroids bearing 22,23-epoxy group (88–108).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

88
Anti-hypercholesterolemic (0.901)
Lipid metabolism regulator (0.833)

Antiallergic (0.723)

Respiratory analeptic (0.889)
Ovulation inhibitor (0.884)
Anesthetic general (0.843)

89 Anti-hypercholesterolemic (0.924)
Lipid metabolism regulator (0.820)

Respiratory analeptic (0.927)
Ovulation inhibitor (0.858)

90
Angiogenesis inhibitor (0.943)

Antidiabetic symptomatic (0.835)
Autoimmune disorders treatment (0.794)

Antineoplastic (0.924)
Respiratory analeptic (0.877)

Lipid metabolism regulator (0.790)

91 Hepatic disorders treatment (0.917)
Immunosuppressant (0.774)

Antineoplastic (0.836)
Angiogenesis inhibitor (0.828)

92 Hepatic disorders treatment (0.878)
Cholesterol synthesis inhibitor (0.704)

Antineoplastic (0.844)
Angiogenesis inhibitor (0.788)

93 Hepatic disorders treatment (0.903)
Cholesterol synthesis inhibitor (0.641)

Antineoplastic (0.824)
Angiogenesis inhibitor (0.765)

94 Hepatic disorders treatment (0.878)
Cholesterol synthesis inhibitor (0.704)

Antineoplastic (0.844)
Angiogenesis inhibitor (0.788)

95 Hepatic disorders treatment (0.883)
Cholesterol synthesis inhibitor (0.737)

Antineoplastic (0.841)
Angiogenesis inhibitor (0.809)

96 Hepatic disorders treatment (0.908)
Cholesterol synthesis inhibitor (0.683)

Antineoplastic (0.820)
Angiogenesis inhibitor (0.793)

97 Hepatic disorders treatment (0.883)
Cholesterol synthesis inhibitor (0.737)

Antineoplastic (0.841)
Angiogenesis inhibitor (0.809)

98 Hepatic disorders treatment (0.883)
Cholesterol synthesis inhibitor (0.737)

Antineoplastic (0.841)
Angiogenesis inhibitor (0.809)

99 Hepatic disorders treatment (0.908)
Cholesterol synthesis inhibitor (0.683)

Angiogenesis inhibitor (0.793)
Biliary tract disorders treatment (0.621)

100 Hepatic disorders treatment (0.883)
Cholesterol synthesis inhibitor (0.737)

Angiogenesis inhibitor (0.809)
Biliary tract disorders treatment (0.611)

101 Hepatic disorders treatment (0.919)
Immunosuppressant (0.768)

Antineoplastic (0.811)
Angiogenesis inhibitor (0.782)
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Table 7. Cont.

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

102 Hepatic disorders treatment (0.905)
Immunosuppressant (0.772)

Antineoplastic (0.800)
Angiogenesis inhibitor (0.709)

103 Hepatic disorders treatment (0.905)
Immunosuppressant (0.772)

Antineoplastic (0.800)
Angiogenesis inhibitor (0.709)

104 Hepatic disorders treatment (0.880)
Immunosuppressant (0.786)

Antifungal (0.829)
Antibacterial (0.737)

105 Hepatic disorders treatment (0.880)
Immunosuppressant (0.786)

Antifungal (0.829)
Antibacterial (0.737)

106 Hepatic disorders treatment (0.880)
Immunosuppressant (0.786)

Antifungal (0.829)
Antibacterial (0.737)

107 Hepatic disorders treatment (0.910)
Immunosuppressant (0.758)

Antifungal (0.803)
Antineoplastic (0.797)

108 Hepatic disorders treatment (0.910)
Immunosuppressant (0.758)

Antifungal (0.803)
Antineoplastic (0.797)

* Only activities with Pa > 0.7 are shown.

Table 8. Biological activities of steroids bearing 22,23-epoxy group (109–120).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

109 Hepatic disorders treatment (0.890)
Immunosuppressant (0.785)

Antineoplastic (0.813)
Angiogenesis inhibitor (0.751)

110 Hepatic disorders treatment (0.886)
Immunosuppressant (0.795)

Antineoplastic (0.816)
Angiogenesis inhibitor (0.728)

111 Hepatic disorders treatment (0.886)
Immunosuppressant (0.795)

Antineoplastic (0.816)
Angiogenesis inhibitor (0.728)

112 Hepatic disorders treatment (0.886)
Immunosuppressant (0.795)

Antineoplastic (0.816)
Angiogenesis inhibitor (0.728)

113 Hepatic disorders treatment (0.886)
Immunosuppressant (0.795)

Antineoplastic (0.816)
Angiogenesis inhibitor (0.728)

114 Antifungal (0.860)
Antibacterial (0.803)

Acute neurologic disorders treatment (0.819)
Biliary tract disorders treatment (0.783)

115 Antifungal (0.890)
Antibacterial (0.875)

Antineoplastic (0.857)
Acute neurologic disorders treatment (0.681)

116 Antifungal (0.902)
Antibacterial (0.886)

Antineoplastic (0.858)
Acute neurologic disorders treatment (0.727)

117 Antifungal (0.863)
Antibacterial (0.803)

Acute neurologic disorders treatment (0.822)
Biliary tract disorders treatment (0.783)

118 Antibacterial (0.906)
Antifungal (0.902)

Antineoplastic (0.849)
Acute neurologic disorders treatment (0.667)

119 Antifungal (0.885)
Antibacterial (0.873)

Antineoplastic (0.849)
Acute neurologic disorders treatment (0.692)

120 Antifungal (0.893)
Antibacterial (0.895)

Antineoplastic (0.863)
Acute neurologic disorders treatment (0.712)

* Only activities with Pa > 0.7 are shown.
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Table 9. Biological activities of miscellaneous steroids and isoprenoid lipids (121–139).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

121
Anti-hypercholesterolemic (0.886)

Antineoplastic (0.846)
Anesthetic general (0.690)

Antifungal (0.727)
Angiogenesis inhibitor (0.680)

Antibacterial (0.666)

122
Antineoplastic (0.938)

Apoptosis agonist (0.923)
Antileukemic (0.785)

Anti-eczematic (0.921)
Anti-psoriatic (0.771)
Hypolipemic (0.669)

123 Antineoplastic (0.918)
Apoptosis agonist (0.908)

Anti-eczematic (0.889)
Anti-psoriatic (0.732)

124 Anti-hypercholesterolemic (0.891)
Antineoplastic (0.833)

Antifungal (0.739)
Antibacterial (0.658)

125
Antineoplastic (0.918)

Apoptosis agonist (0.793)
Prostate cancer treatment (0.679)

Cachexia treatment (0.749)
Anti-osteoporotic (0.672)

Menopausal disorders treatment (0.582)

126
Antineoplastic (0.919)

Apoptosis agonist (0.798)
Prostate cancer treatment (0.688)

Cachexia treatment (0.773)
Anti-osteoporotic (0.689)

Menopausal disorders treatment (0.613)

127 Apoptosis agonist (0.954)
Antineoplastic (0.888)

Genital warts treatment (0.914)
Anesthetic general (0.730)

128 Apoptosis agonist (0.933)
Antineoplastic (0.867)

Genital warts treatment (0.897)
Anesthetic general (0.713)

129 Apoptosis agonist (0.924)
Antineoplastic (0.839)

Genital warts treatment (0.902)
Anesthetic general (0.722)

130 Apoptosis agonist (0.917)
Antineoplastic (0.831)

Genital warts treatment (0.899)
Anesthetic general (0.741)

131
Chemopreventive (0.892)
Apoptosis agonist (0.854)

Antineoplastic (0.790)

Hypolipemic (0.852)
Anti-hypercholesterolemic (0.718)

Cholesterol synthesis inhibitor (0.543)

132 Apoptosis agonist (0.844)
Antineoplastic (0.771)

Antifungal (0.813)
Antibacterial (0.712)

133 Antineoplastic (0.767)
Apoptosis agonist (0.722)

Antifungal (0.723)
Antibacterial (0.698)

134
Chemopreventive (0.934)
Apoptosis agonist (0.914)

Antineoplastic (0.881)

Hypolipemic (0.902)
Anti-hypercholesterolemic (0.887)

Cholesterol synthesis inhibitor (0.841)

135
Chemopreventive (0.928)
Apoptosis agonist (0.922)

Antineoplastic (0.916)

Hypolipemic (0.911)
Anti-hypercholesterolemic (0.866)

Cholesterol synthesis inhibitor (0.812)

136 Chemopreventive (0.933)
Antineoplastic (0.923)

Anti-hypercholesterolemic (0.899)
Cholesterol synthesis inhibitor (0.878)

137 Antineoplastic (0.865)
Apoptosis agonist (0.834)

Anti-hypercholesterolemic (0.812)
Cholesterol synthesis inhibitor (0.722)

138 Antineoplastic (0.947)
Chemopreventive (0.922)

Anti-hypercholesterolemic (0.911)
Cholesterol synthesis inhibitor (0.892)

139 Antineoplastic (0.887)
Apoptosis agonist (0.851)

Anti-hypercholesterolemic (0.843)
Cholesterol synthesis inhibitor (0.752)

* Only activities with Pa > 0.7 are shown.
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Table 10. Biological activities of miscellaneous steroids and isoprenoid lipids (140–159).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

140 Chemopreventive (0.893)
Apoptosis agonist (0.841)

Antifungal (0.815)
Anti-inflammatory (0.793)

141 Nitric oxide production inhibitor (0.922)
Anti-hypercholesterolemic (0.818)

Cholesterol synthesis inhibitor (0.743)
Antibacterial (0.652)

142
Antineoplastic (0.980)

Chemopreventive (0.942)
Apoptosis agonist (0.913)

Antibacterial (0.882)
Antifungal (0.819)

Anti-inflammatory (0.803)

143 Antineoplastic (0.902)
Apoptosis agonist (0.862)

Anti-hypercholesterolemic (0.733)
Cholesterol synthesis inhibitor (0.644)

144
Anti-inflammatory (0.903)

Antibacterial (0.876)
Antifungal (0.833)

Anti-hypercholesterolemic (0.784)
Cholesterol synthesis inhibitor (0.721)

Hypolipemic (0.652)

145 Anesthetic general (0.937)
Angiogenesis inhibitor (0.922)

Antineoplastic (0.910)
Anti-hypercholesterolemic (0.844)

146
Antineoplastic (0.912)

Cytostatic (0.878)
Apoptosis agonist (0.845)

Antibacterial (0.854)
Antifungal (0.799)

Anti-inflammatory (0.769)

147 Antineoplastic (0.944)
Apoptosis agonist (0.921)

Anti-hypercholesterolemic (0.815)
Cholesterol synthesis inhibitor (0.766)

148 Anesthetic general (0.883)
Angiogenesis inhibitor (0.821)

Antineoplastic (0.856)
Anti-hypercholesterolemic (0.811)

149 Anesthetic general (0.897)
Angiogenesis inhibitor (0.832)

Antineoplastic (0.871)
Anti-hypercholesterolemic (0.835)

150 Anesthetic general (0.959)
Angiogenesis inhibitor (0.932)

Antineoplastic (0.911)
Anti-hypercholesterolemic (0.832)

151 Antineoplastic (0.989)
Apoptosis agonist (0.931)

Anti-hypercholesterolemic (0.792)
Cholesterol synthesis inhibitor (0.758)

152 Cytostatic (0.922)
Apoptosis agonist (0.911)

Antifungal (0.799)
Antibacterial (0.854)

153 Cytostatic (0.911)
Apoptosis agonist (0.903)

Antifungal (0.832)
Antibacterial (0.807)

154 Cytostatic (0.916)
Apoptosis agonist (0.892)

Antifungal (0.856)
Antibacterial (0.832)

155 Cytostatic (0.938)
Apoptosis agonist (0.923)

Antifungal (0.878)
Antibacterial (0.859)

156 Anesthetic general (0.907)
Angiogenesis inhibitor (0.883)

Antineoplastic (0.882)
Anti-hypercholesterolemic (0.821)

157 Anesthetic general (0.916)
Angiogenesis inhibitor (0.891)

Antineoplastic (0.899)
Anti-hypercholesterolemic (0.837)

158 Anesthetic general (0.956)
Angiogenesis inhibitor (0.932)

Antineoplastic (0.909)
Anti-hypercholesterolemic (0.788)

159 Anesthetic general (0.956)
Angiogenesis inhibitor (0.932)

Antineoplastic (0.909)
Anti-hypercholesterolemic (0.788)

* Only activities with Pa > 0.7 are shown.

By categorizing and numbering steroids bearing an α,β-epoxy group, researchers and
scientists can effectively study their structure–activity relationships, biological functions,
and potential therapeutic applications in various fields, including medicine, pharmacology,
and biochemistry.
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2. Steroids Bearing a 4,5-Epoxy Group

Steroids bearing a 4,5-epoxy group are a specific subset of steroids that possess
an epoxy (oxirane) ring structure at the 4th and 5th positions of the steroid backbone.
This unique configuration contributes to their distinct chemical and biological properties.
Steroids bearing a 4,5-epoxy group may exhibit unique biological activities and have been
investigated for their potential therapeutic applications. The presence of the epoxy group
can influence the compound’s interactions with receptors, enzymes, and other molecular
targets, leading to specific physiological effects. Research on steroids with a 4,5-epoxy
group aims to understand their mechanisms of action, structure–activity relationships, and
potential pharmacological applications. By exploring the properties and activities of these
compounds, scientists strive to uncover new insights into their roles in health, disease, and
therapeutic interventions [9–13,16–20].

The gorgonian extract of Leptogorgia sarmentosa, a type of coral, has been found to con-
tain three cytotoxic steroids: (20S)-20-hydroxy-cholestane-3,16-dione (1), (16S,20S)-16,20-
dihydroxycholestan-3-one (2), and (20S)-20-hydroxycholest-1-ene-3,16-dione (3). These
compounds are commonly known as yonarasterols D, E, and F, respectively [21]. The
biological activities of these steroids have been investigated, and their cytotoxic properties
have been demonstrated against four tumor cell lines. The percentage distribution of the
biological activity of steroid (1) is depicted in Figure 2, providing insights into its potency
and efficacy. Studies have shown that these isolated steroids exhibit significant cytotoxicity,
with an effective dose (ED50) of 1 µg/mL against the tested tumor cell lines. This cytotoxic
activity suggests their potential as candidates for further exploration in cancer research
and drug development. The identification and characterization of these cytotoxic steroids
derived from the gorgonian extract highlight the rich biodiversity of marine sources and
their potential as a valuable reservoir of bioactive compounds. The investigation of these
compounds contributes to the ongoing efforts to discover new therapeutic agents for the
treatment of cancer and other diseases.
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Figure 2. Percentage distribution of biological activities associated with a steroid bearing a 4,5-epoxy
group (1) derived from the gorgonian extract of Leptogorgia sarmentosa. This steroid exhibits a wide
range of pharmacological properties, making it a compound of significant interest. The graph provides
valuable information regarding the distribution of the biological activities associated with this specific
steroid. It highlights the various pharmacological effects and potential therapeutic applications that
have been observed or predicted for compound 1. Dominant and additional activities are indicated
under the following numbers: 1. apoptosis agonist (11.7%), 2. antineoplastic (11.7%), 3. antineoplastic
(liver cancer) (9.4%), 4. prostate cancer treatment (7.9%), 5. antineoplastic (lymphocytic leukemia) (7.8%),
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6. anti-hypercholesterolemic (10.8%), 7. immunosuppressant (10.5%), 8. hepatic disorders treatment (10.4%),
9. anti-eczematic (10%), and 10. anti-psoriatic (9.8%). By understanding the percentage distribution of
these biological activities, researchers can gain insights into the compound’s multifaceted nature and
explore its potential uses in different areas of pharmacology. These activities may include but are
not limited to cytotoxicity, anti-inflammatory effects, antimicrobial properties, or interactions with
specific receptors or enzymes. The wide range of pharmacological properties exhibited by steroid 176
from the gorgonian extract underscores its potential as a valuable resource for drug discovery and
development. Further studies are likely necessary to fully elucidate the mechanisms of action and to
assess the compound’s safety and efficacy profiles. The exploration of steroids bearing a 4,5-epoxy
group and their biological activities contributes to our understanding of the diverse pharmacological
potential of natural compounds. It underscores the importance of investigating marine sources and
their unique chemical constituents for the discovery of new therapeutic agents and the advancement
of modern medicine.

Monoglycoside kurilensoside H (4) has been isolated from the alcoholic extract of
the Far Eastern starfish Hippasteria kurilensis, which was collected near the Kuril Islands.
The chemical structure of kurilensoside H is depicted in Figure 3, and a sample of the
starfish is shown in Figure 4. Notably, the aglycon moiety of kurilensoside H represents the
second known instance of marine polar steroids containing a 4,5-epoxy functionality. This
unique feature adds to the compound’s chemical novelty and biological significance [22].
Another remarkable discovery is the identification of an unprecedented non-sulfated sterol,
4β,5β-epoxy-2β,3α,12β,22S-tetrahydroxy-14α-methylcholest-7,9(11)-dien-6,24-dione (5),
derived from a marine sponge species, Xestospongia sp., obtained from the Philippines.
This sterol exhibits a complex structure with a 4,5-epoxy group and multiple hydroxy
groups. Importantly, it has been found to act as an inhibitor of HIV-1 integrase, making it a
potential candidate for anti-HIV therapeutic research [23]. The discovery of compounds
like kurilensoside H and sterol 5 further underscores the vast chemical diversity and
biological potential of marine organisms. These findings contribute to our understanding
of the unique natural products derived from the marine environment and their potential
applications in medicine and drug development.
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of these compounds as antineoplastic agents, with a confidence level of over 90%. Antineoplastic
activity refers to the ability of a substance to inhibit or prevent the growth and proliferation of cancer
cells. The evaluation of the antineoplastic activity of these specific steroids is of great interest due to
their unique chemical structures derived from marine sources. Steroid 1, obtained from the gorgonian
extract of Leptogorgia sarmentosa, exhibits significant cytotoxicity against tumor cell lines. Steroid 4,
known as kurilensoside H, isolated from the Far Eastern starfish Hippasteria kurilensis, possesses a
4,5-epoxy functionality and shows potential antineoplastic properties. Steroid 5, an unprecedented
non-sulfated sterol derived from the marine sponge Xestospongia sp., exhibits antineoplastic activity
along with inhibition of HIV-1 integrase. The 3D graph demonstrates the predicted and calculated
activity of these steroids as antineoplastic agents. A confidence level over 90% indicates a high degree
of reliability in these predictions. Understanding the potential antineoplastic activity of steroids
bearing a 4,5-epoxy group from marine sources is crucial for identifying new compounds for cancer
treatment and drug development. Red is strong activity, Blue—poor acvtivity.
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Figure 4. Specimens of marine organisms that have been the source of the discussed steroids. In
particular, image (a) represents the gorgonian Leptogorgia sarmentosa, which is known to contain
steroids (1–3). The image (b) corresponds to the Far Eastern starfish Hippasteria kurilensis, which is
the source of steroid (4). The image (c) represents the marine sponge Xestospongia sp., which has
yielded steroid (5). The image (d) provides another perspective of the marine sponge Xestospongia sp.,
highlighting its significance as a source of the mentioned steroid. These visual representations of the
marine organisms help to establish a connection between the natural sources and the steroids under
discussion. By observing these organisms, one can appreciate the diverse habitats and ecological
niches from which these compounds are derived. The use of such imagery in scientific research aids
in the documentation, identification, and understanding of marine organisms and their associated
bioactive compounds.

3. Steroids Bearing a 5,6-Epoxy Group

Steroids bearing a 5,6-epoxy group are a specific class of compounds that possess a cyclic
ether functional group at the 5th and 6th carbon positions of the steroid backbone [2,9,10].
These steroids exhibit unique chemical structures and often display interesting biological
activities. The specific biological activities and applications of steroids bearing a 5,6-
epoxy group may vary depending on the compound and its chemical structure. Further
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research is needed to fully understand the pharmacological potential and therapeutic
applications of these compounds. As an example, there are three known types of 5,6-epoxy
steroids: Epoxycholesterol, this steroid is characterized by a 5,6-epoxy functionality and is
found naturally in certain marine organisms and plants. It has been investigated for its
potential effects on cholesterol metabolism and as a precursor for the synthesis of bioactive
compounds. Epoxyprogesterone, this steroid derivative contains a 5,6-epoxy group and is
structurally related to progesterone. It has been studied for its hormonal activities and
potential applications in reproductive medicine. Epoxyandrostenedione, this compound is an
androstenedione derivative that possesses a 5,6-epoxy group. It has been explored for its
potential as an androgenic or estrogenic agent and its effects on hormone regulation [24–26].

The ethanolic extract of the marine sponge Ircinia aruensis yielded several cytotoxic
epoxy steroids, including 5α,6α-epoxystigmasta-7-en-3β-ol (6) and three other compounds
(7–9). These compounds have shown significant cytotoxic activity and were isolated from
the sponge specimen of I. aruensis, as depicted in Figure 5 [27]. Another noteworthy dis-
covery is the polyhydroxysteroid isihippurol B (10) obtained from the MeOH extract of
the gorgonian Isis hippuris. The structure of isihippurol B is depicted in Figure 6, and
its biological activity is detailed in Table 2. This polyhydroxysteroid showcases unique
chemical characteristics and possesses significant biological activity [28]. Additionally, a
rare poly-hydroxysteroid, (1α,3β,5β,6β,11α,15α)-5,6-epoxy-gorgostane-1,3,11,15-tetrol (11),
was discovered in the extract of the gorgonian Isis hippuris. This compound represents a
unique example of a polyhydroxysteroid bearing a 5,6-epoxy group [29]. The identifica-
tion and characterization of these steroidal compounds from marine sources expand our
understanding of the chemical diversity present in marine organisms. Their unique struc-
tures and demonstrated biological activities provide valuable insights into their potential
applications in various fields, including medicine and drug development.
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Figure 5. Steroids bearing the 5,6-epoxy group have been found in some marine invertebrates. Thus,
steroid (10) was found in the gorgonian Isis hippuris (a); other epoxy steroids (7–9) were isolated from
the marine sponge of Ircinia aruensis (b); steroid (13) was found in the soft coral Lobophytum sp. (c),
while steroid (12) was isolated from the soft coral Pseudopterogorgia americana (d).
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The soft coral Pseudopterogorgia americana produces an antiproliferative compound
called (1β,3β,5α,6α)-5,6-epoxy-1,3,11-trihydroxy-9,11-seco-gorgostan-9-one (12) [30], which
is an epoxy secosterol. In addition, three 5,6-epoxy secosterols were discovered in the
soft coral Lobophytum sp. (13) [31], and two epoxy secosterols named 14 and 15 were
found in the sponge Aplysilla glacialis [32]. Notably, both 14 and 15 exhibited anticancer
activity. Furthermore, the extract of the Far Eastern sponge Geodinella robusta contained
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topsentisterols B2 (16), B3 (17), and B4 (18) [33]. These compounds are epoxy steroids with
either an α- or β-hydroxyl group positioned at position 17. A three-dimensional graph of
topsentisterol B4 (18) is shown in Figure 7.

The octocoral Sinularia lochmodes, collected in the waters of Taiwan, produces cytotoxic
steroids (19–21) [34,35]. Their structures can be seen in Figure 8, and the biological activity
is summarized in Table 3. Among these steroids, gibberoepoxysterol (22) displayed mild
activity. In addition, the colonial soft coral Clavularia viridis, found on Green Island, Taiwan,
yielded two mildly cytotoxic compounds known as stoloniferones I (23) and J (24) [36].
Another mildly cytotoxic compound, sinugrandisterol D (25), a trihydroxylated sterol, was
isolated from Sinularia grandilobata in Kenting, Taiwan [37].

The sponge Ircinia aruensis, collected from Naozhou, China, produced the epoxysterol
(26), which exhibited moderate cytotoxic activity [38]. Furthermore, the elephant ear sponge
Ianthella species, found in Namyet, Vietnam, yielded 5,6α-epoxy-petrosterol (27), which
displayed cytotoxic properties and induced apoptosis [39]. Additionally, a poly-hydroxy
steroid called zahramycin A (28, a 3D graph can be seen in Figure 9) was isolated from the
polar fraction of the extract obtained from the coral Sarcophyton trocheliophorum [40].
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Figure 7. 3D graph illustrating the predicted and calculated apoptosis activity of steroids bearing
a 5,6-epoxy group. Specifically, compounds 7, 8, and 18, which were isolated from marine sources,
are depicted in the graph. The graph demonstrates the correlation between the chemical structure
of these compounds and their potential to induce apoptosis. The high confidence level of over
95% suggests a strong likelihood of their apoptotic activity. Apoptosis is a programmed cell death
process that plays a crucial role in various biological processes, including development, tissue
homeostasis, and elimination of damaged or potentially harmful cells. The induction of apoptosis is
an important mechanism for anticancer agents as it can selectively target and eliminate cancer cells.
This information highlights the significance of these compounds in the field of cancer research and
suggests their potential as promising candidates for the development of anticancer therapies. Further
studies and experimental validations are usually conducted to confirm the apoptotic activity of these
compounds and explore their mechanisms of action.
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The (24E)-5α,6α-epoxystigmasta-7,24(28)-dien-3β-ol (29) was isolated from the South
China Sea sponge Phyllospongia foliascens; however, its biological activity has not been
studied [41]. Clavularia viridis has been found to produce (3α,5β,6β,11α,22E,24R)-5,6-
epoxy-3,11-dihydroxyergost-22-en-1-one (30), and although its structure has been deter-
mined, its activity has not been investigated [42]. The bamboo coral Isis hippuris is a
source of polyhydroxylated sterols (31–34) that exhibit antiviral activity against human
cytomegalovirus [43,44]. These sterols possess multiple hydroxyl groups and have shown
potential as antiviral agents.



Biomedicines 2023, 11, 2237 18 of 61
Biomedicines 2023, 11, x FOR PEER REVIEW 18 of 63 
 

 
Figure 9. 3D graph illustrating the predicted and calculated respiratory analeptic activity of steroids 
bearing a 5,6-epoxy group. Specifically, compounds 24, 27, and 28, which were isolated from marine 
sources, are represented in the graph. The graph provides insights into the relationship between the 
chemical structure of these compounds and their potential to exhibit respiratory analeptic activity. 
Respiratory analeptic activity refers to the ability of certain compounds to stimulate and enhance 
respiratory function, particularly in cases of respiratory depression or impairment. The respiratory 
analeptic activity shown by three 5,6-epoxy steroids, two from the soft coral Clavularia viridis (24) 
and the coral Sarcophyton trocheliophorum (27) and a third steroid (28) from the marine sponge 
Ianthella sp., can be called a great success. These compounds can have therapeutic potential in con-
ditions such as respiratory distress or respiratory depression caused by various factors. The high 
confidence level of over 97% suggests a strong likelihood of their respiratory analeptic activity. This 
indicates that these compounds have the potential to stimulate and enhance respiratory function. 
However, it is important to note that further experimental studies and validations are typically re-
quired to confirm the respiratory analeptic activity of these compounds and to explore their under-
lying mechanisms. 

The (24E)-5α,6α-epoxystigmasta-7,24(28)-dien-3β-ol (29) was isolated from the South 
China Sea sponge Phyllospongia foliascens; however, its biological activity has not been 
studied [41]. Clavularia viridis has been found to produce (3α,5β,6β,11α,22E,24R)-5,6-
epoxy-3,11-dihydroxyergost-22-en-1-one (30), and although its structure has been deter-
mined, its activity has not been investigated [42]. The bamboo coral Isis hippuris is a source 
of polyhydroxylated sterols (31–34) that exhibit antiviral activity against human cytomeg-
alovirus [43,44]. These sterols possess multiple hydroxyl groups and have shown potential 
as antiviral agents. 

4. Steroids Bearing 7,8- and 8,9-Epoxy Groups 
Steroids bearing a 7,8-epoxy group are a specific class of steroids that possess an 

epoxy functional group at the 7th and 8th carbon positions [2,9,10]. This modification al-
ters the chemical structure of the steroid and can potentially impart unique biological ac-
tivities and properties. The biological activities and functions of steroids bearing a 7,8-

Figure 9. 3D graph illustrating the predicted and calculated respiratory analeptic activity of steroids
bearing a 5,6-epoxy group. Specifically, compounds 24, 27, and 28, which were isolated from marine
sources, are represented in the graph. The graph provides insights into the relationship between the
chemical structure of these compounds and their potential to exhibit respiratory analeptic activity.
Respiratory analeptic activity refers to the ability of certain compounds to stimulate and enhance
respiratory function, particularly in cases of respiratory depression or impairment. The respiratory
analeptic activity shown by three 5,6-epoxy steroids, two from the soft coral Clavularia viridis (24) and
the coral Sarcophyton trocheliophorum (27) and a third steroid (28) from the marine sponge Ianthella sp.,
can be called a great success. These compounds can have therapeutic potential in conditions such as
respiratory distress or respiratory depression caused by various factors. The high confidence level
of over 97% suggests a strong likelihood of their respiratory analeptic activity. This indicates that
these compounds have the potential to stimulate and enhance respiratory function. However, it is
important to note that further experimental studies and validations are typically required to confirm
the respiratory analeptic activity of these compounds and to explore their underlying mechanisms.

4. Steroids Bearing 7,8- and 8,9-Epoxy Groups

Steroids bearing a 7,8-epoxy group are a specific class of steroids that possess an epoxy
functional group at the 7th and 8th carbon positions [2,9,10]. This modification alters the
chemical structure of the steroid and can potentially impart unique biological activities and
properties. The biological activities and functions of steroids bearing a 7,8-epoxy group
can vary depending on their specific chemical structure and context. They may exhibit
diverse activities such as modulation of lipid metabolism, regulation of nuclear receptors,
or involvement in inflammatory processes. Further research is often required to fully un-
derstand their biological functions and potential therapeutic applications. Some examples
of steroids bearing a 7,8-epoxy group are included in the following. 7α,8α-Epoxycholesterol:
This steroid is a naturally occurring oxysterol found in various biological sources. It has
been implicated in cholesterol metabolism and as a precursor in the synthesis of steroid
hormones [10]. 7α,8α-Epoxy-24(S)-hydroxycholesterol: This compound is a metabolite of
cholesterol and has been identified as a potent endogenous agonist for the liver X receptor
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(LXR), a nuclear receptor involved in cholesterol homeostasis. 7α,8α-Epoxy-5α-chol-6-en-
3β-ol: This steroid is a derivative of cholesterol and has been investigated for its potential
anti-inflammatory and antioxidant properties [10]. 7α,8α-Epoxy-5α-cholane-3β,6α-diol: This
compound is a bile acid derivative and has been studied for its role in regulating cholesterol
and bile acid metabolism [10].

Steroids bearing an 8,9-epoxy group are a specific class of steroids that possess an
epoxy functional group at the 8th and 9th carbon positions [2,9,10,15]. This modification
alters the chemical structure of the steroid and can potentially impart unique biological
activities and properties. Some examples of steroids bearing an 8,9-epoxy group are
included in the following. 8α,9α-Epoxy-5β,6β-epoxycholestan-3β-ol: This compound is a
steroidal alkaloid found in certain marine sponges. It has been investigated for its cytotoxic
and antiproliferative activities against cancer cells. 8α,9α-Epoxy-3α-hydroxycholest-4-en-6-one:
This steroid is a synthetic compound that has been studied for its anti-inflammatory and
antitumor properties. It has shown potential as an inhibitor of inflammation and as a
suppressor of tumor cell growth. 8α,9α-Epoxy-5α-cholestane-3β,7α-diol: This compound is a
naturally occurring sterol found in certain marine organisms. It has been investigated for
its potential antiviral activity against human cytomegalovirus (HCMV). 8α,9α-Epoxy-5α,6β-
epoxycholestan-3β-ol: This steroidal alkaloid is isolated from marine organisms and has
exhibited cytotoxic activity against cancer cells. The biological activities and functions of
steroids bearing an 8,9-epoxy group can vary depending on their specific chemical structure
and context. They may possess cytotoxic, antiproliferative, anti-inflammatory, antitumor,
or antiviral properties [9,10,15].

Two rare 7,8-epoxy polyhydroxysteroids, namely 35 and 36, were obtained from the
extract of the gorgonian Acabaria undulata [45]. The structures of these compounds can be
seen in Figure 10, and their biological activity is summarized in Table 4. Additionally, a
triterpene glycoside called eryloside U (37), bearing the 7,8-epoxide group, was isolated
from the sponge Erylus goffrilleri, which was collected near Arresife-Seko Reef in Cuba [46].
A 3D graph representing eryloside U (37) is depicted in Figure 11. Furthermore, several
similar oxidized lanostane and nor-lanostane derivatives (38–42) were isolated from a
sponge Penares sp., which was collected from the waters of Vietnam [47]. These compounds
likely exhibit unique structural features due to the presence of the 7,8-epoxide group. The
biological activities and potential therapeutic applications of these compounds are typically
studied to explore their pharmacological significance and potential for drug development.

The gorgonian Acabaria undulata yielded three steroids (43–45) that share a common
structural feature of a 7α,8α-epoxy-3β,5α,6α-trihydroxyl functionality. These steroids ex-
hibited moderate cytotoxicity and demonstrated inhibitory activity against phospholipase
A2 [48].

Astropectenol C (46), a rare steroid bearing an 8,9-epoxy group, was obtained from a
methanol extract of the starfish Astropecten polyacanthus [49]. It possesses cytotoxic properties.
Another compound, (3β,5ξ,7β,8β,14α,24R)-7,8-Epoxy-14-methoxy-4-methyleneergostan-3-
ol (47), was isolated from the sponge Theonella swinhoei [50]. A sample of this sponge
is shown in Figure 12. The cytotoxic polyoxygenated sterols homaxisterols B1 (48, a
3D graph shown in Figure 13) and B2 (49) were isolated from the MeOH extract of the
marine sponge Homaxinella sp. These sterols are characterized by their unique 5,6:8,9-
diepoxy structure, which was isolated from a marine organism for the first time [51]. These
compounds highlight the diverse array of bioactive steroids bearing epoxy groups found in
marine organisms. Their cytotoxicity and inhibitory activity against specific enzymes make
them potential candidates for further exploration and potential applications in various
biomedical fields.
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Figure 11. A 3D graph showing the predicted and calculated hepatoprotective activity of a steroid
bearing a 7,8-epoxy group from the sponge Erylus goffrilleri (37) with over 99% confidence. It is
known that aqueous or aqueous-alcoholic extracts of the leaves or roots of some plants, such as
Andrographis rissumte, Eclipta alba, Phyllanthus maderaspatensis, Picrorrhiza kurroa, Silibum marianum
or Trichopus zeylanicus, have a hepatoprotective effect. However, the fact that the steroid bearing
a 7,8-epoxy group from the sponge Erylus goffrilleri has hepatoprotective activity with the highest
degree of certainty is an extremely rare case.
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isms. These include the gorgonian Acabaria undulata (43–45) (a), the starfish Astropecten polyacanthus
(46) (b), the sponge Theonella swinhoei (47) (c), and the soft coral Pseudopterogorgia elisabethae (50) (d).



Biomedicines 2023, 11, 2237 22 of 61

Biomedicines 2023, 11, x FOR PEER REVIEW 22 of 63 
 

 
Figure 12. Steroids bearing 7,8- and 8,9-epoxy groups have been discovered in various marine or-
ganisms. These include the gorgonian Acabaria undulata (43–45) (a), the starfish Astropecten polyacan-
thus (46) (b), the sponge Theonella swinhoei (47) (c), and the soft coral Pseudopterogorgia elisabethae (50) 
(d). 

 
Figure 13. 3D graph depicting the predicted and calculated chemopreventive activity of steroids 
bearing an 8,9-epoxy group derived from the sponges Homaxinella sp. (48) and Microscleroderma spi-
rophora (51). The graph provides insights into the relationship between the chemical structures of 
these compounds and their potential to exhibit chemopreventive activity. Chemopreventive activity 
refers to the ability of certain compounds to prevent, inhibit, or slow down the development or 
progression of cancer. These compounds can potentially interfere with carcinogenesis, suppress 

Figure 13. 3D graph depicting the predicted and calculated chemopreventive activity of steroids
bearing an 8,9-epoxy group derived from the sponges Homaxinella sp. (48) and Microscleroderma
spirophora (51). The graph provides insights into the relationship between the chemical structures of
these compounds and their potential to exhibit chemopreventive activity. Chemopreventive activity
refers to the ability of certain compounds to prevent, inhibit, or slow down the development or
progression of cancer. These compounds can potentially interfere with carcinogenesis, suppress tumor
growth, or enhance the body’s natural defense mechanisms against cancer cells. The high confidence
level of over 90% indicates a strong likelihood of their chemopreventive activity. This suggests
that these compounds may possess properties that could help prevent or inhibit the development
of cancer. However, it is important to note that further experimental studies and validations are
usually required to confirm the chemopreventive activity of these compounds and to investigate
their underlying mechanisms. Overall, this information highlights the potential significance of
these compounds in the field of cancer research and suggests their potential as candidates for the
development of chemopreventive strategies.

Elistanol (50) was isolated from both the aqueous ethanolic and cold hexane extracts of
dried soft coral Pseudopterogorgia elisabethae collected from Puerto Rico [52]. This compound
is obtained from the coral and likely possesses unique biological properties. Furthermore,
the Senegalese marine sponge Microscleroderma spirophora yielded (3β,8α,9α,24S)-8,9-epoxy-
3-methoxy-stigmast-14-ene (51) [53]. The 3D graph representing the structure of compound
51 is shown in Figure 13. The isolation of this compound from the marine sponge suggests
its potential significance in the field of marine natural product research. Both compounds,
elistanol (50) and (3β,8α,9α,24S)-8,9-epoxy-3-methoxy-stigmast-14-ene (51), highlight the
diversity of bioactive compounds that can be obtained from marine sources [52,53].

5. Steroids Bearing 8,14-, 9,11- and 11,12-Epoxy Groups

Steroids bearing different epoxy groups at specific carbon positions exhibit unique
structural features and potentially possess distinct biological activities. Following are
examples of steroids bearing specific epoxy groups. Steroids bearing an 8,14-epoxy group:
One example is 8α,14α-epoxy-5α-cholan-3β-ol (also known as chenodeoxycholic acid
epoxide), which is a derivative of chenodeoxycholic acid [10,15]. This compound has
been studied for its potential as an inhibitor of cholesterol absorption. Steroids bearing a
9,11-epoxy group: An example is 9α,11α-epoxy-17α-hydroxy-5α-androstan-3-one, which
is a synthetic steroid. It has been investigated for its potential anti-inflammatory and
immunosuppressive properties. Steroids bearing an 11,12-epoxy group: An example is
11α,12α-epoxy-5α-androstan-3,17-dione (also known as adrenosterone epoxide). This
compound is a derivative of adrenosterone and has been studied for its potential as an



Biomedicines 2023, 11, 2237 23 of 61

anti-inflammatory agent and its effect on steroid metabolism. These examples demonstrate
the diversity of steroids bearing specific epoxy groups and their potential roles in various
physiological processes [9,10,15].

Steroids containing 8,14-epoxy groups (52–60), 9,11-epoxy groups (61–64), and 11,12-
epoxy groups (65–72, structures are shown in Figure 14, and activity is shown in Table 5)
are naturally found in small amounts in various sources. The distribution of these steroids
spans fungi, plants, and marine invertebrates, showcasing their wide occurrence in the
natural world. For instance, a polyoxygenated steroid with a 9,11-epoxy group (52) was
isolated from the crude extract of the marine sponge Dysidea sp. Collected in Australia. This
compound exhibited inhibitory activity against the binding of [I125] interleukin-8 [IL-8] to
the human recombinant IL-8 receptor type A [54].
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In the same Dysidea genus, Dysideasterol G (53), 19-deoxy-dysideasterol A (54), dy-
sideasterol C (55), and dysideasterol B (56) were identified in the active organic extract of 
an Okinawan marine sponge. These compounds displayed cytotoxic effects against hu-
man epidermoid carcinoma A431 cells, with IC50 values ranging from 0.15 to 0.3 µM [55]. 
Additionally, (3β,5α,6α,9α,11α)-9,11-epoxycholest-7-ene-3,5,6-triol (57) and (58) were iso-
lated from the sponge Dysidea sp. [54,56], while (3β,5α,6β,9α,11α)-9,11-epoxycholest-7-
ene-3,5,6-triol (59) was obtained from the marine gastropod Planaxis sulcatus [57]. These 
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In the same Dysidea genus, Dysideasterol G (53), 19-deoxy-dysideasterol A (54),
dysideasterol C (55), and dysideasterol B (56) were identified in the active organic ex-
tract of an Okinawan marine sponge. These compounds displayed cytotoxic effects against
human epidermoid carcinoma A431 cells, with IC50 values ranging from 0.15 to 0.3 µM [55].
Additionally, (3β,5α,6α,9α,11α)-9,11-epoxycholest-7-ene-3,5,6-triol (57) and (58) were iso-
lated from the sponge Dysidea sp. [54,56], while (3β,5α,6β,9α,11α)-9,11-epoxycholest-7-
ene-3,5,6-triol (59) was obtained from the marine gastropod Planaxis sulcatus [57]. These
9,11-epoxy steroids exhibit distinct structural variations. Furthermore, the sponge Theonella
swinhoei from the Solomon Islands (Malaita and Vangunu Is.) yielded conicasterol F (59)
and theonellasterol I (60) [58]. These compounds show potential in modulating bile acid
homeostasis in the liver, thereby offering possibilities for the management of metabolic
disorders (Figure 15).
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Figure 15. Steroids bearing 8,14-, 9,11-, and 11,12-epoxy groups have been identified in various
organisms. These include the nudibranch Chromodoris obsolete (63) (a); the marine dinoflagellate
Amphidinium gibbosum (64) (b); the fungus Aspergillus versicolor (68) (c); and the lumpy bracket
mushroom Trametes rossum (70) (d). Trametes rossum, also known as the tubercle brace, is a tinder
fungus that causes white rot and is typically found on beech stumps and dead wood of other
hardwoods. Extracts from this fungus have exhibited pharmacological properties such as antioxidant,
anti-inflammatory, and anticancer effects.

The soft corals Sinularia dissecta and Sinularia sp. From southern India have been a
source of bioactive polyhydroxy steroids (61 and 62) [59], respectively. These compounds,
derived from the soft corals, possess multiple hydroxyl groups and exhibit potential
biological activities. In addition, two highly oxygenated steroids, (11β,12β,15α,16α)-11,12-
epoxy-15,16-spongianediol (63), were isolated from the nudibranchs Chromodoris obsolete
(Mollusca) [60]. These steroids contain an 11,12-epoxy group and demonstrate unique
structural features. Gibbosterol A (64), a water-soluble 14-membered carbocyclic steroid
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with a twisted trans-9,11-epoxy ring, was discovered from the South China Sea dinoflagel-
late Amphidinium gibbosum [61]. This compound exhibits notable agonistic effects against
the human pregnane-X-receptor. The discovery of these compounds highlights the diverse
sources of steroids bearing 11,12-epoxy and trans-9,11-epoxy groups and their potential as
biologically active molecules.

Two steroids bearing the rare 8,14-epoxy group have been identified in marine sponge
extracts and marine-derived fungi. These compounds showcase the unique structural
variations found in natural sources. One of these unusual steroids, (3β,5α,8α,14α,24R)-
8,14-epoxy-3-methoxyergost-9(11)-ene (65), was detected in the sponge Jereicopsis graphidio-
phora [62]. This compound features an 8,14-epoxy group, along with additional functional
groups, and is sourced from the marine environment. Another steroid, (22E)-25-carboxy-
8β,14β-epoxy-4α,5α-dihydroxyergosta-2,22-dien-7-one (66), was found in two marine-
derived fungi species: Aspergillus flavus [63] and Acremonium fusidioides RZ01 [64]. This
compound exhibits the rare 8,14-epoxy functionality along with other substituents.

The Red Sea marine sponge Biemna ehrenbergi has been found to contain ehrenasterol,
identified as (22E)-ergosta-22-ene-8,14-epoxy-3,7-dione (67) in an organic extract [65]. This
unique compound, with its 8,14-epoxy group, is derived from the marine sponge. A similar
epoxy ergostane sterol, named versisterol (68), was isolated from Aspergillus versicolor, an
endophytic fungus found in Avicennia marina [66]. Versisterol shares the characteristic
8,14-epoxy group and was identified in the fungal extract.

Edible mushrooms, Pleurotus eryngii and Panellus serotinus, produce a sterol known as
5α,9α-epidioxy-8α,14α-epoxy-(22E)-ergosta-6,22-dien-3β-ol (69). This compound, which
exhibits the three-dimensional structure shown in Figure 16, has also been found in extracts
from the lumpy bracket mushroom, Trametes rissum [67,68]. These mushrooms are recog-
nized as sources of the sterol compound with its unique 8,14-epoxy group. Furthermore,
a khayanolide-type limonoid with a 2-carbonyl group, named krishnolide A (70), was
isolated from the seeds of the Indian mangrove Xylocarpus moluccensis. The collection site
for the seeds was the mangrove swamp of Krishna estuary in Andhra Pradesh. Krishnolide
A, which contains an 8,14-epoxy group, exhibited moderate anti-human immunodeficiency
virus (HIV) activity [69]. The discovery of these compounds highlights the diverse sources
and potential biological activities associated with the 8,14-epoxy group.
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mentioned would typically represent the relationship between the chemical structure of the steroid
and its predicted and calculated antiprotozoal activity. With an accuracy level of over 94% confidence,
the graph suggests a strong likelihood of the compound’s antiprotozoal activity. Antiprotozoal
activity refers to the ability of a compound to combat or inhibit the growth and survival of protozoan
parasites. These parasites can cause diseases such as malaria, leishmaniasis, and toxoplasmosis.
The presence of the 8,14-epoxy group in the steroid from Papulaspora immersa may contribute to its
potential antiprotozoal properties.

A rapidly growing fungus called Papulaspora immersa was isolated from the roots and
leaves of Smallanthus sonchifolius, a plant belonging to the Asteraceae family, which is com-
monly known as Yacon. The fungus was cultivated using rice as a growth medium. During
the isolation process, an ergostane-type steroid with an 8,14-epoxy group, identified as
(22E,24R)-8,14-epoxyergosta-4,22-diene-3,6-dione (71), was discovered in the ethyl acetate
fraction of the fungus [70]. This unusual compound possesses a unique structure and is
derived from the fungal culture. In addition, a distinct ergostane-type steroid named pho-
mopsterone A (72) was isolated from the plant-derived fungus Phomopsis sp. TJ507A [71].
Phomopsterone A exhibits an unusual structure and is synthesized by the fungus obtained
from plants. The discovery of this compound highlights the diverse range of bioactive
compounds that can be derived from plant-associated fungi.

6. Steroids Bearing a 17,20-Epoxy Group

Steroids bearing a 17,20-epoxy group are a specific class of steroids that possess an
epoxy functional group at the 17th and 20th carbon positions [2,9,10]. This modification
alters the chemical structure of the steroid and can potentially impart unique biological
activities and properties. However, it is important to note that steroids with a 17,20-
epoxy group are relatively rare compared to other types of epoxy steroids, and their
biological activities are not as extensively studied. One example of a steroid bearing a 17,20-
epoxy group is 17α,20α-epoxyprogesterone, also known as pregnenolone hemisuccinate.
This compound is a synthetic derivative of progesterone and has been used in medical
research and as a pharmaceutical intermediate [9,10]. The biological activities and functions
of steroids bearing a 17,20-epoxy group can vary depending on their specific chemical
structure and context.

Two unusual steroids, 17β,20β-epoxy-23,24-dimethylcholest-5-ene-3β,22-diol (73) and
its 3β,22-diacetate (74), were discovered in the Indian Ocean soft coral Sarcophyton crasso-
caule (example see in Figure 17) [72]. These compounds exhibit a unique 17β,20β-epoxy
group and a specific chemical structure. Figure 18 presents the percentage distribution of the
biological activity associated with steroid 73. In addition, a (22R,23S,24S)-polyoxygenated
steroid named hippuristerone A (75) was isolated from the Taiwanese gorgonian Isis hip-
puris [73]. This compound possesses an unusual 17β,20β-epoxy group along with multiple
oxygenated functional groups. Further investigations in the same line of research led to the
isolation of 17β,20β-epoxy (22R,23S,24S)-steroids, known as hippuristerones E−I (76–79),
from the gorgonian coral Isis hippuris [74]. The structures of these compounds are depicted
in Figure 19, and their biological activities are summarized in Table 6. These discoveries
highlight the presence of unique steroids bearing a 17β,20β-epoxy group in soft corals and
gorgonian corals. The investigation of their biological activities provides insights into their
potential roles and applications in various fields of research.
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crassocaule (73, 74, and 85) (a,b). This Formosan soft coral species has been discovered in the Western
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active metabolites, exhibiting various pharmacological properties. These include anti-inflammatory
effects, cytotoxicity against human gastric adenocarcinoma cells, antiproliferative activity, and the
ability to induce apoptosis in gastric carcinoma cells.

Biomedicines 2023, 11, x FOR PEER REVIEW 28 of 63 
 

 
Figure 17. Steroids bearing the 17,20-epoxy group have been identified in the soft coral Sarcophyton 
crassocaule (73, 74, and 85) (a,b). This Formosan soft coral species has been discovered in the Western 
Pacific, New Caledonia, Taiwan, and Ryukyu Island waters. It serves as a rich source of biologically 
active metabolites, exhibiting various pharmacological properties. These include anti-inflammatory 
effects, cytotoxicity against human gastric adenocarcinoma cells, antiproliferative activity, and the 
ability to induce apoptosis in gastric carcinoma cells. 

 
Figure 18. The compound bearing a 17,20-epoxy group (73) found in the soft coral Sarcophyton cras-
socaule exemplifies a diverse range of pharmacological properties. Its percentage distribution of bi-
ological activities highlights its multifunctional nature. Dominant and additional activities are listed 
under the following numbers: 1. Anesthetic general (17.5%), 2. Angiogenesis inhibitor (17.3%), 3. Res-
piratory analeptic (17.3%), 4. Antineoplastic (17.3%), 5. Anti-hypercholesterolemic (16.2%), and 6. Immu-
nosuppressant (14.4%). 

Figure 18. The compound bearing a 17,20-epoxy group (73) found in the soft coral Sarcophyton
crassocaule exemplifies a diverse range of pharmacological properties. Its percentage distribution
of biological activities highlights its multifunctional nature. Dominant and additional activities are
listed under the following numbers: 1. Anesthetic general (17.5%), 2. Angiogenesis inhibitor (17.3%),
3. Respiratory analeptic (17.3%), 4. Antineoplastic (17.3%), 5. Anti-hypercholesterolemic (16.2%), and
6. Immunosuppressant (14.4%).
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The polyoxygenated steroids, hipposterone M–O (80–82), hipposterol G (83), and 
hippuristeroketal A (84), isolated from the Taiwanese octocoral Isis hippuris, were investi-
gated [75]. These pure compounds demonstrated inhibitory activity against human cyto-
megalovirus, with an EC50 value of 6 µg/mL. Additionally, the soft coral Sarcophyton cras-
socaule produced a compound known as (3β,17β,20R,22ζ,23ζ,24ζ)-17,20-epoxy-23-meth-
ylergost-5-ene-3,22-diol (85) [76]. The three-dimensional graph of compound 85 is de-
picted in Figure 20. 

Figure 19. Steroids bearing a 17,20-epoxy group. Magenta indicates the 17,20-epoxy group.

The polyoxygenated steroids, hipposterone M–O (80–82), hipposterol G (83), and
hippuristeroketal A (84), isolated from the Taiwanese octocoral Isis hippuris, were inves-
tigated [75]. These pure compounds demonstrated inhibitory activity against human
cytomegalovirus, with an EC50 value of 6 µg/mL. Additionally, the soft coral Sarcophy-
ton crassocaule produced a compound known as (3β,17β,20R,22ζ,23ζ,24ζ)-17,20-epoxy-23-
methylergost-5-ene-3,22-diol (85) [76]. The three-dimensional graph of compound 85 is
depicted in Figure 20.
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Figure 20. 3D graph illustrating the predicted and calculated activity of steroids bearing the 17,20-epoxy
group, derived from soft corals Sarcophyton crassocaule (73, 74, 75, and 85) and Isis hippuris (77), as potent
angiogenesis inhibitors. This graph demonstrates the relationship between their chemical structures
and their inhibitory effects on angiogenesis. The predicted and calculated activity values have been
determined with a high confidence level of over 90%. Red is strong activity, blue is poor activity.

Two steroids, namely (22R,23S)-3β-hydroxy-23-methyl-17,20-epoxyergost-5-en-22-yl
acetate (86) and (22R,23S)-5-hydroperoxy-23-methyl-5α-17,20-epoxyergost-6-ene-3β,22-
diol (87), have recently been discovered from the soft coral Lobophytum sp. Found in the
South China Sea [77].

7. Steroids Bearing a 22,23-Epoxy Group

Steroids bearing a 22,23-epoxy group are a specific type of steroid compound charac-
terized by the presence of an epoxy (oxygen bridge) moiety at the 22nd and 23rd positions
of the steroid nucleus [2,9,10]. This modification adds structural complexity and functional
diversity to the steroid molecule. These are just a few examples of steroids bearing a
22,23-epoxy group. The presence of this functional group can confer unique biological
activities and pharmacological properties to these compounds. Epoxymexerenone: This is a
synthetic steroidal compound with potential antitumor and anti-inflammatory activities. It
has been studied for its inhibitory effects on cancer cell growth. 22,23-Dihydrostigmasterol:
This plant sterol is a precursor for the synthesis of various steroidal compounds. It is found
in many plant species and is often used as a marker for plant-based foods. Lobophytumol
A: It is a diterpenoid steroid isolated from the soft coral Lobophytum rissum. It possesses
anti-inflammatory and cytotoxic activities [15].

Two diol 22,23-epoxy steroids have been discovered from the marine sponge Axinella
cf. bidderi. These compounds are identified as 17α-hydroxy-22,23-epoxycholest-5-en-3β-ol
(88) and 17α-hydroxy-22,23-epoxy-24-methylcholest-5-en-3β-ol (89). In vitro studies have
demonstrated that these isolated steroids exhibit activity against cell lines derived from the
prostate, ovary, pancreas, colon, and lung [78]. Furthermore, an extract obtained from the
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soft coral Lobophytum rotundum, collected from the Pangea Reef in Zanzibar, has yielded a
unique compound known as 3β-acetoxy-20,22-epoxy-24-norcholestane (90) [79]. A sample
of this coral is illustrated in Figure 21.
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Figure 21. Steroids bearing the 22,23-epoxy group have been discovered in various marine organisms.
These include the marine sponge Axinella cf. bidderi (88 and 89) (a), the soft coral Lobophytum rotundum
(90) (b), the Vietnamese starfish Archaster typicus (118) (c), and the starfish Henricia downeyae (112, 113,
and 114) (d). These findings highlight the presence of this specific steroid group in diverse marine
species, indicating its potential importance in their biological activities.

Steroidal sulfates known as acanthosterol sulfates A−J (91−100), whose structures
can be found in Figure 22, have been extracted from a Japanese marine sponge called
Acanthodendrilla sp. The antifungal activity of acanthosterol sulfates I and J (99 and 100)
against the yeast Saccharomyces cerevisiae A364A has been demonstrated [80]. In addition,
a steroidal sulfate named acanthosterol A (101) has been isolated from the same marine
sponge, along with nine other acanthosterol sulfates B–J (102–111), whose structures are
presented in Figure 22. The antifungal activity of acanthosterol sulfates I and J (110 and
111) against the yeast S. cerevisiae A364A has also been observed [80]. A three-dimensional
graph depicting the structure of acanthosterol A (101) can be found in Figure 23. Further
details on the activity of the acanthosterol sulfates are provided in Table 8.

Starfish, fascinating organisms of the marine world, possess a remarkable ability to
produce a vast array of biologically active metabolites [15,22]. These metabolites have
garnered significant interest in the field of medicine due to their diverse pharmacological
properties and potential applications in practical healthcare. Starfish-derived metabolites
have been studied extensively, revealing promising therapeutic potential in various areas
of medicine [22]. They have exhibited antimicrobial properties, making them potential
candidates for the development of novel antibiotics or antimicrobial agents. Addition-
ally, certain starfish metabolites have demonstrated anti-inflammatory effects, suggesting



Biomedicines 2023, 11, 2237 31 of 61

their potential use in treating inflammatory conditions. Furthermore, starfish-derived
compounds have shown promise as anticancer agents, with some exhibiting cytotoxic and
apoptosis-inducing effects on cancer cells [15,22,49].
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Figure 23. 3D graph depicting the predicted and calculated activity as angiogenesis inhibitors of
steroids bearing the 17,20-epoxy group derived from the marine sponge Acanthodendrilla sp. (91,
93, 96, 99, 101–103, 107, and 108). The graph provides a visual representation of their inhibitory
effects on angiogenesis with a high confidence level of over 90%. Angiogenesis inhibitors hold
significant potential as unique natural and/or synthetic agents in the fight against cancer as they
target the growth of blood vessels that support tumor growth rather than directly affecting tumor
cells themselves.

These compounds have the potential to contribute to the development of innovative
cancer therapies or serve as leads for drug discovery. Moreover, starfish metabolites have
displayed activities such as antiviral, antifungal, antioxidant, and immunomodulatory
effects. These properties make them attractive candidates for addressing various diseases
and conditions, including viral infections, fungal diseases, oxidative stress-related disorders,
and immune-related disorders. The exploration of starfish metabolites continues to unveil
their diverse and valuable pharmacological activities. Ongoing research aims to further
elucidate their mechanisms of action, optimize their therapeutic potential, and explore
their applications in practical medicine. The unique bioactive compounds derived from
starfish offer promising prospects for the development of novel drugs and therapeutic
interventions that can positively impact human health [15,22,81–84].

22,23-Epoxy steroid glycosides, namely downeyosides C (112), D (113), and E (114),
have been obtained from extracts of the starfish Henricia downeyae found in the Gulf of
Mexico [81]. Mild cytotoxic asterosaponins (115), (116), and (117) have been isolated
from the cushion star Culcita novaeguineae [82]. Archasteroside A (118), isolated from
the Vietnamese starfish Archaster typicus, exhibited moderate cytotoxic activities against
HeLa and mouse JB6 P(+) Cl41 cell lines [83]. Furthermore, the Far East starfish Hippasteria
kurilensis from the Sea of Okhotsk yielded hexaosides 22,23-epoxy steroid glycosides known
as hippasterioside A and B (119 and 120; the structures are presented in Figure 24) [84].
These compounds were found to inhibit the colony formation of human HT-29 colon
cancer cells.
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8. Miscellaneous Steroids with α,β-Epoxy Group Derived from Different Sources

After conducting an analysis of published articles on α,β-epoxides, it has been ob-
served that the 1,2-epoxy group is not present in natural sterols and related metabo-
lites [2,9,10]. Additionally, the 2,3-epoxy group is exceptionally rare in natural steroids and
isoprenoid lipids. Therefore, the category of miscellaneous steroids has been assigned to
the group containing the 2,3-epoxy functionality, along with other epoxy groups that will
be discussed.

In 1995, a steroid bearing a 2,3-epoxy group was first discovered in the seeds of Secale
cereale (rye), and it was identified as the brassinosteroid called secasterone. The compound
is known as (22R,23R,24S)-22,23-dihydroxy-2β,3β-epoxy-24-methyl-5α-cholestan-6-one
(121) [85]. Furthermore, a study involving the examination of an ethyl acetate extract ob-
tained from the calyces of Nicandra physaloides resulted in the isolation of three withanolides
(a depiction of the plant sample can be seen in Figure 25). These withanolides have been
designated as nicphysatones A, B, and C [86]. Through chemical analysis, it has been deter-
mined that nicphysatone C (122) possesses a 2,3-epoxy group, while both nicphysatones A
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(123) and B (124) contain a 6,7-epoxy group. Withanolides, which are structurally related to
these compounds, often exhibit variations of the γ-lactone moiety. For instance, taccalono-
lides O (125) and P (126; the structure is shown in Figure 26) have been discovered in lipid
extracts obtained from the rhizomes and tubers of Tacca subflabellata [87,88].
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Figure 25. In addition to their presence in marine organisms, rare and unusual steroids have also been
discovered in various plant extracts. These unique steroids offer intriguing insights into the diverse
chemical profiles found in the plant kingdom. Following are some notable examples: In Nicandra
physaloides (a), steroids (122, 123, and 124) have been identified. These compounds contribute to the
complex chemical composition of this plant species, potentially imparting it with distinct biological
activities. Tacca subflabellata (b) is another plant that harbors intriguing steroids. Steroids (125 and
126) have been isolated from this species, further adding to its chemical diversity. The discovery of
these steroids in Tacca subflabellata highlights the potential pharmacological significance of this plant.
Withania coagulans (c) yields an interesting steroid (127) upon isolation. This finding underscores
the potential bioactive properties associated with this plant and the unique chemical constituents it
possesses. Datura inoxia (d) is another plant known for its diverse chemical composition. Within its
aerial parts, steroids (139) and (140) have been identified. These compounds contribute to the overall
chemical complexity of Datura inoxia and may offer valuable pharmacological properties.

The genus Tacca comprises flowering plants that belong to the order Dioscoreales.
These plants are primarily found in tropical regions of South America, Africa, Australia,
Southeast Asia, and various oceanic islands. Within this genus, there are several species that
contain a diverse range of highly oxygenated ixocarpalactone-type withanolides [89–95].
One notable example of these withanolides is taccalonolide A (127) along with its ana-
log taccalonolide L (128) [89]. The chemical structure of taccalonolide L can be seen in
Figure 26, and its biological activity is detailed in Table 9. Extracts from Tacca plantaginea
T. paxiana T. subflabellata, and T. plantaginea have been found to contain over 20 different
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withanolides, including compounds such as 128, 129, taccalonolide M, 130, taccalonolide
G, 131, taccalonolide H, 132, taccalonolide Q, and 133, taccalonolide Y [90–94].
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Tacca plantaginea has specifically been found to contain three withanolides named plantagi-
olides A–D (134–136) [95]. Additionally, another withanolide called 14,15β-epoxywithanolide
I (137), has been isolated from Withania coagulans [96]. A similar steroidal lactone (138),
with a 3D graph shown in Figure 27, was originally isolated from W. adpressa [97] and
subsequently identified as a new compound from W. coagulans [98]. Furthermore, the
lactones daturalicin (139) and physagulin H (140) have been discovered in the aerial parts
of Datura inoxia [99] and Physalis angulata [100–102], respectively. These compounds share a
common feature of having a 14,15-epoxy group. In summary, the Tacca genus encompasses
flowering plants found in tropical regions worldwide. These plants contain a variety of
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highly oxygenated ixocarpalactone-type withanolides, including taccalonolide A and its
analog taccalonolide L. Other related withanolides have been identified in different species
of Tacca, along with additional withanolides found in Withania coagulans, W. adpressa, Datura
inoxia, and Physalis ngulate.
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Figure 27. 3D graph illustrating the predicted and calculated chemopreventive activity of miscel-
laneous steroids and isoprenoid lipids derived from plant species (131, 134–136, and 138). This
graph provides valuable insights into their potential as chemopreventive agents, demonstrating their
inhibitory effects on the development and progression of malignant neoplasms. The predicted and
calculated chemopreventive activity values have been determined with a high confidence level of
over 90%. Chemopreventive activity, a modern and advanced approach in the treatment of various
types of malignant neoplasms, involves the introduction of specialized chemicals or drugs known
as antitumor (antineoplastic) chemotherapeutic agents into the human body. These agents play a
crucial role in combating cancer by preventing its occurrence, inhibiting its growth, and reducing the
risk of tumor progression. The exploration of miscellaneous steroids and isoprenoid lipids derived
from plant species offers great potential in the development of novel chemopreventive strategies.
These natural compounds exhibit diverse chemical structures and unique properties that can target
specific molecular pathways involved in carcinogenesis. By analyzing the predicted and calculated
chemopreventive activity of these compounds through the 3D graph, we gain valuable insights into
their effectiveness and potential applications in preventing malignant neoplasms. This information
contributes to the ongoing efforts in developing advanced chemopreventive approaches and iden-
tifying promising candidates for further research and development in the field of oncology. The
utilization of chemopreventive agents is a crucial aspect of modern cancer treatment, and this 3D
graph serves as a valuable tool for assessing the chemopreventive potential of miscellaneous steroids
and isoprenoid lipids derived from plant species.

Pleurocin A (141), an abeo-ergostane-type steroid, was isolated from the fruiting bodies
of Pleurotus eryngii (Pleurotaceae). Its chemical structure can be seen in Figure 28, and its
biological activity is detailed in Table 10. Pleurocin A exhibited inhibitory activities against
NO production without significant cytotoxicity at concentrations lower than 30 µM [103].
Another compound, 24(S),28-epoxyergost-5-ene-3β,4α-diol (142), displayed cytotoxicity
against the acute leukemia (HL60) cell line, with an IC50 value of 33.5 µM. It also showed
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activity against the hepatoma cancer (HepG2) and colon adenocarcinoma (SW480) cell lines,
with IC50 values of 64.3 and 71 µM, respectively [104]. Breynceanothanolic acid (143), an
unusual triterpenoid derivative of 25-nor-ceanothic acid, was discovered in grated roots of
Breynia fruticose [105].
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Phomopsterone A (144), an ergostane-type steroid, was isolated from the plant-derived
fungus Phomopsis sp. TJ507A. This compound is an unprecedented ergosteroid that features
a rearranged bicyclo[3.3.1]nonane motif resulting from B-ring scission and a subsequent
180◦ rotation of the ring A during biosynthesis [106]. Vernonia amygdalina, a plant species,
yielded an unusual epoxide called (23S,24R,28S)-3β,22α-dihydroxy-7,8,9,11-tetra-dehydro-
24,28-epoxy-5α-stigmastane-21,23-carbolactone (145) [107]. The plant sample can be seen
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in Figure 29. Rhabdaprovidine G (146), a rare epoxide 6,6,5-tricyclic terpenoid, was isolated
from the Vietnamese sponge Rhabdastrella providentiae. This compound exhibits a novel
structure with five rings and nine chiral carbon centers in the iso-malabaricane triterpene
backbone [108].
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Figure 29. Fungal and plant species produce unusual steroids. Steroid (72) is produced by fungus
Phomopsis sp. (a); steroid (145) was isolated from the leaves of Vernonia amygdalina (b). V. amygdalina
is a perennial herb and extracts have been used in various folk medicines as remedies for protozoal
and bacterial infections. In addition, extracts are used to treat diseases such as colds, bronchitis, and
liver diseases. Steroid (147) was found in the leaves of Rosa laevigata (c). R. laevigata or the Cherokee
rose, is widely known in ethnic medicine as it has strong biological activity, and it is used in the
traditional medicine system to treat diabetes, nephropathy, myocardial damage, oxidative damage,
and liver damage. Plant extracts have antioxidant, anti-inflammatory, antiviral and antitumor activity,
as well as kidney-protective, immunomodulatory, lipid-lowering, cardiovascular, bacteriostatic, and
other pharmacological effects. Two steroids (149 and 150) were isolated from the branches and leaves
of Azadirachta indica (d). The plant A. indica has long been used in Ayurvedic and folk medicine
and is used in cosmetics and in organic farming applications. The leaves have long been used as a
traditional remedy for diabetes and can help control blood sugar levels. Extracts from all parts of
the tree are commonly used in shampoos to treat dandruff, as well as in soaps or creams for skin
conditions such as acne, psoriasis, and athlete’s foot.

Rosa laevigata, also known as Cherokee Rose, contains a rare 1,2-epoxy group oleanane
derivative named 2α,3α,19α,23-tetrahydroxyolean-12-en-28-oic acid (147) in its leaves.
This tree species is native to southern China and Taiwan, and it is invasive in the United
States [109]. Actaea racemosa, commonly known as black cohosh, black bugbane, black
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snakeroot, or rattle-top, is a flowering plant in the buttercup family. Its leaves contain the
unusual triterpene xyloside cimipodocarpaside (148) [110].

From the branches and leaves of Azadirachta indica, two tirucallane triterpenoids were
isolated: 24,25-epoxy-3β-hydroxy-20-oxo-7-tirucallene (149) and 22,23;24,25-diepoxy-3β-
hydroxy-7-tirucallene (150) [111]. The bark of Chisocheton ceramics yielded a rare limonoid
called ceramicine E (151). This compound exhibits inhibition of cell growth on various
cell lines, including HL-60, A549, MCF7, and HCT116 [112]. Extracts from Taraxacum
officinale contained several lupane and ursane triterpenoids (152–155). The 3D graph of
these compounds can be seen in Figure 30. Additionally, the leaves of Rehmannia glutinosa
also yielded lupane and ursane triterpenoids [113,114].
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Figure 30. 3D graph showcasing the predicted and calculated cytostatic activity of miscellaneous
steroids and isoprenoid lipids (152–155). This graph provides valuable insights into the potential
cytostatic effects of these compounds with a high confidence level of over 91%. Cytostatic activity
plays a vital role in cancer treatment as it refers to the ability of a substance to inhibit or slow down
the growth and division of cells, particularly cancer cells. Cytostatic agents act by disrupting key
cellular processes involved in cell cycle progression, effectively arresting cell growth and proliferation.
Unlike cytotoxic agents that induce cell death, cytostatic agents offer the advantage of controlling the
growth and spread of cancer cells without causing immediate cell death. The miscellaneous steroids
and isoprenoid lipids under investigation hold promise as potential cytostatic agents.

A protostane derivative called 20-hydroxyalisol C (156) was isolated from the rhizomes
of Alisma orientale. The 3D graph of this compound can be seen in Figure 31, and its
biological activity is detailed in Table 11. 20-Hydroxyalisol C exhibits inhibitory effects on
human carboxylesterase 2, making it of great medical interest [115]. The plant sample is
depicted in Figure 32. In traditional Korean red tea, a triterpenoid (157) has been found.
This tea, which is made from steamed ginseng, was evaluated for its protective effects
against melanogenesis. The compound has shown potent inhibitory effects on both melanin
synthesis and tyrosinase activity [116].
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This graph provides a comprehensive overview of their potential sedative-hypnotic effects with a
high confidence level of over 90%. General anesthesia refers to the artificially induced reversible
state resembling deep sleep where pain sensations are suppressed, consciousness is suspended, and
muscle relaxation is achieved. In this context, the sedative-hypnotic properties of certain steroids
and isoprenoid lipids have been observed with a significant degree of certainty. It is interesting to
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Table 11. Biological activities of miscellaneous steroids and isoprenoid lipids (160–176).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

160
Carboxylesterase inhibitor (0.922)
Anti-hypercholesterolemic (0.822)

Cholesterol synthesis inhibitor (0.741)

Antifungal (0.831)
Antibacterial (0.820)

Anti-inflammatory (0.734)

161
Carboxylesterase inhibitor (0.829)
Anti-hypercholesterolemic (0.812)

Cholesterol synthesis inhibitor (0.806)

Antifungal (0.745)
Antibacterial (0.743)

Anti-inflammatory (0.712)

162
Carboxylesterase inhibitor (0.900)
Anti-hypercholesterolemic (0.821)

Cholesterol synthesis inhibitor (0.808)

Antifungal (0.811)
Antibacterial (0.806)

Anti-inflammatory (0.698)

163
Carboxylesterase inhibitor (0.943)
Anti-hypercholesterolemic (0.928)

Cholesterol synthesis inhibitor (0.843)

Antifungal (0.853)
Antibacterial (0.824)

Anti-inflammatory (0.792)

164
Carboxylesterase inhibitor (0.949)
Anti-hypercholesterolemic (0.929)

Cholesterol synthesis inhibitor (0.867)

Antifungal (0.858)
Antibacterial (0.829)

Anti-inflammatory (0.803)

165 Carboxylesterase inhibitor (0.941)
Cholesterol synthesis inhibitor (0.855)

Antifungal (0.858)
Antibacterial (0.829)
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Table 11. Cont.

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

166
Antineoplastic (0.955)

Cytostatic (0.927)
Apoptosis agonist (0.918)

Antileukemic (0.910)
Antimetastatic (0.901)
Antineoplastic (0.899)

167 Antineoplastic (0.897)
Apoptosis agonist (0.818)

Antimetastatic (0.821)
Antineoplastic (0.802)

168 Antineoplastic (0.948)
Apoptosis agonist (0.914)

Respiratory analeptic (0.895)
Anti-inflammatory (0.834)

169 Apoptosis agonist (0.939)
Antineoplastic (0.922)

Antimetastatic (0.914)
Antileukemic (0.898)

170 Apoptosis agonist (0.926)
Antineoplastic (0.911)

Antimetastatic (0.900)
Antileukemic (0.876)

171 Anti-inflammatory (0.923)
Antiviral (0.856)

Antineoplastic (0.845)
Apoptosis agonist (0.807)

172 Anti-inflammatory (0.911)
Antiviral (0.872)

Antineoplastic (0.866)
Apoptosis agonist (0.822)

173 Anti-inflammatory (0.931)
Antiviral (0.902)

Antineoplastic (0.852)
Apoptosis agonist (0.812)

174 Antineoplastic (0.956)
Apoptosis agonist (0.804)

Angiogenesis inhibitor (0.893)
Lipid metabolism regulator (0.680)

175 Apoptosis agonist (0.889)
Antineoplastic (0.875)

Anti-eczematic (0.717)
Anti-psoriatic (0.668)

176 Anti-hypercholesterolemic (0.952)
Carboxylesterase inhibitor (0.931)

Lipid metabolism regulator (0.880)
Cholesterol synthesis inhibitor (0.823)

* Only activities with Pa > 0.7 are shown.

Biomedicines 2023, 11, x FOR PEER REVIEW 43 of 63 
 

 
Figure 32. Steroids and isoprenoid lipids (152–155) were found in Taraxacum officinale (a) and iso-
lated from the leaves of Rehmannia glutinosa (b). The young leaves of T. officinale, or common dande-
lion, are used as food in salads, drinks, and vegetable dishes for their nutritional value. This plant 
is a promising source for the prevention and treatment of diseases and extracts show hepatoprotec-
tive, antioxidant, and anticancer activities. Dandelion’s anti-diabetic properties are attributed to bi-
oactive chemical constituents such as high levels of fiber, minerals, vitamins, essential fatty acids, 
and bioactive steroids. Rehmannia (or Rehmannia glutinosa) is a plant that grows mainly in China. 
The extracts are commonly used in combination with other herbs in traditional Chinese medicine 
and are used for strengthening the immune and nervous systems and can also reduce pain and 
swelling. Rehmannia increases renal blood flow and stimulates the production of the renal hormone 
erythropoietin. Steroid (156) was found in the rhizomes of Alisma orientale (c), and triterpenoid (157) 
is found in Korean red tea (Panax ginseng) (d). 

A series of protostane triterpenes (158–167), which are tetracyclic triterpenes, were 
isolated from the rhizome of Alisma orientale. These compounds exhibited moderate inhib-
itory activities, particularly towards hCE-2 enzymes. Several metabolites were identified, 
including 13β,17β-epoxyalisol A (160), 13β,17β-epoxyalisol A 24-acetate (161), 11-deoxy-
13β,17β-epoxyalisol A (162), (13β,17β-epoxyalisol B 23-acetate) (163), 13β,17β-epoxyalisol 
B (164), and 11-deoxy-13β,17β-epoxyalisol B 23-acetate (165). The 3D graph of compound 
165 can be seen in Figure 33. Additionally, alisol K 23-acetate (166) and 16β,23β-oxidoali-
sol B (167) were also identified. Many of these compounds contained one or two epoxy 
groups [117–122]. 

Figure 32. Steroids and isoprenoid lipids (152–155) were found in Taraxacum officinale (a) and isolated
from the leaves of Rehmannia glutinosa (b). The young leaves of T. officinale, or common dandelion,
are used as food in salads, drinks, and vegetable dishes for their nutritional value. This plant is a
promising source for the prevention and treatment of diseases and extracts show hepatoprotective,
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antioxidant, and anticancer activities. Dandelion’s anti-diabetic properties are attributed to bioactive
chemical constituents such as high levels of fiber, minerals, vitamins, essential fatty acids, and bioac-
tive steroids. Rehmannia (or Rehmannia glutinosa) is a plant that grows mainly in China. The extracts
are commonly used in combination with other herbs in traditional Chinese medicine and are used for
strengthening the immune and nervous systems and can also reduce pain and swelling. Rehmannia
increases renal blood flow and stimulates the production of the renal hormone erythropoietin. Steroid
(156) was found in the rhizomes of Alisma orientale (c), and triterpenoid (157) is found in Korean red
tea (Panax ginseng) (d).

A series of protostane triterpenes (158–167), which are tetracyclic triterpenes, were
isolated from the rhizome of Alisma orientale. These compounds exhibited moderate in-
hibitory activities, particularly towards hCE-2 enzymes. Several metabolites were identified,
including 13β,17β-epoxyalisol A (160), 13β,17β-epoxyalisol A 24-acetate (161), 11-deoxy-
13β,17β-epoxyalisol A (162), (13β,17β-epoxyalisol B 23-acetate) (163), 13β,17β-epoxyalisol
B (164), and 11-deoxy-13β,17β-epoxyalisol B 23-acetate (165). The 3D graph of compound
165 can be seen in Figure 33. Additionally, alisol K 23-acetate (166) and 16β,23β-oxidoalisol
B (167) were also identified. Many of these compounds contained one or two epoxy
groups [117–122].
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Figure 33. The 3D graph shown the predicted and calculated activity of miscellaneous steroids (160,
162–165) as carboxylesterase inhibitors with over 90% confidence. Carboxylesterase inhibitors are
substances that inhibit the activity of carboxylesterase enzymes. Carboxylesterases are a group of
enzymes involved in the metabolism and breakdown of ester compounds in the body. They play
a crucial role in the detoxification and elimination of various drugs, xenobiotics, and endogenous
compounds. Carboxylesterase inhibitors can interfere with the function of these enzymes either by
binding to the active site and blocking substrate binding or by altering the enzyme’s conformation
or activity.

The methanol extract of the marine sponge Theonella swinhoei yielded a polyhydroxy-
lated steroid known as theonellasterol I (168) [123]. The garden fungi Ganoderma australe
produced a secosterol called australic acid (169), which exhibits inhibition of cancer cell
growth through the activation of apoptosis [124]. Additionally, elfvingic acid methyl ester
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(170), isolated from the fruit body of the fungus Elfvingia applanata, demonstrated strong
cytotoxicity against Kato III and Ehlrich cells [125].

Centaurea chilensis, a plant belonging to the Asteraceae family, contained 3β-Acetoxy-
17β,21β-epoxyhopane (171). Adiantum caudatum yielded a similar metabolite, 17β,21β-
epoxyhopane (172). Furthermore, extracts from various plants, including Adiantum capillus-
veneris, A. monochlamys, A. cuneatum, A. pedatum, and A. emarginatum, contained a rare
epoxide named isoadiantol B (173) [126,127].

The volcanic ash-derived fungus Penicillium citrinum HGY1-5 produced an unusual
steroid named precyclocitrinol B (174) [128]. A cultured marine-derived fungus (strain
CNM-713), identified as an undescribed member of the genus Aspergillus, yielded a ses-
terterpene epoxide-diol called aspergilloxide (175) [129]. Kadsura coccinea provided a
lanostane-related triterpenoid named kadcoccinone D (176) [130]. The structure of com-
pound 175 can be seen in Figure 34, and its biological activity is detailed in Table 12. The
plant sample is depicted in Figure 35.
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Table 12. Biological activities of miscellaneous steroids and isoprenoid lipids (177–204).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

177 Antineoplastic (0.933)
Apoptosis agonist (0.841)

Antifungal (0.802)
Antibacterial (0.754)

178 Antineoplastic (0.924)
Apoptosis agonist (0.855)

Antifungal (0.786)
Antibacterial (0.733)

179 Antineoplastic (0.924) Antiviral (arbovirus) (0.772)

180 A nitric oxide production inhibitor (0.944)
Acetylcholinesterase inhibitor (0.933)

Antibacterial (0.743)
Antifungal (0.697)

181 Antifungal (0.921)
Antibacterial (0.718)

Antiparasitic (0.728)
Antiviral (0.712)

182 Antifungal (0.917)
Antibacterial (0.722)

Antiparasitic (0.728)
Antiviral (0.744)

183 Cytotoxic (0.896) Antineoplastic (0.824)

184 Acetylcholinesterase inhibitor (0.908)
A nitric oxide production inhibitor (0.858)

Antineoplastic (0.715)
Antiviral (0.753)

185 Acetylcholinesterase inhibitor (0.914)
Cytotoxic (0.896)

Antineoplastic (0.821)
Antiviral (0.744)

186
Cytotoxic (0.922)

Acetylcholinesterase inhibitor (0.914)
A nitric oxide production inhibitor (0.881)

Antineoplastic (0.832)
Apoptosis agonist (0.811)

Antifungal (0.657)

187 Antineoplastic (0.876)
Apoptosis agonist (0.812)

Antifungal (0.726)
Antibacterial (0.711)

188 Antineoplastic (0.882)
Apoptosis agonist (0.833)

Antifungal (0.726)
Antibacterial (0.702)

189 Antineoplastic (0.811)
Apoptosis agonist (0.718)

Antifungal (0.704)
Antibacterial (0.674)

190 Cytotoxic (0.857)
Apoptosis agonist (0.778)

Antimutagenic (0.710)
Anti-asthmatic (0.587)

191 Cytotoxic (0.865)
Apoptosis agonist (0.719)

Antimutagenic (0.722)
Antiviral (0.711)

192 Cytotoxic (0.881)
Apoptosis agonist (0.734)

Antimutagenic (0.721)
Antiviral (0.689)

193 Cytotoxic (0.903) Antineoplastic (0.823)

194 Angiogenesis stimulant (0.872)
Apoptosis agonist (0.713)

Lipid metabolism regulator (0.728)
Anti-hypercholesterolemic (0.701)

195 Angiogenesis stimulant (0.872)
Apoptosis agonist (0.713)

Lipid metabolism regulator (0.728)
Anti-hypercholesterolemic (0.701)

196 Angiogenesis stimulant (0.887)
Apoptosis agonist (0.767)

Lipid metabolism regulator (0.713)
Anti-hypercholesterolemic (0.698)

197 Angiogenesis stimulant (0.902)
Apoptosis agonist (0.775)

Lipid metabolism regulator (0.802)
Anti-hypercholesterolemic (0.678)

198 Antineoplastic (0.884)
Prostate disorders treatment (0.649)

Anti-eczematic (0.852)
Anti-psoriatic (0.678)

199 Antineoplastic (0.855)
Prostate disorders treatment (0.688)

Anti-eczematic (0.712)
Anti-psoriatic (0.614)

200 Apoptosis agonist (0.881)
Proliferative diseases treatment (0.711)

Respiratory analeptic (0.817)
Hypolipemic (0.655)

201 Apoptosis agonist (0.880)
Proliferative diseases treatment (0.721)

Respiratory analeptic (0.821)
Hypolipemic (0.638)
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Table 12. Cont.

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

202 Antineoplastic (0.877)
Apoptosis agonist (0.766)

Lipid metabolism regulator (0.781)
Anti-hypercholesterolemic (0.652)

203 Antineoplastic (0.873) Proliferative diseases treatment (0.814)

204 Antineoplastic (0.793) Proliferative diseases treatment (0.785)
* Only activities with Pa > 0.7 are shown.
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(oaks), Fagus (beech or birch), Platanus (Sycamore), and Aesculus (horse chestnut and relatives). 
Elfvingia applanata is a medicinal mushroom that has been used to treat cancer of the esophagus and 
stomach and is also known to have an inhibitory effect on hepatitis B virus infection. Rare triterpe-
noids: 17β,21β-epoxyhopane (172) was detected in Adiantum caudatum (c) and kadcoccinone D (176) 
was found in Kadsura coccinea (d). The fern Adiantum caudatum, commonly walking maidenhair, 
tailed maidenhair, and trailing maidenhair, is commonly found in the southeast countries of Bang-
ladesh, Burma, India, Nepal, Philippines, Thailand, China, and Vietnam. Known as “Hansraj” in the 
Ayurvedic System of Medicine, its extracts have been used for colds, tumors of the spleen, liver, and 
other internal organs, skin diseases, bronchitis, and inflammatory diseases. It is also considered a 
tonic and diuretic. Kadsura coccinea is an evergreen climbing plant with woody stems that is used as 
food and medicine. In traditional Chinese medicine, it is used to treat rheumatoid arthritis and gas-
trointestinal disorders. 
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duces a wide variety of metabolites, many of which exhibit diverse biological activities 
that are beneficial to human health [131–134]. Fungi are known to produce steroids and 
isoprenoid lipids, which can possess both toxic and valuable biological activities [134–
137]. It is worth noting that fungal endophytes, which widely inhabit plants [138–140], are 
likely responsible for the synthesis of these steroids and isoprenoid lipids. Understanding 
the role of fungal endophytes in their production is crucial. The following data present 
the structures of steroids and meroterpenoids produced by fungi and fungal endophytes 
along with their biological activities. For instance, the fungus Stereum hirsutum, also 
known as false turkey tail and hairy curtain crust, was found to parasitize another fungus, 
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Figure 35. Several specimens of fungi and plants contain bioactive steroids. The fungi Ganoderma
australe (a) and Elfvingia applanata (b) produced australic acids (169) and elfvingic acid methyl ester
(170), respectively. The inedible fungus Ganoderma australe (or Ganoderma adspersum) is a common
perennial tinder fungus that causes white core rot in trees from the genera Tilia (linden), Quercus
(oaks), Fagus (beech or birch), Platanus (Sycamore), and Aesculus (horse chestnut and relatives).
Elfvingia applanata is a medicinal mushroom that has been used to treat cancer of the esophagus
and stomach and is also known to have an inhibitory effect on hepatitis B virus infection. Rare
triterpenoids: 17β,21β-epoxyhopane (172) was detected in Adiantum caudatum (c) and kadcoccinone
D (176) was found in Kadsura coccinea (d). The fern Adiantum caudatum, commonly walking maiden-
hair, tailed maidenhair, and trailing maidenhair, is commonly found in the southeast countries of
Bangladesh, Burma, India, Nepal, Philippines, Thailand, China, and Vietnam. Known as “Hansraj”
in the Ayurvedic System of Medicine, its extracts have been used for colds, tumors of the spleen, liver,
and other internal organs, skin diseases, bronchitis, and inflammatory diseases. It is also considered
a tonic and diuretic. Kadsura coccinea is an evergreen climbing plant with woody stems that is used
as food and medicine. In traditional Chinese medicine, it is used to treat rheumatoid arthritis and
gastrointestinal disorders.

The fungal kingdom is a unique biological association of living organisms that pro-
duces a wide variety of metabolites, many of which exhibit diverse biological activities
that are beneficial to human health [131–134]. Fungi are known to produce steroids and
isoprenoid lipids, which can possess both toxic and valuable biological activities [134–137].
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It is worth noting that fungal endophytes, which widely inhabit plants [138–140], are likely
responsible for the synthesis of these steroids and isoprenoid lipids. Understanding the
role of fungal endophytes in their production is crucial. The following data present the
structures of steroids and meroterpenoids produced by fungi and fungal endophytes along
with their biological activities. For instance, the fungus Stereum hirsutum, also known as
false turkey tail and hairy curtain crust, was found to parasitize another fungus, Tremella
aurantia. This fungus produced a steroid featuring a bicyclo[3.3.1]nonane motif (177). This
steroid exhibited cytotoxic activity against several cancer cell lines, including A549, HL-60,
MCF-7, SMMC-7721, and SW480 [141].

Progressive degradation of ergostane steroids through 5,6- and 9,10-oxidative cleavage
leads to the formation of highly cleaved sterols, such as steroid residues (178). These steroid
residues were discovered in the fungus Hericium alpestre and exhibited cytotoxic activity
against the lung cancer cell line A549 [142]. Aspergillus flocculosus PT05-1, a cultivated
fungus in a hypersaline medium, produced the epoxide (179). This compound displayed
moderate antibacterial and antifungal activity, as well as weak cytotoxicity against the
cancer cell lines HL-60 and BEL-7402 [143]. A bioactive steroid (180), known for its activity
against the human immunodeficiency virus and inhibition of nitric oxide production, is
produced by the endophytic fungus Trichoderma sp. [144]. From the cultures of the basid-
iomycete Favolaschia calocera BCC 36684, two bis-epoxides named favolon (181) and favolon
C (182) were isolated. These compounds demonstrated antifungal activity [145]. The
fungus Aspergillus flocculosus 16D-1 produces a bioactive meroterpenoid called asperflotone
(183), which is an 8(14→15)-abeo-steroid. Asperflotone exhibited inhibitory effects on IL-6
secretion [146].

Pleurocin B (184) and matsutakone (185), two steroids with a rearranged ring B, were
isolated from the fruiting bodies of Pleurotus eryngii. Both metabolites showed stronger
inhibitory activity on nitric oxide production compared to a nitric oxide synthase [147].
Penicillitone (186), an unusual 15(14→11)-abeo-ergostane, was isolated from the culture of
the fungus Penicillium purpurogenum SC0070. This compound displayed strong cytotoxic
activity against the cancer cell lines A549, HepG2, and MCF-7 [148]. A series of steroids with
an unprecedented steroid skeleton (187–190), named strophasterols A–D, respectively, were
isolated from the mushroom Stropharia rugosoannulata [149]. Additionally, strophasterol E
(191) and strophasterol F (192), which have a strophastane skeleton, were isolated from the
fruiting bodies of Pleurotus eryngii [150].

A steroid containing two epoxy groups, (22E)-3β-hydroxy-5α,6α,8α,14α-diepoxyergosta-
22-en-7-one (193), was isolated from the fungal endophyte Aspergillus awamori, which was
obtained from the soil around the mangrove plant Acrostichum speciosum in Hainan, China.
This compound displayed mild cytotoxicity towards the lung cancer cell line A549 [151].

Penicillium expansum YJ-15, an endophytic fungus of Aconitum vilmorinianum, yielded
bioactive isoprenoid epoxycyclohexenones named expanstines A–D (194–197). Notably,
compounds 196 and 197 featured an unusual oxetane ring. These fungal compounds
exhibited potent cytotoxic activities against several cancer cell lines, including HL-60,
SMMC-7721, A549, MCF-7, and SW-480. Additionally, compounds 194–197 demonstrated
potent inhibitory effects on nitric oxide production (NO). Furthermore, compounds 196 and
197 displayed potent antibacterial activities against Bacillus subtilis [152]. A fungicolous
isolate of Hymenopsis sp. MYC-1703, collected from the Eucalyptus forest, produced a
meroterpenoid named hymenopsin A (198) [153].

In an extract from the fungus Stereum hirsutum, a cytotoxic ergosteroid named steres-
terone A (177) was discovered. This compound demonstrated cytotoxic activity against
several cancer cell lines, including A549, HL-60, MCF-7, SMMC-7721, and SW480 [154].
Furthermore, a steroid fragment (178) showed cytotoxicity against the human colon adeno-
carcinoma cell line HT29 and was detected in the mushroom Hericium alpestre [155].

A halotolerant fungus, Aspergillus flocculosus, produced a 22,23-epoxy steroid (179).
The structure of compound 179 can be seen in Figure 36, and its biological activity is
detailed in Table 12. This compound exhibited moderate antibacterial and antifungal
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activity and weak cytotoxicity against HL-60 and BEL-7402 cell lines [156]. Additionally, the
endophytic fungus Trichoderma sp. Yielded a bis-epoxy steroid (180) that showed inhibition
of nitric oxide production [157]. From the cultures of the basidiomycete Favolaschia calocera
BCC 36684, two antifungal bis-epoxides named favolon (181) and favolon C (182) were
isolated [158]. A sample of the fungus can be seen in Figure 37.
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is usually found in wood and colonizes along transport routes and may become dominant in other 
habitats. It has been found on the French islands of Reunion and Maya, which are off the African 
mainland, as well as in Kenya, Congo, Tanzania, and Zambia. Extracts of this mushroom contain 
steroids (181) and (182). Mushroom Stropharia rugosoannulata (d), commonly known as the Wine Cap 
Stropharia, “Garden Giant”, burgundy mushroom, or King Stropharia, is found in Europe and 
North America and was apparently introduced to Australia and New Zealand. In the US, this mush-
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fects on IL-6 secretion [159]. Rare steroids with a rearranged ring B, pleurocin B (184) and 
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Figure 37. Some mushroom samples contain bioactive steroids. The edible mushroom Stereum
hirsutum (a), also called false turkey tail and hairy curtain crust, contains an uncommon steroid
(187). The dry extract of this mushroom has significant thrombin inhibitory activity and can be used
to make blood-thinning drugs as an alternative to the dangerous drug warfarin. Another edible
mushroom called alpine blackberry, Hericium alpestre (b), contributes to the decomposition of wood
and grows on stumps, large fallen trees, and dead spruce and cedar trees. An oxidized fragment of
the steroid (178) was found in the lipid extract of this mushroom. Its taste is so excellent that French
chefs use it to prepare many gourmet dishes. The fungus Favolaschia calocera (c, or Orange Poreconch)
is usually found in wood and colonizes along transport routes and may become dominant in other
habitats. It has been found on the French islands of Reunion and Maya, which are off the African
mainland, as well as in Kenya, Congo, Tanzania, and Zambia. Extracts of this mushroom contain
steroids (181) and (182). Mushroom Stropharia rugosoannulata (d), commonly known as the Wine Cap
Stropharia, “Garden Giant”, burgundy mushroom, or King Stropharia, is found in Europe and North
America and was apparently introduced to Australia and New Zealand. In the US, this mushroom
is considered edible and is highly valued by connoisseurs. This mushroom contained a series of
steroids (187–190) that are highly biologically active.

From the solid culture of Aspergillus flocculosus 16D-1, an unusual 8(14→15)-abeo-
steroid named asperflotone (183) was obtained. This compound exhibited inhibitory
effects on IL-6 secretion [159]. Rare steroids with a rearranged ring B, pleurocin B (184)
and matsutakone (185), were isolated from the fruiting bodies of Pleurotus eryngii. These
compounds showed inhibition of nitric oxide production [160]. Another notable compound,
a 15(14→11)-abeo-ergostane named penicillitone (186), was found in the culture of the
fungus Penicillium purpurogenum SC0070 [161]. Penicillitone exhibited anti-inflammatory or
antitumor activity. The 3D graph of compound 186 can be seen in Figure 38.
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hibiting the activity of acetylcholinesterase, these compounds help increase the levels of acetylcho-
line in the brain, leading to enhanced cholinergic neurotransmission and potential improvements in 
cognitive function. The exploration of miscellaneous steroids as acetylcholinesterase inhibitors of-
fers opportunities for the development of novel therapeutic interventions. By understanding their 
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ties and enhance their effectiveness as acetylcholinesterase inhibitors.  
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pids called expanstines A–D (195–197) [166]. These fungal meroterpenoids have demon-
strated potent cytotoxic activities against HL-60, SMMC-7721, A549, MCF-7, and SW-480 
cell lines [166]. Another interesting compound, named talarosterone (198), was isolated 
from the fermentation products of the marine sponge-associated fungus Talaromyces stipi-
tatus [167]. Talarosterone is a steroid that possesses a 7,8-epoxy group [167]. Additionally, 
the endophytic fungus Gibberella zeae cf-18, which was isolated from the green alga Codium 
fragile, produced a unique steroid known as (22E,24R)-7β,8β-epoxy-3β,5α,9α-trihydroxy-
ergosta-22-en-6-one (199) [168]. These discoveries highlight the diverse range of bioactive 
compounds that can be derived from fungal sources and provide potential avenues for 
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Figure 38. 3D graph showcasing the predicted and calculated activity as acetylcholinesterase in-
hibitors of miscellaneous steroids (180, 184–186). This graph provides valuable insights into their
potential in inhibiting the activity of acetylcholinesterase, a key enzyme involved in the breakdown of
the neurotransmitter acetylcholine. Acetylcholinesterase inhibitors play a crucial role in the manage-
ment of conditions such as Alzheimer’s disease and other neurodegenerative disorders. By inhibiting
the activity of acetylcholinesterase, these compounds help increase the levels of acetylcholine in the
brain, leading to enhanced cholinergic neurotransmission and potential improvements in cognitive
function. The exploration of miscellaneous steroids as acetylcholinesterase inhibitors offers opportuni-
ties for the development of novel therapeutic interventions. By understanding their structure–activity
relationship, researchers can potentially optimize their pharmacological properties and enhance their
effectiveness as acetylcholinesterase inhibitors.

The mushroom Stropharia rugosoannulata yielded a series of 15(14→22)-abeo-steroid
ergostanes (187–192) in its extracts [162]. Steroids 187–190 were named strophasterols
A-D, and two additional compounds, 191 and glaucoposterol A (192), were found in
the basidiomycete Cortinarius glaucopus [163]. Moreover, steroids with a strophastane
skeleton, strophasterol E (191) and strophasterol F (192), were isolated from the fruiting
bodies of Pleurotus eryngii [164]. A compound named (22E)-3β-hydroxy-5α,6α,8α,14α-
diepoxyergosta-22-en-7-one (193) was discovered in the fungus Aspergillus awamori, which
was isolated from the soil around the mangrove plant Acrostichum speciosum. This com-
pound exhibited mild cytotoxicity against the lung cancer cell line A549 [165].

The endophytic fungus Penicillium expansum YJ-15, which is found in association with
the leaves of Aconite vilmorinianum, has been found to produce a group of isoprenoid
lipids called expanstines A–D (195–197) [166]. These fungal meroterpenoids have demon-
strated potent cytotoxic activities against HL-60, SMMC-7721, A549, MCF-7, and SW-480
cell lines [166]. Another interesting compound, named talarosterone (198), was isolated
from the fermentation products of the marine sponge-associated fungus Talaromyces stip-
itatus [167]. Talarosterone is a steroid that possesses a 7,8-epoxy group [167]. Addition-
ally, the endophytic fungus Gibberella zeae cf-18, which was isolated from the green alga
Codium fragile, produced a unique steroid known as (22E,24R)-7β,8β-epoxy-3β,5α,9α-
trihydroxyergosta-22-en-6-one (199) [168]. These discoveries highlight the diverse range
of bioactive compounds that can be derived from fungal sources and provide potential
avenues for further research and exploration in the field of natural product discovery.

In the methanol extract of the roots of Serratula wolffii, two steroids with a 14,15-
epoxy group (200 and 201) were discovered [169]. Furthermore, within the genus Alisma
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(Alismataceae), a series of protostane triterpenoids (195–197) have been identified and
reported in various regions worldwide. These triterpenoids exhibit diverse biological
activities, including anticancer, lipid-regulating, anti-inflammatory, antibacterial, antiviral,
and diuretic effects [170,171]. Over 100 different triterpenoids have been characterized and
assigned names such as alisols A-Z, alismanols A-G, and related terpenoids. Figure 36
illustrates the chemical structures of alisol I (202), F (203), and H (204).

A triterpenoid called kadcoccitone C (205) with anti-HIV-1 activity was isolated from
Kadsura coccinea [172]. The structure of kadcoccitone C can be seen in Figure 39, and its
biological activity is detailed in Table 13. From the vines and leaves of Momordica charantia,
cucurbitane triterpenoids named kuguacins K (206) and G (207; the 3D model is shown
in Figure 40) were discovered to exhibit strong anti-HIV-1 activity, with EC50 values of
7.2 and 3.7 µg/mL, respectively [173]. The plant sample is shown in Figure 41, and the
percentage distribution of the biological activity of these steroids can be seen in Figure 40.
A semi-synthetic lupane triterpenoid (208) has demonstrated a wide spectrum of inhibitory
activity [174], while an oleanane derivative (209) was found to be less active [175].

Table 13. Biological activities of miscellaneous steroids and isoprenoid lipids (205–219).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

205 Antiviral (HIV) 0.876
Antiviral (arbovirus) (0.712)

Antifungal (0.742)
Antibacterial (0.656)

206
Antiviral (HIV) 0.938

Antiviral (influenza A) (0.894)
Antiviral (arbovirus) (0.783)

Antifungal (0.722)
Antibacterial (0.632)
Antiparasitic (0.618)

207
Antiviral (HIV) 0.951

Antiviral (influenza A) (0.849)
Antiviral (arbovirus) (0.754)

Antifungal (0.768)
Antibacterial (0.692)
Antiparasitic (0.610)

208 Antiviral (HIV) 0.845
Antiviral (arbovirus) (0.699)

Antifungal (0.731)
Antibacterial (0.655)

209 Antiviral (HIV) 0.866 Antibacterial (0.699)

210 Antiviral (arbovirus) (0.823)
Antiviral (0.769)

Antifungal (0.788)
Antibacterial (0.642)

211
Antiviral (HSV-1) (0.971)
Antiviral (HIV) (0.958)

Antiviral (influenza A) (0.878)

Antifungal (0.792)
Antibacterial (0.654)
Antiparasitic (0.647)

212 Antiviral (HSV-1) (0.936)
Antiviral (HIV) (0.922)

Antifungal (0.722)
Antibacterial (0.633)

213 Antiviral (HSV-2) (0.984)
Antiviral (HIV) (0.939)

Antifungal (0.792)
Antibacterial (0.677)

214 Cytotoxic (0.912)
Antineoplastic (0.886)

Lipid metabolism regulator (0.823)
Anti-hypercholesterolemic (0.732)

215 Cytotoxic (0.932)
Antineoplastic (0.893)

Lipid metabolism regulator (0.842)
Anti-hypercholesterolemic (0.752)

216 PXR agonistic (0.933)
Antiviral (arbovirus) (0.719)

Antineoplastic (0.811)
Apoptosis agonist (0.729)

217 Antineoplastic (0.879)
Apoptosis agonist (0.743)

Antimutagenic (0.755)
Antileukemic (0.726)

218 Antineoplastic (0.863)
Apoptosis agonist (0.712)

Antimutagenic (0.764)
Antileukemic (0.721)

219 Antineoplastic (0.922)
Apoptosis agonist (0.705)

Antileukemic (0.766)
Antimutagenic (0.733)

* Only activities with Pa > 0.7 are shown.
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Pentacyclic triterpene D-friedours-14-en-11α,12α-epoxy-3β-yl palmitate (210) was
identified in Ecdysanthera rosea [176], and another oleanane derivative (211) from Rhododen-
dron latoucheae exhibited strong inhibition against HSV-1 virus [177]. A bioactive compound
named schisphendilactone B (212), obtained from the stems of Schisandra sphenanthera,
showed promising anti-HIV-1 activity [178]. Additionally, henrischinin B (213; the 3D
graph is shown in Figure 43) from the leaves and stems of Schisandra chinensis displayed
activity against HSV-2 virus [179]. A 3D graph representing henrischinin B can be found
in Figure 42. Ellarinacin (214) is a defense-related arborinane-type triterpenoid that was
recently discovered in bread wheat, Triticum aestivum [180]. Lovenone (215), a cytotoxic
degraded triterpenoid, was isolated from skin extracts of the North Sea dorid nudibranch
Adalaria loveni and exhibited in vitro cytotoxicity against human cancer cell lines [181].
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and 6, antiparasitic activity. The oxirane ring is highlighted in yellow. Gray is carbon, white is hy-
drogen, and red is oxygen. The percentage of biological activities is shown in Figure 42. 

 
Figure 41. Both terrestrial and marine organisms produce bioactive steroids and triterpenoids. Ster-
oids kuguacins K (206) and G (207) were found in the vines and leaves of Momordica charantia (a), 
and oleanane derivative (211) was found in Rhododendron latoucheae (b). Marine invertebrates are 
also a source of bioactive metabolites. Thus, lovenone (215) was isolated from the nudibranch Ada-
laria loveni (c), and the steroid (217) is a product of the marine sponge-associated fungus Gymnasella 
dankaliensis, which is a symbiont of the marine sponge Halichondria japonica (d). 

Figure 40. This figure shows a 3D structure of cucurbitane triterpenoid bearing an oxirane ring in the
5,6 position, kuguacin G (207), and showing a wide range of antiviral and other biological activities
such as antiviral (HIV), 2. antiviral (influenza A), 3. antiviral (arbovirus), 4. antifungal, 5. antibacterial, and
6, antiparasitic activity. The oxirane ring is highlighted in yellow. Gray is carbon, white is hydrogen,
and red is oxygen. The percentage of biological activities is shown in Figure 42.
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Figure 41. Both terrestrial and marine organisms produce bioactive steroids and triterpenoids.
Steroids kuguacins K (206) and G (207) were found in the vines and leaves of Momordica charantia (a),
and oleanane derivative (211) was found in Rhododendron latoucheae (b). Marine invertebrates are also
a source of bioactive metabolites. Thus, lovenone (215) was isolated from the nudibranch Adalaria
loveni (c), and the steroid (217) is a product of the marine sponge-associated fungus Gymnasella
dankaliensis, which is a symbiont of the marine sponge Halichondria japonica (d).
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Figure 42. This figure discloses the percentage distribution of biological activities on the example of 
a cucurbitane triterpenoid, kuguacin G (207), from the medicinally important plant Kadsura coccinea, 
which has a wide range of pharmacological properties. Dominant antiviral activities are listed under 
the following numbers: 1. antiviral (HIV) (20.6%), 2. antiviral (influenza A) (18.4%), 3. antiviral (arbo-
virus) (16.3%), 4. antifungal (16.6%), 5. antibacterial (15%), and 6, antiparasitic (13.2%). This emphasizes 
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Figure 42. This figure discloses the percentage distribution of biological activities on the example of a
cucurbitane triterpenoid, kuguacin G (207), from the medicinally important plant Kadsura coccinea,
which has a wide range of pharmacological properties. Dominant antiviral activities are listed under
the following numbers: 1. antiviral (HIV) (20.6%), 2. antiviral (influenza A) (18.4%), 3. antiviral
(arbovirus) (16.3%), 4. antifungal (16.6%), 5. antibacterial (15%), and 6, antiparasitic (13.2%). This
emphasizes that kuguacin G possesses a wide range of pharmacological properties, indicating its
potential as a versatile therapeutic agent.
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Figure 43. A 3D graph showing the predicted and calculated antiviral activity of miscellaneous
steroids and isoprenoid lipids (206, 207, 211–213) with over 94% confidence. Antiviral activity refers
to the ability of a substance, such as a drug or natural compound, to inhibit the replication or activity
of viruses. It measures the effectiveness of a compound in preventing viral infection or reducing viral
replication in infected cells. Antiviral activity can be assessed through various methods, including
in vitro assays using cell cultures infected with specific viruses or in vivo studies using animal models.
The activity is typically quantified by measuring parameters such as viral load, viral replication, or
the inhibition of viral-induced cytopathic effects. Antiviral compounds can target different stages
of the viral life cycle, including viral entry into host cells, viral replication, assembly, and release.
They may interfere with viral enzymes, inhibit viral attachment to host cells, disrupt viral protein
synthesis, or modulate host immune responses to combat viral infections.
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A triterpenoid named applanoid H (216) was found in the medicinal fungus Ganoderma
applanatum and demonstrated PXR (pregnane X receptor) agonistic activity [182]. Two
exceptionally uncommon steroids are gymnasterone B (217), which was discovered in
the marine sponge-associated fungus Gymnasella dankaliensis OUPS-N134 isolated from
the marine sponge Halichondria japonica [183–185], and talarosterone (218), an ergosterol
analog produced by the marine fungus Talaromyces stipitatus KUFA 0207 isolated from the
marine sponge Stylissa flabelliformis (Thailand) [186]. Another steroid, 3,4-epoxy-(22R,25)-
tetrahydrofuran-stigmast-5-en (219), belonging to the stigmastane family, was isolated from
the stem bark of Aglaia eximia. This compound exhibited cytotoxicity against P-388 murine
leukemia cells [187].

9. Conclusions

This comprehensive review has explored the diverse range of biological activity and
structural variations found within steroids and related isoprenoid lipids. The analysis en-
compassed various natural compounds, including steroids and isoprenoid lipids featuring
α,β-epoxy group(s). These compounds are derived from sources such as fungi, fungal
endophytes, plants, algae, and marine invertebrates. Through an examination of refer-
eed literature sources, their biological activity was evaluated through in vivo and in vitro
studies, as well as by employing the QSAR method. The findings revealed a multitude of
compounds exhibiting remarkable properties, including strong antineoplastic, antiprolifera-
tive, anti-eczematic, anti-psoriatic, and various other activities. To enhance comprehension,
the review incorporated visual aids such as 3D graphs illustrating the activity of individual
steroids and images showcasing selected terrestrial or marine organisms. Furthermore, the
review provided explanations elucidating certain types of biological activity associated
with these compounds. Overall, the findings presented in this review not only contribute
to the academic scientific knowledge in the field but also hold practical relevance for the
development of pharmacological interventions and advancements in practical medicine.
This review utilized data from various authors regarding the biological activity of natural
steroids. To assess the potential activity of these steroids, the PASS program was employed.
The PASS program utilizes the structural features of compounds to predict their biological
activity profiles.
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