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Abstract: Nucleus-accumbens-associated protein-1 (NAC1) is a cancer-related transcriptional factor
encoded by the NACC1 gene, which is amplified and overexpressed in various human cancers and
has been appreciated as one of the top potential cancer driver genes. NAC1 has therefore been
explored as a potential therapeutic target for managing malignant tumors. Here, we show that NAC1
is a negative regulator of NF-κB signaling, and NAC1 depletion enhances the level of the nuclear
NF-κB in human melanoma. Furthermore, the inhibition of NF-κB signaling significantly potentiates
the antineoplastic activity of the NAC1 inhibition in both the cultured melanoma cells and xenograft
tumors. This study identifies a novel NAC1-NF-κB signaling axis in melanoma, offering a promising
new therapeutic option to treat melanoma.
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1. Introduction

Melanoma, an extremely aggressive form of malignancy originating from melanocytes,
represents a deadly disease accounting for 80% of skin cancer deaths [1]. When melanoma
is diagnosed in its early stages, the surgical resection of the lesion is associated with
a favorable prognosis; however, in the advanced and metastatic stages, melanoma is
generally unresponsive to various therapeutic interventions and is associated with a poor
prognosis [2]. Current treatment options for advanced and metastatic melanoma have not
been able to achieve greater than a 25% response rate [3]. Therefore, novel and effective
therapeutic strategies for patients with melanoma are urgently needed.

Nucleus-accumbens-associated protein-1 (NAC1), encoded by the NACC1 gene, is
a transcriptional co-factor belonging to the Bric-a-Brac Tramtrack Broad complex (BTB)
gene family [4]. The biologic role of NAC1 in cancer has recently emerged and this
transcriptional co-factor has been found to be overexpressed in several types of cancers
such as melanoma, urethral, ovarian, and lung cancer [5–8]. We previously reported that
NAC1 disables cellular senescence, facilitates oxidative stress resistance during cancer
progression, promotes a pro-survival autophagy through the HMGB1-mediated pathway,
protects ovarian cancer from docetaxel treatment, and regulates glycolysis in ovarian cancer
through its stabilization of HIF-1α [9–13]. More recently, we showed that NAC1 restrains
antitumor immunity through the LDHA-mediated immune evasion [4]. These studies
indicate that NAC1 overexpression not only leads to oncogenic transformation but may
also contribute to therapeutic resistance. Nevertheless, the precise functions of NAC1 in
regulating the development and progression of cancer remain incompletely understood. In
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this study, we uncovered a new molecular mechanism by which NAC1 regulates NF-κB
signaling, and demonstrate that the combinatorial inhibition of NAC1 and the NF-κB
pathway can synergistically inhibit melanoma both in cultured cells and xenograft tumors.
Thus, the co-targeting of NAC1 and NF-κB may be exploited as a new effective approach
to the treatment of metastatic melanoma.

2. Materials and Methods
2.1. Chemicals

BAY 11-7082 (an irreversible inhibitor of IκBα phosphorylation) and BMS-345541 (a
specific IKK inhibitor) were purchased from Selleckchem (Houston, TX, USA) and dissolved
in dimethyl sulfoxide as a working solution.

2.2. Cell Culture

SK28 cells were grown in humidified air (37 ◦C, 5% CO2) in a RPMI-1640 medium
supplemented with 10% fetal bovine serum and 1% penicillin–streptomycin antibiotics.
A375, A2058, and B16 were cultured in humidified air (37 ◦C, 5% CO2) in a Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum and 1%
penicillin–streptomycin antibiotics.

2.3. Antibodies

Antibodies against NF-κB P65 (#8242) and Lamin A/C (#4777) were purchased from
CST, whereas an antibody against NAC1 was obtained from abcam (ab29047). An antibody
against tubulin was purchased from Santa Cruz (sc-5286, Santa Cruz, CA, USA).

2.4. Western Blotting

Cells were washed with PBS after harvesting and then lysed in 20 mM of Tris (pH 8.0),
150 mM of NaCl, 1.5 mM of EDTA, 5 mM of EGTA, 0.5% Nonidet P-40, and 0.5 mM of Na3VO4
supplemented with protease inhibitors (Sigma-Aldrich, Cat#: P8340, Darmstadt, Germany).
After sonication, cell lysates were collected, and protein concentrations were measured by
using a Protein Assay Dye Reagent from Bio-Rad. Mix the proteins from each group with
SDS-PAGE loading, respectively, and boil them for 5 min. Upon transferring to polyvinylidene
difluoride membranes, proteins were probed with the indicated antibodies.

2.5. Depletion of NAC1

The NAC1 shRNA (short hairpin RNA) construct was transfected into the cells with a
Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, USA). Puromycin (Clontech, Beijing,
China) was used to select single positive clones after transfection. After a 1-month selection,
monoclones were picked up, and NAC1-deleted stable cell lines were generated.

2.6. Immunofluorescence Staining

For IF, cells were grown on coverslips under the culture conditions described above,
fixed in a PHEM buffer with 4% formaldehyde, and blocked in phosphate-buffered saline
with 5% bovine serum albumin and 0.1% Triton X-100 for 1 h. Samples were then incubated
with primary antibodies against NF-κB, followed by incubation with secondary antibodies
and DAPI.

2.7. RNA Isolation and Quantitative Real-Time PCR

Total RNA was extracted using an RNasy Mini Kit (Qiagen, Cat#: 74104, German-
town, MD, USA) according to the manufacturer’s instructions. The extracted mRNA was
subjected to reverse transcription using a QuantiTect Reverse Transcription Kit (Qiagen,
Germantown, MD, USA), following the manufacturer’s protocol. FastStart Universal SYBR
Green Master was used to measure the expression level of the indicated mRNA and was
normalized to β-actin, respectively. The PCR program for qRT-PCR is 95 ◦C for 10 min, and
then repeat 40 cycles at 95 ◦C for 15 s and 60 ◦C for 30 s. The primers used in the qRT-PCR
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are listed as follows. Actin forward (5′CACCATTGGCAATGAGCGGTTC3′), reverse
(5′AGGTCTTTGCGGATGTCCACGT3′); IL-1β forward (5′GAAATGCCACCGGGGGACA
GTG3′), reverse (5′TGGATGCTCTCATCAGGACAG3′); NAC1 forward (5′CGGCTGAACT
TATCAACCAGATTG3′), reverse (5′ TGACGTGGCAGTTCATCAGCTG3′).

2.8. Colony Formation Assay

Cells (500–1000/well) were seeded in 6-well plates and cultured in a medium for 10 days,
with a medium change every 2 days. After culturing, cells were fixed in 10% formalin and
stained with 0.5% crystal violet for 30 min, followed by the counting of colony numbers.

2.9. Mouse Xenograft Model

Mice, housed in an animal facility with free access to standard rodent chow and water,
were under pathogen-free conditions and maintained in a 12 h light/12 h dark cycle. To
generate tumors, SK28 cells (3 × 106 cells per mouse) were mixed with an equal volume
of Matrigel (Collaborative Biomedical Products, Bedford, MA, USA) and inoculated into
the right flank of NSG mice (NOD scid gamma mouse). Two weeks later, animals were
randomized into treatment and control groups with five mice each. Tumor volumes were
measured with the following formula: V = L×W2/2 (V is volume (mm3), L is length (mm),
W is width (mm)).

2.10. Statistical Analysis

The statistical significance of the results was analyzed using an unpaired Student t
test (StatView I, Abacus Concepts Inc., Piscataway, NJ, USA). A p value of less than 0.05
indicates statistical significance.

3. Results
3.1. Inhibition of NAC1 Activates NF-κB Signaling in Melanoma

As the overexpression of NAC1 is involved in melanoma tumorigenesis and progres-
sion [14] and the NF-κB pathway is one of the major pathways activated in melanoma [15],
we queried whether there is a functional association between NAC1 and NF-κB signaling
in the context of melanoma. To test if the modulation of NAC1 could significantly alter the
activity of the NF-κB pathway, B16 mouse melanoma cells were subjected to vector-based
RNAi to deplete NAC1, and the siRNA-mediated down-regulation of NAC1 was examined
using a quantitative real-time PCR and Western blot (Figure 1A). Notably, B16 cells with
knockdown of NAC1 showed an elevation in the level of IL-1β (Figure 1D), which is a
major downstream target of NF-κB [16]. To verify this observation, we investigated the
NAC1-IL-1β connection in two melanoma cell lines with different genetic backgrounds:
the A2058 cell line was derived from genetically engineered mouse models (Ptenf/f) of
melanoma (Figure 1B) and the SK28 cell line was established from patient-derived tumor
samples and expressed mutant B-Raf (V600E) (Figure 1C). Consistently, the depletion
of NAC1 in both of the cell lines markedly increased their level of IL-1β (Figure 1E,F),
supporting the role of NAC1 in inhibiting the IL-1β signaling pathway.

IL-1β is a direct target of NF-κB and contains NF-κB-binding sites in its promoter
region (16); thus, we next determined whether IL-1β expression is induced by NF-κB
activation. We treated SK28, A2058, and B16 cells with BMS-345541 or BAY 11-7082,
the selective inhibitors of the NF-κB pathway, and RT-PCR analyses showed that NAC1-
knockdown-induced IL-1β expression could be largely suppressed by the NF-κB pathway
inhibitor BMS-345541 or BAY 11-7082 (Figure 1D–F). These results suggest that NAC1
knockdown results in the activation of the NF-κB signaling in melanoma.
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0.01. 
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Nuclear and cytoplasmic extracts were prepared from SK28, B16, and A2058 cells with or 
without the silencing of NAC1 expression, and the level of NF-κB protein was determined 
with a Western blot. Figure 2 shows that all the cell lines exhibited increased levels of 
nuclear NF-κB following NAC1 knockdown, and treatment with TNF-α further elevated 
the levels of NF-κB protein in NAC1-knockdown cells and the nuclear protein Lamin A/C 
was not affected (Figure 2). Because the phosphorylation of Ser537 of p65 promotes its 
nuclear translocation and facilitates p65 binding to the promoter sequence, we proceeded 
to investigate whether the inhibition of NAC1 would increase the phosphorylation level 

Figure 1. Inhibition of NAC1 activates NF-κB signaling. (A–C) Analysis of NAC1 mRNA and
protein expression. Expression of mRNA or protein was assessed using RT-qPCR or Western blot
at 48 h after transfection. (D–F) Effects of BAY 11-7082 or BMS-345541 on the expression of IL-1β
in NAC1-knockdown SK28, A2058, and B16 cells. To investigate the influence of NF-κB pathway
on the expression of IL-1β in NAC1-knockdown cells, the cells were transfected with an NAC1-
specific siRNA or a non-silencing control siRNA, then treated with BAY 11-7082 or BMS-345541. Gene
expression of IL-1β was measured with real-time PCR. Error bars represent SD. * p < 0.05 and ** p < 0.01.

3.2. Knockdown of NAC1 Leads to NF-κB Nuclear Translocation

As the active NF-κB shuttles into the nucleus to function as a transcription factor, we
thus analyzed its subcellular localization in the cells subjected to the inhibition of NAC1.
Nuclear and cytoplasmic extracts were prepared from SK28, B16, and A2058 cells with or
without the silencing of NAC1 expression, and the level of NF-κB protein was determined
with a Western blot. Figure 2 shows that all the cell lines exhibited increased levels of nuclear
NF-κB following NAC1 knockdown, and treatment with TNF-α further elevated the levels of
NF-κB protein in NAC1-knockdown cells and the nuclear protein Lamin A/C was not affected
(Figure 2). Because the phosphorylation of Ser537 of p65 promotes its nuclear translocation
and facilitates p65 binding to the promoter sequence, we proceeded to investigate whether
the inhibition of NAC1 would increase the phosphorylation level of p65. We determined the
level of phospho-p65 through a Western blot analysis. As depicted in Figure 2, all the cell lines
demonstrated elevated levels of phospho-p65 following NAC1 knockdown.

To validate this observation, we utilized immunofluorescence staining and confocal
microscopy to detect NF-κB in SK28 cancer cells transfected with a control non-targeting
RNA or NAC1-targeted siRNAs. At different time points following TNF-α treatment, SK28
cells were immediately fixed, permeabilized, and stained with antibodies. The focal location
of the cell nucleus was defined using DAPI staining, and the nuclear NF-κB fluorescence
was measured with an antibody against NF-κB. The rapid translocation of NF-κB from the
cytoplasm to the nucleus occurred when the NAC1-knockdown cells were incubated for
10 min or 15 min with TNF-α (Figure 3). These results demonstrate that NAC1 acts as a



Biomedicines 2023, 11, 2221 5 of 8

negative regulator of the NF-κB pathway and that depletion of NAC1 induces the nuclear
translocation of NF-κB in melanoma cells.
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cells treated with either siNAC1 or TNF-α. α-Tubulin was used as a cytoplasmic marker, Lamin A/C
was used as a nuclear marker. (D,E) Western blot analyses were performed to assess the levels of
phosphorylated NF-κB in SK28 (D) and A2058 (E) cells treated with either siNAC1 or TNF-α.
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Figure 3. (A–C) Immunofluorescent analysis of NF-κB nuclear translocation. NF-κB (green) in siCtrl
and siNAC1 SK28 cells either left untreated or treated with 20 ng/mL of TNF-α. The cells were fixed
with 4% paraformaldehyde for 15 min at room temperature, permeabilized with 0.1% Triton X-100 for
15 min, and blocked with 3% BSA for 30 min at room temperature. Cells were stained with an NF-κB
monoclonal antibody at a concentration of 5 µg/mL in blocking buffer for 1 h at room temperature,
and then incubated with a Secondary Antibody and Alexa Fluor Plus 488 conjugates at a dilution of
1:500 for at least 30 min at room temperature in the dark (green). Nuclei (blue) were stained with
Hoechst 33342. Scale bar: 50 µm.
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3.3. Knockdown of NAC1 and Inhibition of NF-κB Act Synergistically in a Melanoma
Xenograft Model

To delineate the tumorigenic roles of NAC1 in melanoma, we conditionally expressed
a short hairpin RNA (shRNA) in SK28 cells, using an inducible shRNA vector to model
the cellular consequence of reduced NAC1 expression. NAC1 expression was significantly
knocked down in the presence of doxycycline (dox) in shNAC1 SK28 cells as compared to
the WT cells, as measured with a Western blot (Figure 4A). A clonogenic assay showed that
NAC1 knockdown resulted in a reduction in the colony number compared to the control
(Figure 4B). Notably, the combination of NAC1 knockdown with the NF-κB pathway
inhibitor BAY 11-7082 exerted a significantly stronger inhibitory effect on colony formation
than the NAC1 knockdown or BAY 11-7082 alone (Figure 4B).

Biomedicines 2023, 11, x FOR PEER REVIEW 7 of 9 
 

 
Figure 4. Knockdown of NAC1 increases the sensitivity of SK28 cells to BAY 11-7082. (A) Western 
blot analysis of NAC1 in SK28 cells that were stably transduced with tet-on-shNAC1. Cells were 
either left untreated or treated with doxycycline (100 ng/mL) for the indicated 48 h. (B) shCtrl or 
shNAC1 cells were seeded in 6-well plates and were treated with doxycycline (100 ng/mL) to 
knockdown NAC1 in the presence of BAY 11-7082 or BMS-345541. Upon harvesting, cells were fixed 
and stained with crystal violet. (C) SK28 cells were stably infected with lentiviral control shRNA 
(shCtrl) and shRNA vector-targeting NAC1 (shNAC1) and introduced to the right thigh of 6-week-
old NSG mice. When the tumors of stably transfected cells reached 100 mm3, mice were given 5% 
sucrose alone or supplemented with 1 mg/mL Dox to induce NAC1 knockdown; then, the mice were 
treated with BAY 11-7082, and tumor size was measured twice a week. Tumor volume is presented 
as mean AE SEM. The photo is a representative image of the xenograft tumors. Error bars represent 
SD. * p < 0.05 and ** p < 0.01. 

4. Discussion 
The use of targeted and immune therapies is a major breakthrough in the treatment 

of melanoma patients; nevertheless, therapeutic resistance often occurs, causing failures 
of these treatments [17]. Therefore, melanoma remains an incurable disease, reflecting the 
urgency to develop new therapeutic approaches. A number of studies support the notion 
that NAC1 could be explored as a new therapeutic target. First, NAC1 contributes to 
cortactin deacetylation and augments the migration of melanoma cells [14]. Second, the 
expression of NAC1 contributes to immune evasion through its regulatory role in LDHA 
expression and lactic production in melanoma [4]. Third, NAC1 can promote glycolysis 
through its interaction with HIF-1a, and is critically required for the development, 
survival, and function of tumor cells [13]. Surprisingly, we found that one major side effect 
of inhibiting NAC1 is the activation of the NF-κB pathway. The inhibition of the NAC1-
associated activation of NF-κB signaling is not affected by the different genetic 
backgrounds of melanoma cells, including the mutational status of PTEN, B-Raf (V600E), 
and N-Ras (Figure 1). This is of high clinical significance because melanoma is an 
extremely heterogeneous disease, and the identification of the conserved mechanism(s) 
across different subtypes of melanoma may help develop more effective 
drugs/approaches against this malignancy. Previous studies also linked the NF-κB 
pathway to melanoma tumorigenesis [18] and the activation of NF-κB has been proposed 
as an event that promotes melanoma tumor progression [19]. However, how the NF-κB 

Figure 4. Knockdown of NAC1 increases the sensitivity of SK28 cells to BAY 11-7082. (A) Western blot
analysis of NAC1 in SK28 cells that were stably transduced with tet-on-shNAC1. Cells were either
left untreated or treated with doxycycline (100 ng/mL) for the indicated 48 h. (B) shCtrl or shNAC1
cells were seeded in 6-well plates and were treated with doxycycline (100 ng/mL) to knockdown
NAC1 in the presence of BAY 11-7082 or BMS-345541. Upon harvesting, cells were fixed and stained
with crystal violet. (C) SK28 cells were stably infected with lentiviral control shRNA (shCtrl) and
shRNA vector-targeting NAC1 (shNAC1) and introduced to the right thigh of 6-week-old NSG mice.
When the tumors of stably transfected cells reached 100 mm3, mice were given 5% sucrose alone or
supplemented with 1 mg/mL Dox to induce NAC1 knockdown; then, the mice were treated with
BAY 11-7082, and tumor size was measured twice a week. Tumor volume is presented as mean AE
SEM. The photo is a representative image of the xenograft tumors. Error bars represent SD. * p < 0.05
and ** p < 0.01.

To recapitulate the above observation, we next tested the effect of this combinational
treatment using an SK28-derived melanoma xenograft mouse model. NSG mice were
inoculated subcutaneously (s.c.) with the SK28 cells stably expressing NAC1 shRNA.
When tumors were formed and palpable, the mice were randomly divided into treatment
groups. Mice bearing inducible-shRNA-xenografted tumors were given 2 mg/mL of
doxycycline plus 5% sucrose, and monitored for tumor progression. The shCtrl SK28
cells followed the expected growth kinetics, which continued to grow until the point
where ethical considerations determined the termination of the mice; knockdown of NAC1
or treatment with BAY 11-7082 alone only showed a modest inhibitory effect on tumor
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growth; however, the depletion of NAC1 in combination with BAY 11-7082 elicited a strong
inhibitory effect on tumor growth (Figure 4C), suggesting a synergistic antitumor action
between the co-targeting of NAC1 and NF-κB.

4. Discussion

The use of targeted and immune therapies is a major breakthrough in the treatment of
melanoma patients; nevertheless, therapeutic resistance often occurs, causing failures of
these treatments [17]. Therefore, melanoma remains an incurable disease, reflecting the ur-
gency to develop new therapeutic approaches. A number of studies support the notion that
NAC1 could be explored as a new therapeutic target. First, NAC1 contributes to cortactin
deacetylation and augments the migration of melanoma cells [14]. Second, the expression
of NAC1 contributes to immune evasion through its regulatory role in LDHA expression
and lactic production in melanoma [4]. Third, NAC1 can promote glycolysis through its in-
teraction with HIF-1a, and is critically required for the development, survival, and function
of tumor cells [13]. Surprisingly, we found that one major side effect of inhibiting NAC1
is the activation of the NF-κB pathway. The inhibition of the NAC1-associated activation
of NF-κB signaling is not affected by the different genetic backgrounds of melanoma cells,
including the mutational status of PTEN, B-Raf (V600E), and N-Ras (Figure 1). This is of
high clinical significance because melanoma is an extremely heterogeneous disease, and the
identification of the conserved mechanism(s) across different subtypes of melanoma may
help develop more effective drugs/approaches against this malignancy. Previous studies
also linked the NF-κB pathway to melanoma tumorigenesis [18] and the activation of NF-κB
has been proposed as an event that promotes melanoma tumor progression [19]. However,
how the NF-κB pathway can be targeted in melanoma treatment remains unclear. Because
NAC1 is involved in many melanoma-treatment-related events, we propose that the combi-
nation of NAC1 inhibition and the inhibition of the NF-κB pathway may be exploited as a
novel approach for the treatment of melanoma. Recently, our lab successfully developed a
novel NAC1 inhibitor [20]. Combining this inhibitor with known NF-κB inhibitors like BAY
11-7082 and BMS-345541, which target distinct steps in the NF-κB signaling pathway, may
demonstrate synergistic effects. Importantly, our findings reported here suggest that the
activation of the NF-κB signaling pathway needs to be carefully considered when NAC1
inhibition is used in various therapies and that targeting the inhibition of NAC1 and the
NF-κB pathway simultaneously would most likely be an improved and more effective
approach for melanoma therapy.
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