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Abstract: We recently reported that the restoration of cervical vertebral arterial blood flow access
(measured as systolic peak (PS)) to the rhomboid fossa leads to the recovery of the HbA1c level in the
case of patients with a pre-Diabetes Mellitus (pre-DM) condition. The theory of centralized aerobic–
anaerobic energy balance compensation (TCAAEBC) provides a successful theoretical explanation
for this observation. It considers the human body as a dissipative structure. Reported connections
between arterial hypertension (AHT) and the level of HbA1c are linked through OABFRH. According
to the TCAAEBC, this delivers incorrect information about blood oxygen availability to the cerebellum.
The restoration of PS normalizes AHT in 5–6 weeks and HbA1c in 12–13 weeks. In the current study,
we demonstrate the model which fits the obtained experimental data. According to the model,
pathways of onset and recovery from pre-DM are different. The consequence of these differences
is discussed. The great significance of the TCAAEBC for medical practice forces the creation of an
appropriate mathematical model, but the required adjustment of the model needs experimental data
which can only be obtained from an animal model(s). The essential part of this study is devoted to
the analysis of the advantages and disadvantages of widely available common mammalian models
for TCAAEBC cases.

Keywords: HbA1c; arterial hypertension; blood pressure; diabetes mellitus; systolic peak; rhomboid
fossa; central nervous system

1. Introduction

Nowadays, the association of DM with AHT is ultimately considered a fact [1–4].
DM is a well-studied and exhaustively described disorder where the body either does
not generate enough or respond normally to insulin, which causes blood glucose levels
to be abnormally high, as well as its connections to cardiovascular diseases [5]. This is
also correct for AHT—the very common health condition at which arterial blood pressure
(BP) either in systolic, diastolic, or both points exceed the thresholds accepted by different
medical communities [6–8]. Related to this, it needs to be underlined that there are different
explanations for such connections, as well as proposals of different candidates on the roles
of causes and consequences [9,10]. One of the most promising ways to explain this link is
the opportunity provided by the TCAAEBC [11,12]. The main idea of it is the consideration
of the patient as a system and the employment of a systematic approach to recovery. Some
can remind that this idea was originally announced by Hippocrates in the form of “Treating
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the Patient, Not Just the Disease” [13]. Unfortunately, for the last four centuries, medicine
has been developing rather under the influence of René Descartes’s theory of mind–body
dualism [14,15]. Now, there is enough reason to create long-waiting reverence towards the
systemic approach [16] which is offered by the TCAAEBC [17].

The TCAAEBC currently considers the human body from the point of the thermo-
dynamics of irreversible processes, considering “good” and “bad” health conditions as
positions on the map which describes the energetic behavior of the body. Since, accord-
ing to the TCAAEBC, the body acquires NGSs as a result of adaptation to continuous
misinformation due to OABFRH [18,19].

The typical example is the issue of the way a living organism balances between two
methods of glycolysis—aerobic (AE) and anaerobic (AN)—to cover energetic requests.
How does it work? A century ago, Ervin Bauer summarized that “All living organisms
are characterized by being a system that is not in equilibrium in its environment and is so
organized that it transforms the sources and forms of energy taken up from its environment
into such state that acts against the establishment of equilibrium in the given environment.
All the energy taken up by the organism from the environment must be fully used to
deviate from the equilibrium state” [20,21]. This theory states that the organism within
itself must possess available energy to prevail the equilibrium. It is required to maintain
the necessary order. Otherwise, the organism is eventually destroyed by the external
environment. Physics interprets this as an action of the first law of thermodynamics. It can
be reflected, therefore, with the following equation:

Q = U + W,

where Q is the heat, U is the internal energy of the system, and W is the work carried out
by the system.

The living body should keep a certain constant level of internal energy, ECONST. Then,
for the living systems:

E = ECONST + W,

where E is the sum of all energies flowing through the biosystem, ECONST is the above-
mentioned constant total internal energy of the biosystem, and W is the total work done by
the biosystem in the external environment. It looks that to maintain a structure through
which the constantly changing energy flow is passing on a constantly adjusted level of
energy, we need feedback that regulates the consumption level.

According to the TCAAEBC, to keep energy metabolism in the brain stem at a constant
level of ECONST, the cellular and microcirculatory levels of the AN (glucose, lipoproteins,
etc.—EAN) and AE (oxygen—EAE) molecules involved in it are under control to fulfill
the equation:

ECONST = EAE + EAN

The decrement in EAE causes two types of centralized adaptation reactions, which
occur to maintain the level of ECONST. Such changes appear due to certain reasons, e.g.,
a decrement in oxygen content in the microcirculatory bed and brain stem cells. These
are reactions of CAAEBC to maintain the level of ECONST. Since the reactions of AN
compensation are less energy efficient, they are onset only after the complete exhaustion
of the reserves of AE compensation reactions. The latter are neurogenic cardiovascular
reactions, which are manifested as a steady increase in systolic BP (an increment in the
cardiac output force), a constriction of the peripheral capillaries, and an increment in
cardiac rate. The aim of the AE compensation reactions is an urgent increment in the brain
stem blood perfusion and an eventual recovery of the EAE level.

From the other side, AN compensation reactions appear to be neurohumoral which
cause an increment in the AN metabolism of sugars, phospholipids, and other energetically
rich biochemical compounds. The aim of these reactions is an increment in EAN to maintain,
in the case of reduced EAE, the level of ECONST.
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These reactions of the organism manifest phenotypic adaptation (PA) [22]. The PA of a
living being to any changes in the environment starts with the aid of small forces through a
less difficult itinerary. In the first step, oxygen saturation of the brain takes place, and then
the reflex system which causes compensatory AHT is interrupted. If the brain encounters a
lack of oxygen for an extended time, then according to the PA concept, changes take place
at the biochemical level, i.e., the biochemical balance shifts, in other words, the AN part is
increased and AE—decreased.

The brain, experiencing the lack of oxygen, considers its decrement as a decrement in
the level of oxygen in the environment and tries to adapt the performance of the organism to
the changed AE condition [23,24], i.e., the brain tries to accommodate the already changed,
according to the information from the oxygen detector, conditions. But they have remained
the same. Then, the brain starts to receive signals about the heart’s critical condition, and it
should start to behave according to its designation as a control center. To save the cardiac
resource, it adjusts the biochemical system to accommodate the reduced partial pressure of
oxygen. Such an offset in the AE–AN equilibrium to AN maintains the overall balance of
energy that is necessary to fulfill Bauer’s universal principle of biology and to balance the
effect on the body of the second law of thermodynamics [20,21].

The best clinical example of the “fast” and “slow” compensatory mechanisms is squeez-
ing the vessels of the neck to provoke a person’s short-term hypoxia (oxygen deprivation).
The same can be obtained with tough physical exercise (sudden rise in oxygen consump-
tion). Both cases instantly result in a reflexive increment in BP and heart rate [23,24].
After deprivation is over, all vital signs quickly return to normal. This is the case of
“quick” adaptation.

The case of “slow” adaptation appears in the case of a long-term obstruction of the
vessels due to, e.g., a narrowing of the lumen of the vessels due to the atherosclerotic
process or cervical osteochondrosis, etc. Here, we observe the shift in the AE–AN balance.
The best example is the development of the metabolic syndrome, in particular, DM.

It needs to be underlined that the TCAAEBC introduces to the description of AHT
onset such terms as ECONST, which allows us to structure the balance of body energies,
and EAE and EAN to describe AE and AN contribution to the overall energy flow of the
body. In the TCAAEBC, we connect the partial pressure of oxygen in the brain stem as an
index causing the brain to regulate these energy processes.

The idea that some cases of AHT are results of OABFRH by intervertebral disc com-
pression with hernias and protrusions of the cervical spine leads to certain consequences.
The anatomical features of the cervical vertebrae are such that veins and arteries pass
through the holes in their transverse processes (arteria vertebralis, venae vertebralis). Due to
the offset of the vertebrae (or disc), a deep muscle spasm around them appears. It then
causes OABFRH. It is the PS reduction of up to five times which results in the dramatic
reduction in the amount of delivered oxygen to the oxygen detectors in the brain stem.
Since the detectors’ signal causes the brain to acknowledge the lack of oxygen, it takes
emergency measures and forces the heart to increase its strength and/or heart rate so that
blood, through all the blocks and obstacles, is still able to reach the brain and provide
much-needed oxygen. The increment in pressure and/or heart rate which is needed to
protect the brain from hypoxia is being developed. Vice versa, after unlocking the vertebral
arteries, the pressure and heart rate should return to normal. Therefore, since patients with
AHT have been healed through the restoration of vertebral arteries PS, then the TCAAEBC
should be considered as confirmed. This is easy to register using measurements of BP and
PS. The elimination of OABFRH during the correction of deep neck muscles leads to the
measurable stable restoration of PS of sinistra and dextra arteria vertebralis to the normal
values. To prove this, we need to compare BP and PS data on the animal model both before
the introduction of OABFRH and after removal.

So far, this approach has been successfully employed in the explanation of AHT [14],
DM [11], left ventricular hypertrophy [25], sudden cardiac death [26], vertebral cartilage
issues [27], and problems with posture [28] (Figure 1).
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Figure 1. (A) Schematic of the TCAAEBC view on OABFRH. (B) Itinerary of patients’ recovery during
the treatment according to [27].

Let us underline that the TCAAEBC provides the view on the way of interconnection
of multiple NCOs through the acknowledgement of the main role of the central nervous
system (CNS). From this perspective, the recent reports in connection(s) through the CNS of,
e.g., autoimmune (one of the examples of which is DM) and neurodegenerative diseases [29]
can be united on the level of physiology until molecular level is under clarification.

The visible success of the logical explanation leads to the next step—mathematical
modeling, which allows testing and demonstrating critical points of verification [30]. To
compile a model, it is necessary to start from the list of parameters to evaluate [31,32]. The
most logical parameter, approved by WHO since 2006, to describe the degree of DM is
hemoglobin-glycated hemoglobin (also known as glycosylated hemoglobin, HbA1c, and
hemoglobin A1c (A1C)) [33,34]. The American Diabetes Association (ADA) 2015 chose the
HbA1c level (H) ≥ 6.5% (48 mol/mol) as the diagnostic criterion for DM. For pre-DM, it
should be from 5.7 to 6.4% [35].

H allows the performance of long-term glycemic control since it reflects the cumulative
glycemic history of the preceding 3 months or so. It characterizes the average glucose
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level and demonstrates high reproducibility even with different methods of analysis [36].
H allows the measurement of chronic hyperglycemia and estimates the risk of long-term
diabetes complications. In addition, H is the most abundant (>90%) glycated hemoglobin.

H is calculated according to Equation (1):

H =
HbA1c

HbA1c + HbA0
× 100% (1)

where HbA0 is the rest of the hemoglobin.
The current study is devoted to the modeling of H trajectories during onset and recov-

ery from pre-DM in the case when it is caused by the events described by the TCAAEBC.

2. Materials and Methods

For our modeling, we used the previously reported data shown in Table 1, which
demonstrates the absence of significant gender differences. Therefore, we used parameters
from the combined sample.

Table 1. Changes in BP, PS, and H from the above-described treatment (edited from [11]).

Parameter M F M + F Normal

Sample size 19 29 48
Age, years 63.1 ± 11.7 65.5 ± 12.2 64.3 ± 12.0

BP before treatment, torr 159.5 ± 18.3 163.5 ± 17.9 161.9 ± 18.1
BP after treatment, torr 132.3 ± 19.2 131.7 ± 16.6 132.9 ± 17.3 <140 [37]

PS before treatment, cm/s 22.5 ± 8.1 21.9 ± 9.3 22.2 ± 7.5
PS after treatment, cm/s 41.7 ± 6.7 43.2 ± 7.4 42.5 ± 7.8 48 ± 10 [38]

H before treatment, % 6.03 ± 0.34 6.11 ± 0.45 6.08 ± 0.41
H after treatment, % 5.7 ± 0.63 5.73 ± 0.51 5.72 ± 0.58 5.7–6.4 [35]

3. Modeling

The mathematical model of the recovery from the adaptive OABFRH state of the body
during the restoration of PS provides additional issues yet to be considered. As mentioned
above, long-term adaptation occurs with repeated or ongoing OABFRH. It is a combination
of structural, functional, and metabolic adaptive reactions. Therefore, the main feature of
the model is taking into account a large number of such reactions that have different effects
and effects over time. In model building, we used an approach similar to [39].

Model Explanation

The adaptation processes are formed continuously as a result of repeated activation
of the mechanisms of urgent adaptation to OABFRH. Homeostasis on each step generates
conditions for optimal vitality of the organism. Eventually, a dissipative structure is formed
with at least two stable points (attractors of the unstable focus type). The first point is the
basic state of the body in the absence of OABFRH (Figure 2). The second point demonstrates
the state of the body in the case of adaptation to OABFRH. The most important observation
is that the onset and recovery itineraries are different.

In the real space of values, we define the functions of apparent OABFRH H (t, PS)
and BP (t, PS), where t is time. Consider the dynamical system of evolution ∂/∂t of the
functions H and BP; we denote r = PS for brevity. To account for the contribution to the
general system of the cumulative effect of the action of each term H and BP, we interpret the
coefficients DH and DBP as the values of their “range” with diffusion term ∂2

∂r2 functions,
according to the Equations (2) and (3):

∂H
∂t

= a11H + a12BP + F(H, BP) + DH
∂2H
∂r2 , (2)
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∂BP
∂t

= a21H + a22BP + G(H, BP) + DBP
∂2BP
∂r2 (3)

The terms F and G have the meanings of the regression dependencies that may appear
during field experiments (below, F = G = 0). The initial boundary conditions are BP
(t,20) = 130 and H (0,r) = 100(1 − r/20).
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arrows which show the direction.

The values are taken as typical parameters of the patient’s ultrasonography. The
maximum PS does not exceed 45 cm/s and the time is 12 weeks. Later, the system is reduced
to a dimensionless form and numerically solved using the FEM method implemented in the
Wolfram Mathematica 13.0 environment. In Figure 3, one can see the relationships between
H and PS. The most important observation from it is that the itinerary consists of two parts
with a sharp change in the slope. This can be checked by more regular PS measurements in
further studies on animal models that allow data collection with the desired periodicity.
We especially left the axes without any scale since it should be defined after experimental
data collection.

The modeling of DM-related and AHT-related parameter interactions opens a new
page in TCAAEBC studies. There is a wide variety of blood flow parameters which are
associated with arterial blood access to the rhomboid fossa that are relatively easy to
determine during triplex sonography [40–42] and their association with H(t) is easy to
evaluate. Our experience suggests that it is still possible to find the parameter that could be
optimal for the characterization of OABFRH according to the TCAAEBC. Finding such a
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parameter could allow the control of recovery to be easier and faster. We are sure that the
search should be continued. Moreover, nowadays there are additional methods proposed
for quantitative blood flow measurements such as pulsed wave Doppler studies, high-
frame-rate ultrasound vector flow imaging, phase contrast MRI, and several others [42–44].
The long list of proposed approaches looks endless, even if the number of proposed
measurement parameters is much shorter.
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The same is true with the understanding of the parameters that could be offered
instead of HbA1c for better characterization of DM [45]. Since its acceptance by WHO as a
major index for DM, its usefulness is regularly questioned [46,47]. A similar situation is
with the parameters to characterize AHT [48–50].

4. Appropriate Animal Model(s)

The overview on the planned experimental setup is demonstrated in Figure 4.
Let us list the available and acceptable options from the medical community’s animal

models with the features that are essential for the TCAAEBC verification (Table 2). Accep-
tance of the model is extremely important, since otherwise we could step into the same
trap as Mendel, who was proposed to repeat his experiments on Hieracium because his
model—Pisum sativum—looked less acceptable to his pen pal [51,52]. Let us underline
that neither of these were the animal model.
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From the very beginning, we would like to exclude primate models from consideration
due to:

The absence of defined knowledge that required data could be obtained only from them;
The existing restrictions on the involvement of such models in nonobligatory experi-

ments [53,54].

Table 2. Comparison of mammalian models on required-to-check CAAEBC parameters [55–60].
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Rats + − + + + +

Rabbits + − + + + −
Minipigs + + + + + −
Goats − − + + + −
Sheep − − + + - −
Guinea pigs − − + + + −
Cats + + + + + −
Dogs + + + + + −

There are some general points about aspects that should be taken into consideration to
choose an appropriate animal model. Some experimentalists even underline that there is no
ideal model for every clinical situation, but they can be more or less accurate to represent
them [61]. Importantly, the contemporary knowledge of the detailed characteristics of each
animal model is unavailable. Therefore, experiments often need to be designed on pure
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guess. This can be a problem later in the translation stage of the acquired data to human
clinical situations. In the majority of the convenient animal models, the small diameter and
tangled geometry often close the door to certain models [62].

The fundamental advantage of the animal model is the ease with which the results
may be applied to clinical settings including humans [63,64]. It is frequently so difficult to
identify the best model for a given situation that a pilot experiment is required [65,66].

The arterial blood supply in rats exhibits heterosegmental organization [59]. This
fact is not in favor and has the greatest difference from real-world clinical scenarios of
any model on the list. However, this is so far the only model where the elevation in
BP was demonstrated after implementation of the plastic implants, causing atlantoaxial
misalignment. The removal of the implant reversed BP to normal values. The evaluation of
PS was not performed [24].

Let us think about the (mini)pig model’s drawbacks. Although there is no evidence on
cervical vertebral arteries, there are reports that this model can create collateral blood flow
to duplicate vertebral arteries in the situation of occlusion [67]. The fundamental benefit
of using a minipig model to test CAAEBC is that the physiology and vascular anatomy
are similar to those of people [68]. This model’s popularity is primarily due to similar
clinical conditions.

When it comes to dogs and cats, these models show some similarities to the human
artery system, which is helpful for our purposes. For example, rabbits are used for various
cases of cardiovascular modeling [69–71]. However, the public’s attitude is significantly
less positive about these models in comparison with the two listed above [72]. Therefore,
we consider them as the last resort.

The abdominal aorta of the rabbit, used as a model, provides homosegmental blood
flow. This model has a significant benefit in that it nearly completely lacks an intraspinal
collateral arterial system [71]. The key benefits are cheaper maintenance expenses and
simpler manipulation.

More segmental blood is present in the guinea pig model. The small segmental arteries
are to blame for this [71]. This model is the least advantageous to model CAAEBC because
of the inability of blocking blood passage to the rhomboid fossa due to the larger segmental
arterial supply.

The mouse model is comparable to those using other rodents [73]. Despite all of
this model’s benefits, including how quickly experimental symptoms can appear, how
inexpensive it is, and how simple it is to manipulate [61], we believe it is flawed for the
same reason as the rat model. Detailed information on the anatomy of the cervical part
of the spinal cord vascular organization is extremely important to plan the experiment
properly [74].

It looks like even if the rat model is already confirmed as a primary candidate because
of its reported performance, the minipig and rabbit models could be considered as the
second and third options.

5. Gaps in Evidence and Future Directions Instead of Conclusions

Even if the primary parameter for DM characterization is HbA1c (according to WHO),
which does not allow for characterization faster than 90 days (according to its nature), to
allow daily modeling, we need to collect data on daily glucose profile.

The observation of the behavior of the model describing the recovery from DM as a
function of the restoration of the arterial blood flow access to the rhomboid fossa leads to
the following outcomes:

1. The onset and recovery itineraries from pre-DM are different;
2. The slope of the HbA1c dependence on PS demonstrates two different areas. Each of

them should have different health condition situations, which should be verified on
animal models. These preliminary conclusions should be preceded by the optimiza-
tion of the list of parameters to obtain a further description of OABFRH’s influence on
DM. The collected data could be used in the evaluation of the set of proper parameters
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for the aging index(es). This became critically important in 2022, when WHO (in
ICD-11) eventually started to consider aging as a health condition and not as a normal
stage of development [75]; therefore, AHT and DM, which were considered aging
satellites, could experience a change in mankind’s attitude toward them.
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