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Abstract: In recent years, plant polyphenols have become a popular focus for the development
of novel functional foods. Polyphenols, a class of bioactive compounds, including flavonoids,
phenolic acids, and lignans, are commonly found in plant-based diets with a variety of biological
actions, including antioxidant, anti-inflammatory, and anticancer effects. Unfortunately, polyphenols
are not widely used in nutraceuticals since many of the chemicals in polyphenols possess poor
oral bioavailability. Thankfully, polyphenols can be encapsulated and transported using bio-based
nanocarriers, thereby increasing their bioavailability. Polyphenols’ limited water solubility and low
bioavailability are limiting factors for their practical usage, but this issue can be resolved if suitable
delivery vehicles are developed for encapsulating and delivering polyphenolic compounds. This
paper provides an overview of the study of nanocarriers for the enhancement of polyphenol oral
bioavailability, as well as a summary of the health advantages of polyphenols in the prevention and
treatment of several diseases.
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1. Introduction

The health benefits of plant-based functional foods have attracted a growing amount
of scientific interest, and plant polyphenols, one of the most common chemical components
of plants, have particular attention. A diet full of vegetables, fruits, grains, tea, and
coffee contains polyphenols in their natural forms. Polyphenolic compounds have a wide
range of varied structures based on phenolic rings [1,2] and can be broken down into
phenolic acids, flavonoids, anthocyanins, and tannins. Several foods consist of bioactive
chemicals or molecules that have a biological effect on the body. Polyphenols are one type of
bioactive compound found in plant diets [2,3]. Some polyphenols can be obtained through
reprocessing natural substances, while others can be separated and extracted straight from
natural foods. The chemical composition of polyphenols determines their rate of absorption
and the extent of their action in the digestive tract [4]. Because of their unique chemical
composition, polyphenols can serve as effective preventative agents against chronic and
degenerative diseases [3–5]. The protective effects of polyphenols against cardiovascular
disease, neurological disease, liver disease, diabetes, and cancer have been demonstrated
by a number of researchers [6–12].

Polyphenols have been shown in multiple research to be helpful to intestinal health
and to have beneficial properties, such as lowering inflammation and protecting against
cancer through controlling the gut flora [2,13]. This is why they are frequently included
in functional diet menus, which aim to provide health benefits through ingestion. As the
global population grows and the awareness of the need to maintain a healthy lifestyle
expands, so does the demand for polyphenols in the market. The use of polyphenols in
nutraceuticals is hindered, however, because many polyphenolic substances have poor oral
bioavailability.
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Natural bio-based nanocarriers are the ideal choice for enclosing, preserving, and
transporting polyphenols, which increases their bioavailability (Figure 1) [2,14]. To over-
come the problems associated with the poor oral absorption of polyphenols, bio-based
polymers (such as those containing proteins and polysaccharides) are appropriate delivery
systems when employed as nutritional treatments since they are biocompatible, biodegrad-
able, resource-sustainable, and nutritionally valuable [2,14]. Protein bio-based polymers
possess a wide range of useful features, such as those of emulsification, amphiphilicity,
gelation, and foaming, in addition to their high nutritional value [14]. Because of their
typical or distinctive molecular structure and functional properties, they may be fabricated
into a wide variety of nanoscale delivery vehicles, including nanoparticles, nanogels, nano-
emulsions, nanofilms, and nanofibers, that can transport both hydrophilic and hydrophobic
polyphenolic chemicals [14,15]. Bio-based polymeric polysaccharides can be used as build-
ing blocks in the production of various nanocarriers and in the transport of polyphenolic
compounds [1,2]. As they are both biocompatible and biodegradable, lipid-based nanocarri-
ers have emerged as a key technology for delivering polyphenols in the food and nutrition
industry [2]. To further investigate and create innovative polyphenol health nutrition prod-
ucts [2,15], some polyphenol products have been put into an effort to further develop novel
polyphenol-based health nutrition products [2,15]. Lipid-based delivery vectors, such as
liposomes, nano-emulsions, and solid lipid nanoparticles, protect fat-soluble polyphenols
from degradation in the digestive tract and increase their bioavailability [1,2,4,12,15].
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Figure 1. Beneficial health effects of polyphenols on human health.

This article provides a general introduction to the classification of polyphenolic chem-
icals and a comprehensive evaluation of the positive effects of polyphenols on human
health. The bioavailability of polyphenolic compounds is low, but in this article, possible
solutions to this problem are suggested, including the development and use of food-grade
bio-based nanocarriers to encapsulate, preserve, and distribute these compounds. Finally,
the potential use of polyphenol food-grade bio-based nano-complexes in nutraceuticals is
exciting, as it promises to shed light on the creation and use of nutraceuticals by bringing
together nano-delivery techniques with polyphenol health advantages.
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2. Polyphenols in Plants: A Review of Their Taxonomy, Properties, and
Health Benefits
2.1. Categorization and Characteristics

Many different foods include plant polyphenols, which have received a lot of attention
due to their potential for various biological effects. Chemicals with a benzene ring structure
and two or more phenolic hydroxyl groups are known as polyphenols [1,2,15]. These
compounds can be further categorized into flavonoids and phenolic acids based on their
structures.

Flavonoids are primarily found in plant cells as glycosides housed in vesicles. Flavonoids
consist of a C6-C3-C6 tricyclic structure in their molecular core. Flavonoids are even further
categorized into subcategories based on their chemical structures [2], such as flavonols,
flavones, isoflavones, anthocyanins, flavanones, and flavanols (Figure 2). Flavonoids,
found in most plants, have been shown to play a crucial role in plant development, growth,
flowering, fruiting, antibacterial action, and disease prevention [2]. Human health may
benefit from the majority of these flavonoids due to their anti-inflammatory, antibacterial,
antioxidant, and anticancer physiological actions [12].
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Fruits, vegetables, and certain drinks contain phenolic acids. It is reported that low-
molecular-weight phenolic acids are water-soluble; however, after enduring condensation
reactions with glucose and quinic acid, they become water-insoluble, resulting in poor
bioavailability [13,16]. The above-mentioned biological characteristics of phenolic acids
have led to their widespread usage in the production of functional foods [17].

2.2. Beneficial Effects

Polyphenols found in plants have several positive benefits on human health. Because
of their high levels of antioxidants and antibacterial qualities, as well as their availability
and biocompatibility, they can be added to foods and endowed with special functional fea-
tures that have a positive impact on people’s health. Table 1 shows the possible application
of polyphenols in food formulations by presenting some of the beneficial effects of plant
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polyphenols on human health. Important steps toward reducing the prevalence of diabetes,
high blood pressure, and cancer could be taken with the help of polyphenolic-compound-
containing functional foods.

Table 1. Overview of various polyphenols and their pharmacological effects.

Health Benefits Polyphenol Study Model Effect References

Anticancer Epigallocatecin-3-gallate
(EGCG) Liver cancer Inhibits the growth and induces apoptosis of

different liver cancer cells [2]

Curcumin Prostate cancer
Promotes apoptosis of the prostate cancer cells

both through the mitochondrial and the
receptor-mediated pathways

[18]

Resveratrol Bladder cancer
Inhibit cancer cell proliferation, cell migration,

and invasion, induce cell cycle arrest, and
trigger apoptosis

[19]

Naringin Pancreatic cancer Inducing tumor cell death and inhibiting
angiogenesis in malignant cells [20]

Pro-oxidant EGCG Breast cancer Inhibit tumorigenesis during the initiation,
promotion and progression stages [21]

Curcumin Prostate cancer
Quenches free radicals, induces antioxidant
enzymes (catalase, superoxide dismutase,

glutathione peroxidase)
[18]

Resveratrol Saccharomyces cerevisiae Increase reactive oxygen species (ROS)
generation through reverse electron transport [22]

Naringin Prostate cancer
Suppress cell proliferation and trigger

apoptosis in various cancer cell lines in the
presence of copper ions

[20]

Gallic acid Breast cancer
Suppress cell proliferation and trigger

apoptosis in various cancer cell lines in the
presence of copper ions

[23]

Genistein Prostate cancer
Suppress cell proliferation and trigger

apoptosis in various cancer cell lines in the
presence of copper ions

[24]

Anti-inflammatory Rutin Schistosomiasis mansoni Reduces pathological alterations [25]

Curcumin Sunflower seed
protein isolate

Blocks metabolic pathways leading
to inflammation [26]

Resveratrol Mice model Inhibiting pro-inflammatory
signaling pathways [27]

Anti-hypertensive Curcumin Clinical trial
Prevents the transport of calcium, which aids

in muscle cell contraction, causing
artery dilatation

[28]

Green tea catechins Clinical trial Improves endothelial function and insulin
sensitivity, reduces blood pressure [29]

Genistein Clinical trial
Significantly reduced the levels of total and
low-density lipoprotein (LDL)-cholesterols

and systolic blood pressure
[30]

Anti-diabetic EGCG In vitro Modifies glucose and lipid metabolism in cells
and markedly enhances glucose tolerance [31]

Curcumin In vivo Reduce blood sugar levels and increase
insulin sensitivity [32]

Quercetin Rats and mice Lowers serum glucose in a dose
dependent fashion [33]

Anti-microbial Curcumin Viruses, bacteria, fungi Blocks wide range of mechanistic pathways
that are responsible for the microbial growth [34]

EGCG Staphylococcus aureus
and Rhizoctonia solani

Inhibits a wide variety of microbial
growth-promoting metabolic processes [35]
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2.3. Antioxidant Effects

The unique structural properties of plant polyphenolic compounds are responsible
for their potent antioxidant activity. Antioxidants like polyphenols can protect DNA
from oxidative damage, a leading cause of many illnesses. In vitro studies have revealed
that EGCG has a cancer-preventive effect by decreasing the formation of ROS in the body
and that EGCG can speed up programmed cell death by limiting DNA synthesis in cancer
cells while not affecting normal cells [2,3]. EGCG reduces the growth of human colon
cancer cells HCT-116 and SW-480, but EGCG has the strongest effect, which is mostly due
to its phenolic content [2,3]. EGCG regulates oxidative-stress-induced apoptosis via the
protein kinase B (Akt) and c-Jun N-terminal kinase (JNK) signaling pathways in the cell
signaling system [2]. EGCG increases the expression of mitogen-activated protein kinase
(MAPK) and antioxidant response element (ARE) genes, boosting the ability of the cell’s
antioxidant defense system [2,3]. Furthermore, nuclear factor erythroid 2-related factor
2 (Nrf2), nuclear factor-kappa B (NF-κB), and others are important cellular pathways for
the body’s antioxidants [2,3]. In addition, EGCG has been proven in vivo to raise serum
catalase (CAT), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) levels
while decreasing MDA generation [2,21]. From the available databases, Farhan et al. [2]
looked for randomized clinical trials and reported that patients undergoing radiation
therapy for esophageal cancer who also suffer from acute radiation-induced esophagitis
(ARIE) may benefit from taking an EGCG solution orally, according to clinical findings
from a study [36]. Although EGCG does not improve radiation efficacy, it may act as a
preventative measure against other potential side effects. [36]. A once-daily oral dosage
of EGCG in the Polyphenon E formulation was reported to be safe and well tolerated in
a phase 2 trial for patients with chronic lymphocytic leukemia (CLL) [37]. Long-term
improvements in absolute lymphocyte count (ALC) and/or lymphadenopathy were
seen in the vast majority of individuals. Oral EGCG formulations that are more likely to
be absorbed by the body are now under development and may be more effective [37]. A
standardized catechin mixture containing EGCG at 200 mg BID for 12 months was well
tolerated and accumulated in plasma [38], but it did not reduce the risk of a subsequent
diagnosis of prostate cancer in men with baseline high-grade prostatic intraepithelial
neoplasia (HGPIN) and atypical small acinar proliferation (ASAP). According to the
study [38], a biopsy of the prostate taken within a year after an HGPIN diagnosis has
only a 20% chance of revealing cancer if an adequate sample is performed at the outset.
In addition, the low rate of prostate cancer at one year observed in men with ASAP in
this trial suggests that earlier findings may have exaggerated the underlying risk of
cancer in that cohort. Based on the studies and available literature, it is safe to assume
that plant polyphenols possess potent antioxidant properties that may be exploited for
human benefit [2].

2.4. Anti-Inflammatory Effects

Plant polyphenols inhibit and kill some inflammatory cells via interacting with
cytokines and their receptors or by changing the release of cytokines. According to
the research [39], rutin-containing hydrogels exhibited anti-inflammatory effectiveness
that was on par with that of conventional medicines. Researchers have examined
hesperidin’s anti-inflammatory properties, which were evaluated using RAW264.7
cells and a CCl4-induced acute liver injury model [40]; the results showed that the
compound significantly inhibited the production of nitric oxide (NO), interleukin 6
(IL-6), and tumor necrosis factor-alpha (TNF-α), both in vivo and in vitro. Studies show
and confirm that polyphenols certainly have the properties to protect the body from
inflammation [2].

2.5. Anti-Cancer Effect

Certain forms of cancer are more vulnerable to polyphenols’ preventive effects. In
addition to preventing tumor growth, their toxic effects on cells can trigger apoptosis. A
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study [41] found that resveratrol has an inhibitory effect on cell growth, an apoptotic effect,
and good antioxidant characteristics, all of which can alter the course of cancer and related
disorders. In addition, quercetin’s widespread use in the treatment and prevention of
esophageal cancer was highlighted in the report [41]. Several other investigations have
found that polyphenolic substances, such as EGCG, genistein, naringin, and curcumin,
have anticancer effects [18,20,24,42]. These polyphenols can eliminate cancer cells by alter-
ing signaling pathways, blocking cell cycle events, and inducing apoptosis, among other
anticancer strategies. Tumor cell proliferation enzymes are another target of polyphenol
regulation. Recent research is pointing to natural polyphenols and their anti-cancer poten-
tial via multiple mechanisms, including their ability to inhibit angiogenesis, metastasis,
and DNA interaction [2,3,31,33,37,38].

2.6. Anti-Microbial Effect

Polyphenols are effective antimicrobial agents against many different types of bacteria.
The antibacterial activity of flavonoids is exceptionally high in comparison to that of other
polyphenolic substances. Polyphenolic substances, according to some studies, can work
in tandem with antibiotics to boost their efficacy against bacteria. Curcumin placed onto
chitosan films exhibited strong antibacterial activity against Staphylococcus aureus and
Rhizopus solani [34,43]. Tea polyphenols (EGCG, EGC, ECG), silymarin, and rutin have
all shown antibacterial activity, and their use has been widely reported and confirmed in
various studies [44,45]. The above polyphenols lowered cell viability, extracellular DNA,
and exopolysaccharide levels. Bacterial adherence to human keratinocytes was shown to
be moderately reduced after treatment. Membrane permeability was another mechanism
impeded by these polyphenols [43–46].

2.7. Pro-Oxidant Effect

The antioxidant effects of polyphenolic substances are particularly noteworthy. High
dosages of certain polyphenolic chemicals, however, have been shown to cause DNA
damage and ultimately apoptosis [47]. Hadi et al. [48] have studied the pro-oxidant phe-
nomenon of polyphenols for the past three and a half decades. The majority of polyphenols
found in plants can function as antioxidants or pro-oxidants. Several studies have shown
that polyphenolic compounds, when combined with copper ions, can function as pro-
oxidants, causing DNA damage in cells via the production of reactive oxygen species
(ROS) [49–53]. Several polyphenols (such as EGCG, quercetin, resveratrol, and daidzein)
have been reported to elicit this effect via intracellular copper ion mobilization [50–56]. The
pro-oxidant behavior, therefore, could be a useful weapon to selectively target cancer cells
while sparing normal cells for designing safer cancer therapeutics.

2.8. Antidiabetic Effect

Polyphenol-rich diets may help lower diabetes risk. Peripheral tissue insulin sensi-
tivity may be improved by polyphenols, according to several studies [57]. Alpha-amylase
and alpha-glucosidase, which control intestinal glucose absorption and blood sugar regu-
lation, are strongly inhibited by many polyphenolic substances [58]. Catechins, a type of
polyphenolic chemical found in foods like tea, are known to have powerful antioxidant
and anti-diabetic effects. In a recent review [59], the therapeutic potential of quercetin
as an antidiabetic bioactive component was reported in depth. It was explained that
quercetin has good preventive and therapeutic potential against diabetes in vitro and
in vivo and that this potential is supported by a complete and systematic summary and
description of the mechanism of action, the targets, and the effects of quercetin [59]. As
a result, polyphenolic chemicals show considerable promise as a tool for halting the
development of diabetes.
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2.9. Anti-Hypertensive Effect

Improved endothelial function, decreased oxidative sensitivity of low-density lipopro-
teins, and increased vasodilation have all been linked to polyphenolic chemicals, such
as those found in cocoa, which is high in flavanol compounds, like catechins and proan-
thocyanidins. The European Food Safety Authority (EFSA) [60] acknowledges this effect
of polyphenols thoroughly. Various polyphenolic substances have been shown to have
positive effects on vasodilation and other aspects of blood pressure regulation, as discussed
in detail [61]. In a study, it was found that curcumin, amlodipine, and a combination of
the two all had vasodilatory effects on isolated rat aortic rings. The combined administra-
tion of curcumin and amlodipine induced a stronger vasorelaxant effect than amlodipine
alone [62]. This suggests that people with high blood pressure who take amlodipine
could safely consume curcumin for food or other medical reasons without affecting the
antihypertensive effects of the drug [62].

3. Polyphenol Bioavailability

There is no correlation between the quantity of polyphenols in food and their bioavail-
ability. When taken orally, polyphenols gain access to the bloodstream via the intestinal
mucosa and then travel to the intended tissues. A number of studies confirm the rising
interest in nutraceuticals [63]. The regulation of several metabolic functions is profoundly
influenced by one’s dietary habits. Foods are more than just fuel for the body’s metabolic
processes; they also contain “active substances” that have positive impacts on health, such
as antioxidants, vitamins, polyunsaturated fatty acids, and fiber. Hence, a healthy diet and
all of its constituents can help people feel better, lower their chances of developing certain
diseases, and generally increase their quality of life [64–66].

The most studied classes of physiologically active molecules include fatty acids and
lipids, amino-acid-based substances, carbohydrates, fiber, isoprenoid derivatives, and
phenolic compounds (Figure 1). The intestinal absorption and bio-accessibility of these
nutritious substances [67–69] are crucial factors to think about when assessing their bioavail-
ability. For instance, polyphenols have a modulating influence on the gut microbiota by
blocking pathogenic bacteria and increasing good bacteria, both of which have positive
effects on host health. The mucus layer, made up of epithelial cells, can act as a barrier for
some nutraceutical chemicals, limiting their absorption after ingestion [70]. Nevertheless,
bioactive chemicals exert favorable impacts on human health when they are taken up from
food and become soluble in gastrointestinal fluids.

Microencapsulated bioactive molecules, like flavonoids, phenolic compounds, antioxi-
dant molecules, carotenoids, and general plant metabolites, are examples of bioavailable
nutraceutical chemicals. In reality, active substances, including pigments, antioxidants, vi-
tamins, minerals, peptides, and proteins, are protected, stabilized, and their bioavailability
is increased and controlled through the use of micro/nano-encapsulation procedures. By
encapsulating them, nutraceuticals are better able to withstand the rigors of the digestive
system, interact with it, and remain soluble and bioavailable [71–73].

Certain fruits, such as apples and berries, contain more than 200 mg of polyphenols
per 100 g of fresh fruit [74]. The amount and bioavailability of these phenolic chemicals,
however, are affected by the method(s) of food processing used. For instance, since many
food-processing techniques require heat treatment, it is commonly seen that exposure to
higher temperatures might negatively affect the nutritional profile of fruits and vegetables;
nevertheless, some research has found the opposite to be true [75]. Domestic cooking
was found to cause significant losses in polyphenols, with wide variation among meals,
according to a comprehensive investigation of ~161 polyphenols and their food-processing
alterations. Furthermore, it was found that the food under study was frequently more
influential than the procedure used, demonstrating the significance of the food matrix [76].
The fate of polyphenolic compounds during food processing depends on a wide variety of
parameters, including the type of food-processing technique employed in both commercial
and home kitchens, and these correlations are briefly discussed here.
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Both at home and in large-scale food-processing facilities, heat treatments are in
practice. Cooking methods, such as the stovetop, the microwave, and the steam oven, can
be used for these preparations. Toasting, coffee roasting, drying, canning, pasteurizing, and
sterilizing are all examples of additional common transformation methods that rely on heat.
What happens to polyphenols upon heating depends on the processing technique used. By
destroying cell walls, heat increases the availability of phenolic compounds that are bound
elsewhere in the plant [77]. They are more susceptible to oxidation, though, and only a
few of them are truly thermostable. It is observed that the polyphenol profiles of foods
vary depending on how long they are boiled. For instance, kale leaves lost 51% of their
polyphenol content after being blanched (short-interval boiled), with the loss of caffeic acid
being the lowest (28%), and the loss of ferulic acid being the greatest (55%). However, the
total polyphenol content decreased by 73% because of the more severe damage caused by
extended cooking times [78].

Canning is a method for economically producing microbiologically safe and sterile
products through the use of heat treatment. Retorts, pasteurizers, and heat exchangers are
all suitable for processing food into the canned form. The primary goal of heat treatment is
to kill off any potentially harmful bacteria, and metal cans, glass jars, and retort pouches are
employed to keep out any potential spoilers. Both the food and the jar can be kept in good
condition if they are cooled to room temperature after being heated [79]. When phenolic
components leach (draining process) into the surrounding medium (brine or syrup), total
phenolic and flavonoid concentrations are said to decrease during canning [80]. The applied
heat treatment disintegrates the cells and tissues, allowing the polyphenols to migrate into
the media and cause this widespread leaching.

The development of water crystals and ice at temperatures below freezing is a strategy
used for preservation because it slows down biological and physicochemical events. Hence,
it inhibits the growth of pathogenic microbes and extends the storage life of food [81]. To
a lesser extent (in a temperature range of 1 to 8 ◦C), chilling or cooling meals decreases
microbiological and metabolic changes to maintain stability. Foods that have been cooled
from their original cooking temperature keep their quality for longer [81]. According to a
study, blanching or cooking kale leaves prior to freezing did not have a significant effect on
their bioavailability [78].

To enhance the bioavailability and health advantages of dietary polyphenols, it will be
crucial for future studies and reviews to also examine the possibility of other techniques on
beneficial impacts on processing conditions according to each food matrix [82].

4. Nanoformulations Made from Dietary Macromolecules to Encapsulate and
Transport Polyphenols

Dietary proteins have the unique property of having an exceptional binding ability
with various pharmaceuticals or nutraceuticals, making them an ideal renewable raw
material for constructing nanocarriers for medication or nutraceutical delivery (Figure 3).
Proteins found in food have many health benefits and advantages, such as being antigenic
and biodegradable. Protein nanoparticles have a low barrier to entry in terms of synthesis
and production scale [83,84]. Some of the most often used food-grade proteins in the
development of nanoparticle delivery systems for the encapsulation of dietary polyphenols
are reviewed and discussed below. These might open doors for the better absorption of
polyphenols in the human body.

4.1. Nanoformulations of Casein

Proline-rich, open-structured rheomorphic caseins exhibit separate hydrophobic and
hydrophilic domains. Caseins (95%) are spontaneously self-assembled into casein micelles,
which are spherical colloidal particles with sizes of 50–500 nm (average 150 nm). Hy-
drophobic interactions improved curcumin’s solubility at least 2500-fold in camel β-casein
micelles. Curcumin in a β-casein micelle has more antioxidant activity than free β-casein
and curcumin. The human leukemia cell line K-562 was more sensitive to encapsulated
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curcumin than free curcumin [85]. A group studied the spray-dried curcumin-loaded casein
nanoparticles from a warm aqueous ethanol solution with dissolved sodium caseinate and
curcumin [86]. Curcumin with casein nanoparticles was a more potent antioxidant and
cytotoxic than virgin curcumin. The researchers have proposed a low-cost, low-energy, or-
ganic solvent-free encapsulation method based on curcumin’s pH-dependent solubility and
sodium caseinate’s self-assembly [86]. Curcumin was encapsulated in self-assembled casein
nanoparticles after neutralization at pH 12 and 21 ◦C. Casein nanoparticle-encapsulated
curcumin boosted human colorectal and pancreatic cancer cell growth [86]. Another
research group [87] observed that attaching casein to curcumin at pH 7.2 increased its
stability. Curcumin’s hemolysis prevention activity was unaffected by the curcumin–casein
interaction [87]. This shows a very promising method of polyphenol absorption.
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4.2. Nanoformulations of Gelatin

Gelatin is a collagen that is denatured via acid and alkaline hydrolysis. It has been
used safely in pharmaceuticals, cosmetics, and food goods for years by the Food and Drug
Administration. It is observed that EGCG encapsulated in gelatin-based nanoparticles
blocked hepatocyte growth factor-induced intracellular signaling in MBA-MD-231 breast
cancer cells as well as free EGCG [88]. It was also observed that coculture of high-loading
resveratrol-loaded gelatin nanoparticles caused cell death by altering p53, p21, caspase-3,
Bax, Bcl-2, and NF-κB expression [89]. Based on the observations, it is indeed possible to
use polyphenols in combination with gelatin for treating deadly diseases such as cancer.

4.3. Nanoformulations of Polysaccharides in Food

Polysaccharides contribute to food texture, flavor, and caloric value. Glycosidic link-
ages link monosaccharides to polysaccharides. Polysaccharides’ bio adhesion, especially
for mucosal surfaces, has been employed to target organs or cells and lengthen polyphenol
residency time in the colon. Chitosan is the widely used polysaccharide in oral administra-
tion nanoparticle systems [90]. The most extensively disseminated biopolymer is a cationic,
nontoxic, biodegradable, and biocompatible polyelectrolyte with an oral LD50 in mice of
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over 16 g/kg [90]. Japan, Italy, and Finland have approved it for dietary use. It improves
the intestinal absorption of active substances, especially water-soluble molecules like EGCG
with low small intestine permeability. Chitosan interacts well with negatively charged poly-
mers and can be modified with various functional groups to give nanoparticle-targeting
properties [90].

4.4. Nanoformulations with a Protein–Polysaccharide Conjugate

The Maillard process produces polysaccharide glycosylated proteins that limit pro-
tein precipitation induced by the high concentration or contact with polyphenols, which
are polyphenol encapsulation materials [91]. The protein core of Maillard-synthesized
gelatin–dextran conjugate nanoparticles included tea polyphenols. EGCG-loaded con-
jugate nanoparticles had an average diameter of 86 nm and limited distribution under
optimum circumstances. EGCG has a 360 wt.% loading capacity and pH-independent
encapsulation efficiency. Encapsulated EGCG had equivalent or higher cytotoxicity against
MCF-7 cells than free EGCG in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay [92]. Dextran-glycosylated casein nanoparticles contained and retained
EGCG and had great colloid stability in a wide concentration range during storage. Glyco-
sylated casein protected EGCG in alkaline pH and released slowly in intestinal fluid [92].
The Maillard reaction conjugated dextran to bovine serum albumin to give EGCG for
protein glycosylation [93].

4.5. Nanoformulations Derived from Dietary Lipids

Solid lipid nanoparticles (SLNs) improve lipid-soluble polyphenol solubility and
bioavailability. In a coculture system of absorptive Caco-2 and mucus-secreting HT29-MTX
cells, SLN’s curcumin delivery was tested, and it was found that curcumin encapsulated
in SLN delivered better than unencapsulated curcumin without affecting cellular junction
integrity [94]. Another study [95] found that curcumin-loaded SLNs could prolong in vitro
anticancer efficacy, cellular absorption, and in vivo bioavailability. Resveratrol was loaded
and encapsulated in two forms of SLN [96]. The nanoparticle crystal structure was changed
by resveratrol, suggesting its entrapment. During incubation in digestive fluids, resveratrol
mainly stayed with lipid nanoparticles [96]. A study [97] created glyceryl behenate-based
solid SLNs to encapsulate and distribute resveratrol. Resveratrol-loaded SLNs were as
effective as free resveratrol as an anticancer drug in a cytotoxicity experiment. In a Wistar
rat bio-distribution investigation, SLNs increased brain resveratrol content by p < 0.001 [97].
Resveratrol-loaded stearic-acid-based SLNs coated with poloxamer 188 were successfully
synthesized utilizing solvent diffusion–solvent evaporation and showed extended drug
release in vitro up to 120 h. Compared to the solution, the lipid formulation improved the
oral bioavailability of resveratrol by eight-fold [98]. After loading into SLNs, resveratrol
solubility, stability, and intracellular delivery increased. With or without resveratrol, SLNs
below 180 nm loading went quickly across the cell membrane, diffused throughout the
cytoplasm, migrated sequentially among cellular levels, and localized in the perinuclear
region without cytotoxicity. Resveratrol in solution was less cytostatic than SLN–resveratrol.
Resveratrol’s cell-proliferation-reducing effects may be enhanced by SLN delivery [99].
Therefore, it can be concluded that nanoformulations based on dietary lipids can be treated
as a reliable vehicle delivery for polyphenols.

Therefore, it may be concluded that polysaccharides, whether isolated or attached
to proteins, are commonly employed for the nanoencapsulation of quercetin, EGCG, and
resveratrol, as summarized in Table 2. These polyphenolic compounds were nanoencapsu-
lated to maintain their physicochemical stability and characteristics, such as antibacterial,
anticancer, antioxidant, and antiproliferative activity. Furthermore, the nanoencapsula-
tion process can improve the intestinal release rate, bioaccessibility, and bioavailability,
inhibit gastrointestinal degradation, ensure storage stability and color protection, apply
in food packaging, promote thermal stability, and allow for oral administration of these
compounds.
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Table 2. Nanoencapsulation of nanostructures made of polyphenolic compounds, polysaccharides,
and proteins (adapted from ref. [84]).

Polyphenol Method Encapsulating
Material Size (nm) Efficiency Outcome

Quercetin Self-assembly Hohenbuehelia serotina
polysaccharides 360 Varies between

21–53%

Maintenance of stability
and its anti-proliferative
activities during in vitro

GI digestion

Anthocyanin Ionic gelation Chitosan Beta
Lactoglobulin 580 77%

Storage stability and
oxidant stability during

in vitro
simulated digestion

Malvidin Emulsification Soybean insoluble
dietary fiber 300 NA Storage stability and

protection in color

EGCG Ionic gelation Chitosan and Beta
Lactoglobulin 100–500 60% Release EGCG in GI tract

Anthocyanin Self-assembly Pectin—Whey Protein
Isolate 200 55% Improve stability

Olive leaf polyphenol Nanoemulsion Pectin—Whey Protein
Concentrate 347 72–96% Increased antioxidant

properties and release rate

Pomegranate peel
extract polyphenol Nanoemulsion Pectin—Cellulose 200 20% Increased antimicrobial

activity

Resveratrol

Antisolvent
precipitation and

electrostatic
deposition

Pectin 120 NA Stability, bioaccessibility,
antioxidant capacity

Quercetin and
Resveratrol

Antisolvent
precipitation

Zein-Caboxymethyl
cellulose 217 25% Thermal stability

EGCG Ionic cross linking Carboxymethyl
chitosan 400 75% Increase antitumor activity

5. Nanoformulations of Polyphenols and Therapeutic Properties
5.1. Cardioprotective Effects

Oxidative stress is thought to be a major factor in the development of cardiovascular
disease. Increased oxidative stress and a diminished antioxidant reserve are associated
with both acute and chronic heart failure [100]. Cardiovascular disease, especially ischemic
heart disease, and stroke due to atherosclerosis are among the oxidative-related disor-
ders that polyphenols can protect. Polyphenols have been shown to protect the heart
against oxidative stress-related diseases in a number of studies [101,102]. A bioactive
polymer (PLGA layer) was deposited on top of a superparamagnetic SiN.SiN@QC-PLGA
nano-bio-composite [103] to modify the drug discharge profile and increase the functional
resemblance to the local myocardial by facilitating the cell recruitment, expansion, at-
tachment, and articulation of cardiac proteins. The effectiveness of recently produced
nano-formulated natural therapies against hypertension, atherosclerosis, thrombosis, and
myocardial infarction has been studied [104]. The protective effects of a curcumin nanofor-
mulation in cardiomyocytes were studied recently [105]. Cur-Res-mP127 (co-loaded cur-
cumin and resveratrol at a molar ratio of 5:1 in Pluronic® F127 micelles) was found to be
cardioprotective in a rat embryonic cardiomyocyte (H9C2) model by reducing apoptosis
and reactive oxygen species (ROS) [105]. As shown in Table 3, polyphenols loaded with
nanoparticles using conjugation and encapsulation techniques are effective in treating a
variety of disorders and diseases.

5.2. Neuroprotective Effects

In oxidative stress, the high quantities of free radicals produced overwhelm the an-
tioxidant system. Superoxide anions, hydroxyl radicals, hydrogen peroxide radicals, and
peroxyl radicals are all examples of reactive oxygen species (O2). Since it is the most oxida-
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tive organ in the body, the brain uses 20% of the total basal oxygen and is subjected to one
of the highest levels of oxidative stress [106]. Endogenous processes that detoxify oxidative
damage include catalase, glutathione/glutathione peroxidase, superoxide dismutase, and
vitamins E and C, among others. In many diseases, however, oxidative stress is exacerbated
because free radical production exceeds the body’s defenses. Most neurodegenerative
diseases are associated with high levels of oxidative stress in the brain [107]. These diseases
include Parkinson’s, Alzheimer’s, Huntington’s, multiple sclerosis, traumatic brain injury,
ischemia, and aging. Polyphenols have been shown to have neuroprotective benefits by
lowering oxidative stress in the brain [108]. Cerium oxide nanoparticles are being evalu-
ated for use in biomedicine due to their strong regenerative antioxidant qualities, which
have led to their widespread use in the materials sector. Researchers are studying cerium
oxide nanoparticles because they show promising molecules as a treatment for several
neurological illnesses [109]. The neuroprotective effects of CeO2@SiO2-PEG nanoparticles
(CSP-NPs) for proanthocyanidin and curcumin delivery have been studied [110]. Hy-
drophilic curcumin (Cur) and hydrophobic proanthocyanidin (PAC) were, respectively,
loaded onto CeO2@SiO2-PEG nanoparticles to produce Cur-NPs and PAC-NPs. Cur-NPs
and PAC-NPs inhibited acetylcholinesterase (AchE) activity and protected neurons against
A1-42-mediated toxicity in PC-12 cells. Several studies have reported different nanoparticle
systems loaded with curcumin. These systems include poly (-caprolactone) (PCL), poly
(lactide-co-glycolide) (PLGA), and methoxy poly (ethylene glycol) poly (-caprolactone)
(MPEG-PCL). Inhibiting enzymatic and pH degradation of curcumin and showcasing its
neuroprotective capabilities [111] are both made possible through the incorporation of
curcumin into nanoparticle systems. A safe and efficient therapeutic approach for the treat-
ment of Alzheimer’s disease may be the development of PEGylated PLGA nanoparticles
loaded with two medicines (EGCG and acetyl acid). When mice were orally administered
EGCG/ascorbic acid NPs, the compound accumulated throughout the brain and other
important organs. This formulation has been shown to have the potential to increase
the drug’s persistence in both the blood and the brain [112]. Research has found that
4-hydroxyisophthalic acid (4-HIA)-encapsulated PLGA-NPs significantly reduced the cyto-
toxicity of H2O2 in PC12 cells [113]. Thus, the neuroprotective effects are well established
using nanoformulations and polyphenols.

5.3. Cancer Treatment

Cancer is defined as an uncontrolled growth of cells, which can lead to malignancies
that are both potentially fatal and extremely costly for patients and the healthcare sys-
tem. Many different diseases have traditionally been treated and prevented with natural
polyphenols. Hence, due to their anticancer effects, these phytochemicals may be used
as chemotherapeutic and chemopreventive drugs in a variety of malignancies [114]. The
cytotoxic effects of curcumin-loaded PLGA nanoparticles coupled with anti-P-glycoprotein
were studied in human cervical cancer KB-3-1 and KB-V1 cells, and the results showed in-
creased curcumin solubility and cellular absorption, as well as decreased cell survival [115].
To activate PTT-assisted ferrous therapy in the treatment of cancer, the authors of [116]
designed ferric-coordinated polyphenol nanoparticles. Ellagic acid loaded with schizophyl-
lan and chitin nanoparticles exhibits anticancer effects [117] in MCF-7 breast cancer cells.
Viability assays showed that MCF-7 cells were significantly inhibited in their ability to pro-
liferate, with the impact being amplified at higher concentrations. The nanoencapsulation
of quercetin and curcumin in a casein-based model was recently described [118], and these
compounds were evaluated against MCF-7 cell lines. Here, tumor cell growth was slowed
by the encapsulated polyphenols, more so than the unencapsulated ones. To be specific,
the cerium nanoparticles made using the green approach contained all the hallmarks of
a functioning nanoparticle and increased the expression of the genes for the two main
antioxidant-related enzymes, catalase (CAT) and superoxide dismutase (SOD). Cerium
oxide nanoparticles (CeO-NPs) showed increased cytotoxicity against breast cancer cells
compared to normal cells. As CeO-NPs protected healthy cells from oxidative stress and
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inflammation caused by free radicals, appearing to be a promising therapeutic agent for
the treatment of breast cancer cells [119].

Table 3. Polyphenol-loaded nanoformulations and disorders cured.

Polyphenol Type of Disease Nanoformulation References

Curcumin Cancer PLGA [115]

Ellagic acid Cancer Schizophyllan and chitin
nanoparticles [117]

Quercetin Cancer Nanocapsules [118]

Resveratrol Cardiovascular Pluronic® F127 [105]

4-hydroxyisophthalic
acid Neurological Polymeric nanocarrier

(PLGA)-NPs [109]

Proanthocyanidins
and curcumin Neurological CeO2@SiO2-PEG

nanoparticles (CSP-NPs) [110]

Naringenin Neurological PLGA: PCL-gelatin-coated [120]

Gallic acid Neurological Lipid nanocarrier: GA-NPs [121]

EGCG Skin Inflammation Polymeric nanocarrier:
PEG-PLGA [122]

Caffeic acid Skin Inflammation Nanofiber nanocarrier:
PLGA [123]

Apigenin Skin Inflammation Ethosomal nanocarrier [124]

Curcumin Cardiovascular Chitosan NPs [125]

Quercetin Cardiovascular PLGA NPs [126]

6. Polyphenol-Based Nanoformulations: Takeaway Message

Several important concerns need to be addressed in the future to speed up the de-
velopment and clinical translation of polyphenol-containing nanoformulations: (a) The
manufacture of polyphenol-containing nanoformulations requires the development of
simple and generic methodologies, as well as the actualization of rational design and
on-demand synthesis. It is important to learn more about the use of the materials’ qualities
and functionalities. In their current form, nanoformulations containing polyphenols have a
number of drawbacks, including a lack of physiological stability/biodegradability, drug
encapsulation/loading efficiency, stimulus responsiveness, traceability, and active targeting
ability. Some fresh perspectives could emerge from combining chemical grafting with
supramolecular self-assembly. (b) Cancer combination therapy has found an excellent new
platform in polyphenol-containing nanoformulations. Better anticancer tactics may be
attainable through the development of multifunctional polyphenol-based nanoplatforms
that integrate various cancer therapeutic modalities (such as chemotherapy, radiation,
and immunotherapy). Nanoformulations containing polyphenols have many potential
medical uses, but further research is needed. While most research so far has been on cancer
treatment, polyphenols’ many health benefits also make them useful in preventing and
managing bacterial infection, neurological diseases, cardiovascular conditions, diabetes,
and others. Furthermore, it is anticipated that the polyphenol-containing nanoformula-
tions will be able to include different enzymes for biocatalysis purposes. Imaging agents
(fluorescent probes, MRI agents, radioactive agents) should be incorporated into various
illness therapies with increased focus. (c) Systematic assessments of the biosafety and
in vivo destiny of polyphenol-containing nanoformulations are also crucial. Research into
polyphenol-containing nanoformulations should focus on their targeting abilities to tu-
mor or inflamed tissues, long-term toxicity, in vivo biodegradability, renal clearance, and
interaction processes with biological systems.
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To ensure their use in safe therapeutic settings, understanding how these polyphenol-
containing materials interact with blood, immunological, and normal tissue cells is essential.
Additionally, in the future, more biosafety analyses should be performed utilizing animal
models. In vitro or pilot animal trials have, thus far, dominated research on polyphenol-
containing nanoformulations. Carcinogenicity, genotoxicity, mutagenicity, reproductive
toxicity, and teratogenicity of polyphenol-containing nanoformulations, among other clini-
cally important indices, are mostly unknown.

Currently, the most used methods, like ionic gelation and emulsification, are used
alongside more time-tested procedures to prepare nanoformulations. These methods
are more difficult to implement and may call for more severe reaction conditions or the
addition of other chemicals, both of which add to the expense of preparation. Electrostatic
spinning and electrostatic spraying are two promising new technologies that could be used
in the future to facilitate the more effective manufacture of nanoformulations through the
application of straightforward procedures and moderate reaction conditions.

In conclusion, polyphenol-containing nanoformulations have a promising future in
biomedical research, thanks to their malleable shapes, easy synthesis procedure, and
low toxicity. If these issues can be resolved, then these nanoformulations will provide
researchers with potent tools to tackle some of the most intractable scientific and technical
difficulties in the biomedical profession. We hope this review will provide readers with
a foundational understanding of the state of polyphenol-containing nanoformulations
in biomedicine, encourage greater study in this area, and direct the creation of novel
polyphenol-containing functional materials.

7. Conclusions

The phenolic compounds (EGCG, resveratrol, curcumin, quercetin) found in plants in
high concentrations perform a wide range of beneficial biological functions. Furthermore,
poor stability, poor solubility, and limited bioavailability significantly limit the utilization
of these compounds in food and medicine. Nanoparticle encapsulation not only allows
for more precise targeting and controllable release but also allows for the circumvention of
these limits. Nanotechnology provides an ideal carrier system for increasing the pharma-
cokinetics and bioavailability of polyphenols. Nanoparticles are nearly ideal as carriers;
however, their side effects and toxicity must be considered and mitigated before they may
be used in a therapeutic setting. As polyphenols are natural compounds that must be
taken for an extended period of time in the treatment and prevention of diseases, it is
vital to understand the dangerous side effects linked to the buildup of nanoparticles in
the physiological system. Specifically, if the nanoparticles have a poor encapsulation rate,
this will be the case. Thus, standardized in vitro and in vivo models must be constructed,
and in vivo safety testing procedures must be verified to support the development and
implementation of innovative, effective nanoparticles beneficial to human health.
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