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Abstract: 2-(4-Benzyloxy-3-methoxyphenyl)-5-(carbethoxyethylene)-7-methoxy-benzofuran (BMBF),
a benzofuran derivative, is an intermediate found in the process of total synthesis of ailanthoidol.
Benzofuran derivatives are a class of compounds that possess various biological and pharmacological
activities. The present study explored the anti-metastasis effects of BMBF in hepatocellular carcinoma
(HCC). Our preliminary findings indicate that BMBF suppresses the proliferation and changes
the morphology of Huh7—an HCC cell line with a mutated p53 gene (Y220C). According to a
scratching motility assay, non-cytotoxic concentrations of BMBF significantly inhibited the motility
and migration in Huh7 cells. BMBF upregulated the expression of E-cadherin and downregulated
the expression of vimentin, Slug, and MMP9, which are associated with epithelial–mesenchymal
transition (EMT) and metastasis in Huh7 cells. BMBF decreased the expression of integrin α7,
deactivated its downstream signal FAK/AKT, and inhibited p53 protein levels. Cell transfection
with p53 siRNA resulted in the prevention of cell invasion because of the reduction in integrin α7,
Slug, and MMP-9 in Huh7 cells. BMBF had anti-metastatic effects in PLC/PRF/5—an HCC cell
line with R249S, a mutated p53 gene. Our findings indicate that BMBF has anti-metastatic effects in
downregulating p53 and mediating the suppression of integrin α7, EMT, and MMP-9 in HCC cells
with a mutated p53 gene.

Keywords: benzofuran; ailanthoidol; p53; hepatocellular carcinoma; epithelial–mesenchymal
transition; metastasis

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide. Ap-
proximately 75–85% of liver cancer mortality is the result of HCC [1]. Early identification of
HCC is difficult; therefore, most cases of HCC are discovered at a late stage [2]. Early-stage
HCC is generally treated with a combination of surgery, radiotherapy, and chemother-
apy [3]. A modern, effective treatment for HCC is liver transplantation; however, organ
shortages, perioperative risk, and the strict requirements for appropriate pairing limit the
accessibility of liver transplantation. Despite the progress that has been made in therapeutic
approaches, HCC recurrence and metastasis rates remain high, leading to unfavorable
prognoses [4,5]. The development of agents to prevent HCC metastasis is one strategy to
increase the survival rate of patients with HCC.
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Wild-type p53 protein (WTP53) plays a key role in cell apoptosis to regulate the cell
cycle after DNA damage [6]. Cells with a mutated p53 gene may evade apoptosis after
DNA damage and potentially become cancerous. Mutations in the p53 gene are the most
common type of gene change in HCC, with an average mutation frequency of 30% [6]. Cells
with a mutated p53 gene lose their tumor-suppressing function and promote tumorigenesis
and metastasis [7]. In addition, WTP53 and mutated p53 protein (MTP53) are involved
in the regulation of cell migration and invasion in cancer cell metastasis [8]. Wang et al.
reported that knockdown of WTP53 enhances epithelial-to-mesenchymal transition (EMT),
migration, and metastasis in liver cancer cells [9]. In an esophageal cell model, Ohashi
et al. observed that MTP53 (R175H) cooperates with the epithelial growth factor receptor to
promote the EMT phenotype upon treatment with TGFβ [10]. Lenfer et al. indicated that
MTP53 enhanced metastasis to aggravate the tumor phenotype in a bitransgenic tumor
model [11]. WTP53 and MTP53 have tumor-suppressive and oncogenic roles, respectively.
MTP53 promotes EMT, whereas WTP53 prevents EMT [12]. Therapies that decrease MTP53
expression or target MTP53 may have potential as a means of preventing HCC metastasis.

Benzofuran derivatives are a class of compounds found in higher plants that have
attracted the attention of chemists and pharmacologists because of their various biological
and pharmacological activities, which include anti-inflammatory, antimicrobial, antivi-
ral, anti-hyperglycemic, and antitumor activities. In addition to isolating benzofuran
derivatives from natural products, medicinal chemists are investigating methods of syn-
thesizing benzofuran rings for application in drugs [13,14]. The benzofuran derivative
2-(4-benzyloxy-3-methoxyphenyl)-5-(carbethoxyethylene)-7-methoxy-benzofuran (BMBF)
is an intermediate produced in the process of total synthesis of ailanthoidol—a neolignan
originating from the bark of Zanthoxylum ailanthoidol (Rutaceae) [15]. Ailanthoidol had
an antitumor effect in a multistep mouse model of skin cancer [16]. Ailanthoidol sup-
pressed TGF-β1-promoted migration and invasion in HepG2 cells [17] and inhibited the
proliferation of Huh7 cells [18]. Although ailanthoidol exhibits antitumor potential, the
biological mechanism of BMBF remains unclear. Our preliminary study showed that BMBF
cannot alter the cell viability in HepG2 hepatoblastoma cells (Supplementary Figure S1) but
suppresses the proliferation and morphological changes in Huh7 hepatocellular carcinoma
cells. Because HepG2 expresses wild-type p53, whereas Huh7 has a mutated p53 gene, we
presumed that BMBF perhaps exhibits a pharmaceutical effect in the HCC cells with p53
mutation. Therefore, the present study investigated the anti-metastatic and modulatory
effects of BMBF in HCC cells with a mutated p53 gene.

2. Materials and Methods
2.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM), minimum essential medium (MEM),
phosphate-buffered saline (PBS), fetal bovine serum (FBS), penicillin, streptomycin, and
trypsin-EDTA were purchased from Gibco Ltd. (Grand Island, NY, USA). Primary an-
tibodies against integrin α7, Slug, E-cadherin, vimentin, MMP9, p53 (DO-1), GADPH,
and actin were obtained from Santa Cruz Biotechnology, Inc., CA, USA. Matrigel was
obtained from Collaborative Research (Bedford, MA, USA). TRITC-conjugated phalloidin,
β-actin antibody, and other chemicals were purchased from Sigma-Aldrich (St. Louis, MO,
USA). BMBF, shown in Figure 1, was provided by Dr. Yean-Jang Lee and synthesized
from 5-bromo-2-hydroxy-3-methoxybenzaldehyde, as previously reported [15]. Anti-FAK,
anti-p-FAK, anti-AKT, and anti-p-AKT were purchased from Cell Signaling Technology
(Beverly, MA, USA).

2.2. Cell Culture and Cell Viability Assay

The human liver cancer cell line Huh7 (p53 mutant in Y220C) was obtained from the
Food Industry Research and Development Institute (Hsinchu, Taiwan) and cultured in
DMEM supplemented with 10% FBS, 1% penicillin/streptomycin, 1% essential amino acids,
and 1 mM glutamine. PLC/PRF/5 (p53 mutant in R249S) cells were cultured in MEM
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supplemented with 10% FBS and 1% penicillin/streptomycin. The cells were maintained
at 37 ◦C in a humidified atmosphere with 5% CO2. To evaluate the cytotoxicity of BMBF
in HCC cells, Cell Counting Kit-8 (CCK-8, Sigma-Aldrich, St. Louis, MO, USA) was used.
Briefly, 3 × 103 cells were seeded onto a 96-well Petri dish and then treated with various
concentrations of BMBF for the indicated duration. Subsequently, 10 µL of CCK-8 solution
was added to incubate with the medium for 3 h; the absorbance was read at a wavelength
of 450 nm using an ELISA reader (SpectraMax M5, Molecular Devices, Downingtown,
PA, USA).
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2.3. Microscopic Examination

After treatment under the indicated conditions, Huh7 cells were fixed with 4%
paraformaldehyde for 10 min and permeabilized with 0.1% triton X-100 in PBS for 5 min.
The cell morphology was assessed by phase-contrast microscopy. In addition, cytoskele-
tal changes (F-actin) were analyzed through fluorescence microscopy by staining with
TRITC-conjugated phalloidin (500 ng/mL) for 1 h. Images were acquired using a fluores-
cence microscope (Nikon Microscope SE, Nippon Kogaku KK, Tokyo, Japan) at 400× or
200×magnification.

2.4. Scratch Motility Assay

Huh7 cells (2.5 × 105 cells/mL) were seeded onto a 6-well plate and grown overnight
to confluence. The monolayer was scratched with a yellow pipette tip, washed with PBS to
remove floating cells, and photographed (0 h) before being treated with BMBF (0–5 µM).
After being photographed (24 h), the cells that were motile in the scratched area were
counted in 5 randomly selected fields (100× magnification) by digital planimetry using
ImageJ software. The area of cell migration was expressed as a percentage of the initial area
(0 h). Data are represented as the mean ± SD of three independent experiments.

2.5. Cell Migration and Invasion Assay

Cell migration and invasion assays were performed using a Boyden chemotaxis
chamber. The upper culture chamber consisted of a polycarbonate filter (pore size, 8 µm)
coated with (for invasion) or without (for migration) a uniform layer of 40 µg/cm2 of
Matrigel basement membrane matrix in the upper compartment of the chemotaxis chamber.
Huh7 cells were pretreated with BMBF (0–5 µM) for 24 h. The cells were harvested, and
6 × 104 cells/well were suspended in serum-free media and then placed in the upper
chamber. The complete growth medium with 10% FBS was placed in the lower chamber.
After incubation for 24 h, the cells on the upper surface of the filter were wiped with a
cotton swab. The cells on the lower surface of the filter were fixed for 10 min with methanol
and stained with Giemsa for 1 h, and the cells that had migrated or invaded into the lower
surface of the filter were sequentially counted by light microscopy (200×). The experiment
was performed in triplicate; in each filter, the cells from 5 randomly selected fields were
counted to represent the data as the mean ± SD.
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2.6. Preparation of Total Cell Extracts and Immunoblot Analysis

Cells were plated onto 10 cm2 dishes at a density of 1 × 106 cells/mL and treated
with BMBF for 24 h. To prepare the whole-cell extracts, the cells were harvested and
suspended in a lysis buffer (50 mM Tris, 5 mM EDTA, 150 mM NaCl, 1% NP40, 0.5%
deoxycholic acid, 1 mM sodium orthovanadate, 81 µg/mL aprotinin, 170 mg/mL leupeptin,
100 µg/mL PMSF; pH 7.5). After reacting for 30 min at 4 ◦C, the mixtures were centrifuged
at 10,000× g for 10 min, and the supernatants were collected as the whole-cell extracts.
The protein content was determined by the Bradford protein assay (Kenlor Industries,
Costa Mesa, CA, USA). Equal amounts of protein sample were subjected to 8–12% SDS–
polyacrylamide gel electrophoresis to separate and then electrotransferred to nitrocellulose
membranes (Sartorius Co., Goettingen Germany). They subsequently reacted with the
primary antibodies (i.e., anti-E-cadherin, anti-vimentin, anti-Slug, anti-MMP-9, and anti-
integrin α7). Anti-GADPH or anti-β-actin was used as the internal control. The secondary
antibody was a peroxidase-conjugated goat anti-mouse or anti-rabbit antibody. After
completing the procedures, the bands were exposed by enhanced chemiluminescence using
a commercial enhanced chemiluminescence (ECL) kit (ImmobilonTM Western, Millipore
Co., Billerica, MA, USA).

2.7. Transfection of p53siRNA

Next, 3 × 103 Huh7 cells were seeded in 96-well dishes, or 4 × 105 cells on 10 cm
dishes. Following incubation overnight, p53 siRNA (40 nM and 80 nM) or control siRNA
(40 nM) (Santa Cruz Biotechnology, Santa Cruz, CA, USA) was transfected using T-Pro NTR
II transfection reagent according to the manufacturer’s instructions (T-Pro Biotechnology
Co., New Taipei City, Taiwan). The p53 siRNAs (sense: 5′-AGA-CCU-AUG-GAA-ACU-
ACU-Utt-3′) were purchased from GeneDireX Inc. (Taoyuan City, Taiwan). Following
incubation for 48 h, the cells were treated with or without BMBF for 24 h, and then the
viable cells were added to the upper chamber of the Boyden chamber for invasion assay, or
the total cell lysate was prepared for immunoblotting analysis.

2.8. Statistical Analysis

Statistical significance was determined by one-way analysis of variance with the post
hoc Dunnett’s test. p-values lower than 0.05 were considered statistically significant.

3. Results
3.1. BMBF Suppressed the Viability of Huh7 Cells

The cytotoxicity of BMBF in Huh7 cells was assessed using the CCK-8 assay. Huh7 cells
were treated with various concentrations of BMBF (0, 5, 10, 20, 40, and 80 µM) for 24 and
48 h. Treatment with concentrations of BMBF greater than 5 µM for 24 and 48 h sig-
nificantly suppressed the viability of the Huh7 cells (Figure 2). In the Huh7 cells, the
IC50 value of BMBF at 24 h was 48.22 µM, and at 48 h it was 38.15 µM. The various con-
centrations of BMBF used in this study exhibited no cytotoxicity in normal hepatocytes
(Supplementary Figure S2).

3.2. BMBF Reduced the Cytoskeletal Changes and Inhibited Motility, Migration, and Invasion in
Huh7 Cells

Metastasis occurs in the majority of cancer deaths and is a complex process consisting
of tumor cell motility away from the primary site, migration into the vasculature, invasion
into surrounding parenchyma, and growth at the metastatic sites. A crucial element of
this process is the remodeling of the cytoskeleton [19]. To evaluate the anti-metastatic
potential of BMBF, non-cytotoxic concentrations of BMFB were used in this study. First,
we investigated the effect of BMBF on the actin cytoskeleton of Huh7 cells by using
TRITC-conjugated phalloidin. In our preliminary observation, Huh7 cells—cells from
an aggressive HCC cell line—exhibited lamellipodium protrusion and a more intensely
stained F-actin cytoskeleton. Nonetheless, the F-actin cytoskeleton was reduced when
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treated with BMBF (Figure 3A). Cytoskeletal alterations are associated with cell motility;
therefore, we investigated the effect of BMBF on the motility of Huh7 cells by using a
scratch motility assay. BMBF dose-dependently inhibited wound closure (Figure 3B,C).
Furthermore, the Boyden chamber assay revealed that BMBF at a concentration of 1, 2.5,
or 5 µM significantly suppressed Huh7 cells’ migration and invasion (Figure 4A,B). These
findings indicate that BMBF has in vitro anti-metastatic potential in HCC cells.
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phalloidin, and the nuclei were stained with DAPI. The microscope image was taken (400×). White
arrows pointed out the stained F-actin cytoskeleton. (B) The cell was scratched with a yellow pipette
tip and photographed by a phase-contrast microscope under 100× magnification (0 h). Subsequently,
the Huh7 cells were treated with BMBF for 24 h, and then they were observed and photographed
(24 h). (C) The area of the cells that migrated into the scratched area was determined in 5 randomly
selected fields by digital planimetry using ImageJ software. The area of cell migration was expressed
as a percentage of the initial area (0 h). Data are represented as the means ± SD of three independent
experiments (*** p < 0.001).
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were seeded onto the upper chamber, consisting of 8 µm pore-size filters coated without (upper panel)
and with a Matrigel matrix, and the complete growth medium was placed in the lower chamber.
After incubation for 24 h with or without BMBF, the filters were fixed for 10 min with methanol and
stained with Giemsa for 1 h. The cells that had migrated or invaded into the lower surface of the
filter were observed (200×) under microscopy and photographed (A) and counted in 5 randomly
selected fields (B, migrated cells; C, invaded cells). Data are represented as the means ± SD of three
independent experiments (** p < 0.01; *** p < 0.001). Scale bar = 100 µm.

3.3. Inhibitory Effects of BMBF on EMT-Related Proteins and Integrin α7 in Huh7 Cells

EMT is a biological process in which polarized epithelial cells undergo multiple inter-
nal biological changes and transition into a mesenchymal phenotype; the process is highly
mobile and invasive [20]. EMT plays an essential role in the progression and metastasis
of HCC [21]. EMT involves the loss of E-cadherin and the production of vimentin, which
enables cells to migrate and invade surrounding tissue. Matrix metalloproteinases (MMPs)
are also involved in this process [22]. We investigated the effects of BMBF on the levels of
E-cadherin, vimentin, MMP-9, and Slug, which is the transcription factor involved in EMT-
related protein expression in Huh7 cells. BMBF upregulated the expression of E-cadherin
and suppressed vimentin, Slug, and MMP-9 (Figure 5A). Integrins are membrane protein
receptors that trigger distinct signaling and play a key role in the propagation and progres-
sion of cancer [23]. Integrin α7 expression was reported to be higher in metastatic HCC
cells than in non-metastatic cells [24], and integrin α7 was reported to be overexpressed in
Huh7 cells [25]. We analyzed the effects of BMBF on the expression of integrin α7 and the
phosphorylation of its downstream signal mediators, such as FAK and AKT [23]. BMBF
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suppressed the expression of integrin α7 and decreased the phosphorylation of FAK and
AKT (Figure 5B).
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3.4. BMBF Suppressed the Invasion in Huh7 Cells with p53 Knockdown

EMT in HCC cells involves p53 [9]. We investigated the effect of BMBF on p53
expression in Huh7 cells. BMBF decreased p53 expression in the Huh7 cells (Figure 6A).
The invasion ability of Huh7 cells transfected with p53 siRNA was assessed by using the
Boyden chamber assay; p53 siRNA significantly inhibited invasion and suppressed the
expression of integrin α7, Slug, and MMP9 in Huh7 cells. BMBF-induced downregulation
of p53 has anti-metastatic potential.
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Figure 6. Anti-invasion effect of BMBF associated with downregulation of p53-mediated suppression
of the expression of integrin α7, Slug, and MMP-9: (A) Effect of BMBF on the protein expression of
p53 in Huh7 cells, evaluated by immunoblotting analysis. (B) Transfection of p53 siRNA affecting the
invasion of Huh7 cells by Boyden chamber assay. After transfection with p53 siRNA for 48 h, the cells
were seeded onto the upper chamber, consisting of an 8 µm pore-size filter coated with a Matrigel
matrix, and then the complete growth medium was placed in the lower chamber and incubated for
24 h. The cells that invaded into the lower surface of the filter were observed (200×) under microscopy
and photographed and counted in 5 randomly selected fields. Scale bar = 100 µm. (C) Data are
represented as the means ± SD of three independent experiments (** p < 0.01, *** p < 0.001). (D) After
transfection with p53 siRNA for 48 h, the total cell lysate was prepared, and then the expression of
integrin α7, Slug, and MMP-9 was evaluated by immunoblotting analysis. β-actin was used as the
loading control. The relative density of the images was quantified by densitometry.

3.5. Anti-Invasion of BMBF in PLC/PRF/5 cells

We evaluated the anti-invasion potential of BMBF in PLC/PRF/5 hepatocellular
carcinoma cells with the p53 mutant R249S by using the Boyden chamber assay. BMBF
significantly inhibited the invasion effect (Figure 7A,B). Consistent with the effect of BMBF
in the Huh7 cells, BMBF suppressed the expression of p53, integrin α7, and MMP9. In
addition, BMBF upregulated E-cadherin and downregulated vimentin and the EMT-related
transcription factor Slug (Figure 7C).
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and the complete growth medium was placed in the lower chamber. After incubation with BMBF
for 24 h, the filters were fixed for 10 min with methanol and stained with Giemsa for 1 h. The cells
that had invaded into the lower surface of the filter were observed (200×) under microscopy and
photographed and counted in 5 randomly selected fields. (B) Data are represented as the means ± SD
of three independent experiments (*** p < 0.001). Scale bar = 100 µm. (C) After treatment with BMBF
for 24 h, the total cell lysates were prepared and subjected to immunoblotting analysis against specific
antibodies, as indicated in the figure. GADPH was used as the loading control. The relative image
density was quantified by densitometry.

4. Discussion

In the present study, the benzofuran derivative BMBF suppressed migration and
invasion in HCC cells with a mutated p53 gene. The underlying mechanisms involve the
upregulation of E-cadherin and the downregulation of vimentin, Slug, and MMP-9. BMBF
decreased integrin α7 expression, deactivated FAK/AKT, and inhibited the expression
of p53 to suppress metastasis (Figure 8). Our findings indicate that BMBF is a potential
anti-metastatic agent in HCC cells with a p53 mutation.
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Metastasis is the main reason for the failure of cancer therapy. EMT is an essential
process in cancer metastasis. EMT allows normal hepatic epithelial cells to undergo mul-
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tiple biological changes that enable them to assume a mesenchymal phenotype, which
enhances the cells’ migration and invasion capacity and increases their resistance to apop-
tosis [21]. Aberrant activation of EMT is crucial in cancer metastasis and involves multiple
molecular mechanisms and signal transduction pathways, the hallmark of which is the
downregulation of E-cadherin and upregulation of vimentin. The transcription factors
Slug and Twist induce EMT [26]. MTP53 promotes the expression of several EMT-related
transcription factors [9]. In the present study, BMBF reduced the expression of p53 in
Huh7 and PLC/PRF/5 cells with mutated p53 genes. Furthermore, BMBF upregulated
the expression of E-cadherin and downregulated the expression of vimentin and the EMT-
associated transcription factor Slug. MTP53 protein levels may be affected by miRNA
or enzyme-controlled stability [27]. Our results indicate that BMBF has anti-metastatic
properties in HCC cells; however, its underlying mechanisms in reducing MTP53 warrant
further investigation.

Integrins are transmembrane receptors built up by the αβ-heterodimer. Several in-
tegrins are downregulated in tumor tissues [23]. Integrin α7 is a key regulator in tumor
propagation and has cancer stem cell properties [28,29]. Integrin α7 expression is high in
various cancer cells, including mesothelioma and Huh7 cells [25,30]. Wu et al. reported
that integrin α7 knockdown suppressed HCC progression and inhibited EMT in HCCs [25].
Hass et al. observed that integrin α7 regulates several signal pathways, including the
FAK/AKT pathway, promoting cell proliferation and metastasis [31]. Moreover, integrin
α7 is associated with negative clinical outcomes in patients with HCC and regulates cancer
stem cell markers [32]. In the present study, BMBF reduced the integrin α7 levels and
deactivated the downstream FAK/AKT signaling pathway. This demonstrates that BMBF-
induced downregulation of integrin α7 prevents HCC metastasis. Whether BMBF regulates
cancer stem cell markers in HCC requires further elucidation.

Deletion or mutation of p53 occurs in approximately 50% of patients with cancer and
results in the loss of its tumor-suppression function. Accumulating evidence indicates
that mutation of p53 leads to oncogenic gain-of-function effects, such as promoting cancer
metastasis [8]. Cancer metastasis contributes to over 90% of cancer-associated deaths [33].
Metastasis involves a sequence of events from cancer cell invasion at the primary tumor
site to outgrowth of metastatic colonies at distant organs. In order to survive during this
multistep metastasis cascade, tumor cells reprogram gene expression, rewind metabolisms,
and regulate intracellular and intercellular signaling. MTP53 is an important regulator
of metastasis. MTP53 induces expression of Slug, which is a transcription factor of EMT,
in HCT116 colon carcinoma cells [34]. In addition to regulating transcription factors, the
crosstalk between MTP53 and TGFβ signaling is involved in the regulation of cell motility
and invasion [35,36]. MTP53 may also enhance integrins’ expression and/or regulate
their N-glycosylation to contribute to cancer cell–ECM interaction and metastasis [37,38].
MTP53 is suggested to induce several receptor tyrosine kinase pathways to promote tumor
invasion [39,40]. Moreover, tumor cells with MTP53 generate a pro-invasion niche through
releasing exosomes, which can be taken up by neighboring tumor-associated macrophages
to create a supportive microenvironment and drive tumor progression to a more aggressive
state [41,42]. Mutation of p53 leads to oncogenic gain-of-function properties and results in
cancer metastasis [8]. In the present study, non-cytotoxic concentrations of BMBF exhibited
anti-migration and anti-invasion effects, along with downregulating MTP53 levels in HCC
cells. Mutations of R249S in p53, which represent a gain of function, are phosphorylated
by CDK4/cyclin D1 and then translocated into the nucleus. In the nucleus, R249S binds
to and augments c-Myc activity, resulting in an increase in ribosome biogenesis and pro-
liferation [43]. Y220C mutations in p53 can cause the dedifferentiation of hepatocytes in
response to oncogenic stimuli, which may result in the growth of malignant reprogrammed
progenitor cells [44].

Benzofuran belongs to a critical class of heterocyclic compounds or fragments that are
present in many drugs [10]. Due to the biological and medicinal importance of benzofu-
ran, benzofuran derivatives have attracted the attention of scientists [13,45]. Ailanthoidol,
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a natural benzofuran, has exhibited antitumor potential [16–18]. Ailanthoidol, through
downregulation of MTP53 and deactivation of the STAT3 pathway, has an antiproliferative
effect in Huh7 cells. Benzofuran derivatives, through HIF-1 inhibition, also have an antipro-
liferative effect, especially against p53-independent (or p53-deleted) malignant tumors [32].
In addition to antitumor and antiproliferative effects, the present study revealed that ben-
zofuran derivatives can suppress tumor metastasis in HCC cells with MTP53. Although
BMBF is an intermediate from the process of total synthesis of ailanthoidol, it has anti-
metastatic bioactivity. Although the mechanism of BMBF in decelerating cancer progression
is different from that of ailanthoidol, the present study indicates that the intermediates
with similar structures produced in the process of chemical synthesis may also possess
bioactivity. This implies that the use of synthetic intermediates can expand the application
of drug synthesis.

5. Conclusions

Our findings indicate that mutations in p53 affect tumor growth and the regulation
of metastasis. In vivo studies investigating physiological responses should be conducted
to verify the effects and mechanisms of BMBF. Whether BMBF inhibits the metastasis of
p53-independent (p53 deleted) malignant tumors requires further clarification.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines11072027/s1, Figure S1: BMBF cannot affect the cell
viability in HepG2; Figure S2: BMBF cannot affect the cell viability in normal hepatocytes.
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