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Abstract: Prostate cancer is a heterogeneous disease, and one of the main obstacles in its management
is the inability to foresee its course. Therefore, novel biomarkers are needed that will guide the treat-
ment options. The extracellular matrix (ECM) is an important part of the tumor microenvironment
that largely influences cell behavior. ECM components are ligands for integrin receptors which are
involved in every step of tumor progression. An underlying characteristic of integrin activation
and ligation is the formation of integrin adhesion complexes (IACs), intracellular structures that
carry information conveyed by integrins. By using The Cancer Genome Atlas data, we show that
the expression of ECM- and IACs-related genes is changed in prostate cancer. Moreover, machine
learning methods revealed that they are a source of biomarkers for progression-free survival of
patients that are stratified according to the Gleason score. Namely, low expression of FMOD and high
expression of PTPN2 genes are associated with worse survival of patients with a Gleason score lower
than 9. The FMOD gene encodes protein that may play a role in the assembly of the ECM and the
PTPN2 gene product is a protein tyrosine phosphatase activated by integrins. Our results suggest
potential biomarkers of prostate cancer progression.

Keywords: prostate cancer; extracellular matrix; integrin adhesion complex; cancer prognosis;
progression-free survival; recursive partitioning; Gleason score; FMOD; PTPN2

1. Introduction

Prostate cancer is among the most common cancers with regard to incidence and mor-
tality [1,2]. According to the Global Cancer Observatory, in 2020, there were 1,414,259 new
prostate cancer cases diagnosed (7.3% of all sites) and 375,304 deaths from this disease
(3.8% of all sites) [3]. Surgical intervention (radical prostatectomy) and radiotherapy are
the usual treatment options for localized prostate cancer [4,5]. However, the biochemical
recurrence, which is defined by a rise in the blood level of prostate-specific antigen (PSA),
occurs within 10 years in a fraction of patients treated with radical prostatectomy (20–40%
of cases) and radiotherapy (30–50% of cases) [6]. Biochemical recurrence is usually a sign
of a progressive disease, which is accompanied by symptoms or evidence of disease pro-
gression on imaging [7]. Although the five- and ten-year survival rates in prostate cancer
are favorable in comparison to some other more aggressive cancer types, the recurrence
of the disease is fatal for a substantial number of patients. The probability to develop
prostate cancer highly increases with age, and it is considered that 30–40% of men older
than 50 years of age have prostate cancer, but not all cases are clinically significant [8]. In
line with these observations, one of the greatest obstacles in prostate cancer treatment is
the inability to foresee the course of the disease and to recognize the tumors that will be
indolent and require no or minimal intervention and those that are more malignant and
will progress fast. Therefore, novel biomarkers of disease progression and therapeutic
targets are needed [9].
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Solid cancers, such as prostate cancer, are composed of malignant cells, which are
surrounded by a tumor microenvironment consisting of the extracellular matrix (ECM)
and the host cells, among which are immune cells, fibroblasts, endothelial cells, adipocytes,
stellate cells, and other stromal cells [10]. These host cells are often hijacked by tumor cells
to perform the roles that suit the tumor cell growth, proliferation, migration, and other
malignant behaviors. The important part of the tumor microenvironment and the first
frontier of the cell towards its surroundings is its ECM, a three-dimensional network con-
sisting of extracellular macromolecules and minerals. Collagen is the most abundant ECM
protein, constituting up to 90% of the ECM and 30% of the total protein in humans [11].
Other common ECM fibrous proteins are fibronectins, laminins, and elastins. Besides the
ECM proteins that give a structure to the tissue, ECM is a rich source of bound growth
factors, cytokines, and other secreted proteins that add to the bi-directional communication
between tumor and host cells within the tumor microenvironment. Although the ECM
was at first considered to be only a plain structural scaffold, later it became more and more
clear that it plays active, important roles in cell signaling, properties, and morphology [12].
It is considered that the ECM regulates and fine-tunes every cellular process in the body,
and during tumorigenesis it influences tumor onset, progression, and metastatic dissem-
ination [13]. Therefore, the ECM is an interesting and growing topic to investigate, also
regarding prostate cancer tumorigenesis [14].

The ECM components such as collagens, laminins, fibronectin, and vitronectin are
ligands for integrin transmembrane receptors. Integrins are heterodimers formed of α and
β subunits. In humans, there are 18 known α and 8 β subunits, which form 24 known
heterodimers [15,16]. Integrins are among the main hubs that link the ECM and the cell
interior [17,18]. Their dynamic expression on the cell surface [19] conveys the information
about the cell surroundings inside the cell. The corresponding integrin adhesion complexes
(IACs) that are formed on a cytoplasmic side upon integrin ligation and activation differ in
their appearance, size, and dynamics [20,21]. Consequently, IACs also differ in their protein
composition and connections to the intracellular components. For examples of this diversity,
see [22–25]. By using a variety of different downstream entities, the communication between
the cell exterior and interior acquires many subtle shades that shape the cell’s response to
its surroundings.

In this article, we analyze the prostate cancer ECM gene expression (matrisome) and
its changes in comparison to healthy prostate tissue. We extended our analysis on ECM’s
integrin receptors and their adhesion complexes (adhesome) to credit the central roles
that these proteins play in ECM–cell communication. By analyzing The Cancer Genome
Atlas (TCGA) gene expression data, we found evidence that indicates high perturbations
in matrisome and adhesome composition in prostate cancer, which we linked to the clinical
information. In our previous article [26], we have shown that the Gleason score is the most
informative prognostic variable in the analysis of progression-free survival (PFS) in the
prostate cancer dataset. However, in this publication, we refined this result by adding
the ECM and IAC genes’ expression variables to the analysis. Our results suggest that,
among the IACs-related genes, the expression of PTPN2 further defines the survival tree
for patients with a Gleason score lower than 9. The higher expression of the PTPN2 gene
was associated with worse progression-free survival. Additionally, among the ECM-related
genes, the expression of the FMOD gene further advanced the definition of progression-free
survival risk subgroups of patients with a Gleason score lower than 9. The lower expression
of the FMOD gene was associated with worse survival for those patients.

With this article, we aimed to achieve several goals: (a) to widen the knowledge on
potential changes of ECM- and IACs-related genes in prostate cancer, and (b) to propose
potential biomarkers for the prognosis of progression-free survival in prostate cancer. These
results would hold potential to guide the treatment options for prostate cancer patients.
Another value of this paper is methodological since: (c) we used recursive partitioning
and survival trees for the establishment of prognostic subgroups. Considering the prostate
cancer heterogeneity, we trust that our approach better-describes its characteristics. Ad-
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ditionally, survival trees are easier to interpret and present by clinicians than the Cox
regression results.

2. Materials and Methods

The main methodological workflow of this article is presented in Figure 1 and de-
scribed in the following sections. Briefly, after the TCGA PRAD (prostate adenocarcinoma)
dataset was downloaded, differentially expressed genes (DEGs) were analyzed. Subse-
quently, the enrichment analysis was performed on the DEGs. All the mentioned steps
were performed with the TCGAbiolinks R package [27,28]. After that, the rpart R module
(version 4.1.19) [29,30] was used to perform recursive partitioning and the progression-free
survival analysis. Furthermore, the R commander (version 2.8-0) and EZR packages (ver-
sion 1.61) [31,32] were used to establish the Kaplan–Meier estimate of individual nodes
determined by rpart. The reason why we performed survival analysis with all the matri-
some and adhesome genes and not only DEGs is that rpart analysis defines risk subgroups,
so the changes of gene expressions in a subgroup of patients could be masked by global
levels of gene expression in pooled prostate cancer samples.
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Figure 1. The workflow of this study. The conducted steps are shown in green rectangles. The
software used, and the method that each performs, is shown in red rectangles. ECM, extracellular
matrix; IAC, integrin adhesion complex; EZR, Easy R.

2.1. ECM- and IACs-Related Genes’ Retrieval

Matrisome is the ensemble of genes encoding the extracellular matrix (ECM) and ECM-
associated proteins, which was predicted bioinformatically in the genome of various model
organisms by using the characteristic domain-based organization of ECM proteins [33,34].
The matrisome genes (N = 1027) were retrieved from: http://matrisome.org/ (accessed on
1 September 2022) [33,34]. These genes can be further divided into genes encoding core
matrisome proteins and matrisome-associated proteins.

The adhesome network is a literature-based network that is composed of known
cellular components, constituting the focal adhesion complex in mammalian cells [35,36].
The adhesome genes (N = 232) were retrieved from: https://adhesome.org/ (accessed on 1
September 2022) [35,36].

The consensus adhesome consists of the 60 most common proteins that are extracted
from quantitative proteomic datasets, in which IACs were induced by the canonical ligand
fibronectin. These proteins are likely to represent the core cell adhesion machinery and
were retrieved from [37].

The final combined list of matrisome, adhesome, and consensus adhesome genes had
1286 genes in total, and is provided in the Supplementary Material.

http://matrisome.org/
https://adhesome.org/
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2.2. Data Preparation

The TCGAbiolinks R package [27,28] was used to download, prepare, and analyze
The Cancer Genome Atlas (TCGA) [38] prostate adenocarcinoma (PRAD) dataset. This
dataset contains gene expression data for 497 prostate cancer patients and corresponding
non-transformed prostate tissues for a subset of 52 patients. The same R package was used
to pre-process, normalize, and filter the dataset and prepare it for the differential gene
expression, functional enrichment, and survival analyses.

2.3. Differential Gene Expression and Functional Enrichment Analyses

To gain insight into differentially expressed genes (DEGs) in prostate cancer in compar-
ison to non-transformed prostate tissue, we set the following criteria in the TCGAbiolinks
R package: |log2FC| ≥ 1 (corresponding to |fold change| ≥ 2) and FDR (false discovery
rate) p-value < 0.01. These conditions yielded 2037 DEGs. Among these 2037 genes, we
singled out ECM- and IACs-related genes with changed expression in prostate cancer.

The functional enrichment analysis for the Gene Ontology Cellular Component (GO
CC) category using 2037 DEGs was performed by using the TCGAbiolinks R package.

2.4. Clinical Data Retrieval

The clinical data in Table 1 were downloaded from the cBioPortal [39] and NCI Ge-
nomic Data Commons (GDC, TCGA) portals [40]. The downloaded data were combined in
a single file according to the patients’ unique TCGA codes. In total, there were 493 patients
with clinical information available. The event that we considered was progression-free
survival (PFS, N = 93). This is because, fortunately, only a smaller percentage of patients
had an event needed for overall survival analyses. This makes an overall survival analysis
in prostate cancer suboptimal. Some variables in our analysis contained missing data.
However, the decision trees that we obtained in the survival analysis by using recursive
partitioning hold an advantage in comparison to traditional statistical methods as they are
not as affected by missing data [41].

2.5. The Survival Analysis

Variables from Table 1 (age, Gleason score, TNM staging, and residual tumor informa-
tion) were supplemented with gene expression data for matrisome and adhesome genes,
and their prognostic value was determined through recursive partitioning. The American
Joint Committee on Cancer (AJCC) recommends recursive partitioning for the analysis
in prognostic studies [42,43]. We used the rpart package [29,30] in the programming lan-
guage R (version 4.2.1) [44] for the creation of survival trees. Rpart is an abbreviation
for Recursive PARTitioning, and it is the frequently used method for the construction of
survival trees. Survival trees obtained through the rpart method enable visual inspection
and comparison of prognostic factors [42,43]. The basic principles of the rpart method are
elaborated more closely in our previous publications [26,45]. Briefly, first we calculated
the importance of individual variables. Second, we generated the survival tree, which is
defined by its decision nodes and terminal nodes (leaves). The analysis began with all
patients, who were then further divided into prognostic subgroups at each decision node.
At the first decision node (the root node), a logical check was conducted. If the criterion
imposed by that node was met, the left side of the tree was followed, and if not, the right
side was followed. This action was repeated at each decision node through to the point
at which the terminal node was reached. At each decision node, a variable was used to
subdivide patients in two subgroups, with maximum differences in their hazard ratios
(HR). If no further improvement in subdivision was possible, the terminal nodes were
reached. Patients in the first decision node (the root node) had a hazard ratio of 1, and the
hazard ratio for patients in each further node was assigned in comparison to this value.
Overfitting is a frequent problem in machine learning which, in this case, can lead to an
extensive fragmentation of the tree, for which it is hard to find a biological meaning. To
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avoid overfitting, we set the complexity parameter (CP) to 0.0592 and 0.0636 for the ECM
and for the IAC genes, respectively.

Table 1. Clinical information of The Cancer Genome Atlas patients. The number (N) and the
percentage (in parentheses) of patients that belong to a certain category are shown. Some categories
contain unknowns (NAs). The table was modified and adapted from our recent publication [26].

No Progression Progression

n, total 400 (100%) 93 (100%)

Age, years <60 166 (41.5%) 34 (36.6%)
≥60 234 (58.5%) 59 (63.4%)

Gleason score

6 44 (11%) 1 (1.1%)
7 221 (55.3%) 24 (25.8%)
8 49 (12.3) 13 (14%)
9 84 (21%) 53 (57%)

10 2 (0.5%) 2 (2.2%)

Clinical T stage

cT1 158 (39.5%) 17 (18.3%)
cT2 137 (34.3%) 35 (37.6%)
cT3 28 (7%) 24 (25.8%)
cT4 1 (0.3%) 1 (1.1%)
NA 76 (19%) 16 (17.2%)

Clinical M stage
cM0 362 (90.5%) 89 (95.7%)
cM1 2 (0.5%) 1 (1.1%)
NA 36 (9%) 3 (3.2%)

Pathologic T stage

pT2 172 (43%) 14 (15.1%)
pT3 215 (53.8%) 75 (80.7%)
pT4 7 (1.8%) 3 (3.2%)
NA 6 (1.5%) 1 (1.1%)

Pathologic N stage
pN0 280 (70%) 62 (66.7%)
pN1 56 (14%) 22 (23.7%)
NA 64 (16%) 9 (9.7%)

Residual tumor

R0 266 (66.5%) 46 (49.5%)
R1 102 (25.5%) 44 (47.3%)
R2 5 (1.3%) 0
RX 13 (3.3%) 2 (2.2%)
NA 14 (3.5%) 1 (1.1%)

The log-rank test was used to analyze the difference in survival between patients in
terminal nodes, and the results were presented as survival curves showing the Kaplan–
Meier survival estimate [46]. The analysis was performed by using the EZR package [32], an
add-on in R commander (a basic-statistics graphical user interface to R) [31]. The obtained
data were statistically significant since the log-rank test p-value was <0.001.

3. Results
3.1. The Expression of Matrisome and Adhesome Genes Appears to Be Aberrant in Prostate Cancer

Gene expression analysis of prostate tissue from prostate cancer patients described
in the Materials and Methods Section revealed 2037 differentially expressed genes (DEGs)
when compared to non-transformed prostate tissue. The result of the functional enrich-
ment analysis for the Gene Ontology Cellular Component (GO CC) category using these
2037 genes and the TCGAbiolinks R package is provided in Figure 2. The top-20 GO Cellu-
lar Compartment terms are shown. The enrichment analysis on these genes showed that the
GO terms ‘extracellular matrix’ (N = 35 genes) and ‘integrin complex’ (N = 12 genes) were
among those that were highly enriched in the Gene Ontology Cellular Component (GO CC)
category (Figure 2). In the GO Biological Process (GO BP) category, we detected the ‘cell
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adhesion’ term (N = 62 genes) among the top-20 categories. The ECM- and IACs-related
DEGs are listed in Table 2.
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Figure 2. The enrichment analysis of differentially expressed genes (N = 2037) in prostate cancer. The
TCGA PRAD dataset was used with the following criteria: |log2FC| ≥ 1 (corresponding to |fold
change| ≥ 2) and FDR (false discovery rate) p-value < 0.01. The enrichment analysis was performed
by using the TCGAbiolinks R programming language package.

Among the ECM- and IACs-related DEGs are many proteins that give a structure to
the ECM, such as collagens, various ECM glycoproteins, and ECM proteoglycans (Table 2).
Additionally, the expression of ECM regulators, involved in organization of the ECM, is
also perturbed. The genes encoding for secreted factors that stimulate the crosstalk between
tumor and host cells, (lymph)angiogenesis, and the hijack and recruitment of immune cells,
also change expression. With such an extensive perturbation in the ECM composition, it is
hard to speculate which characteristics of the ECM changed. However, it is known from
the literature that the tumor ECM in general gains an increase in density and mechani-
cal stiffness [47] due to the changed quantity of ECM structural proteins and the extent
of crosslinking.

Integrins are a link between the ECM and intracellular machinery that are highly
alerted to the changes in the ECM. It is interesting to note that in prostate cancer, integrins
and adhesome genes mainly show decreased expression (Table 2). It would be important to
relate these differences to phenotypes of prostate cancer and to decipher whether there are
compensatory mechanisms, such as, for example, the increase in the expression of some of
the integrin ligands (e.g., collagens).

The expression of genes that we showed are involved in the prognosis of PFS of
prostate cancer patients, PTPN2 and FMOD, did not change the global expression between
prostate cancer and non-transformed tissue according to the criteria used (|log2FC| ≥ 1
and FDR p-value < 0.01).
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Table 2. Matrisome and adhesome genes up- (red; N = 71) and down-regulated (green; N = 177)
in prostate cancer in comparison to healthy prostate tissue according to TCGA PRAD data. The
numbers in parentheses represent the fold change (FC; threshold |FC| ≥ 2x). The adjusted p-value
is <0.01 for each gene. The genes are shown in descending FC values’ order. ECM glycoproteins,
collagens, and proteoglycans belong to the core matrisome category, and ECM-affiliated proteins,
ECM regulators, and secreted factors belong to the category of matrisome-associated proteins [33,34].

Category Genes (FC)

Integrins ITGAX (2.1), ITGA7 (0.5), ITGA1 (0.5), ITGA5 (0.4), ITGB8 (0.4), ITGB4 (0.4), ITGA8 (0.4),
ITGA2 (0.4), ITGA9 (0.4), ITGB6 (0.4), ITGB3 (0.4).

Adhesome

PDLIM5 (3.5), TSPAN1 (2.2), SRCIN1 (2.0), INPP5D (0.5), TES (0.5), PLS3 (0.5), DNAJB1 (0.5),
JUB (0.5), CALD1 (0.5), HSPB1 (0.4), NRP2 (0.4), VAV3 (0.4), KCNH2 (0.4), PEAK1 (0.4), LPP
(0.4), PRKCA (0.4), NEXN (0.4), FERMT2 (0.4),TRIP6(0.4), CSRP1 (0.4), FLNA (0.4), PDLIM7

(0.4), VCL (0.4), SVIL (0.4), PALLD (0.4), LIMS2 (0.4), TNS1 (0.4), TGFB1I1 (0.3), SORBS1 (0.3),
CAV1 (0.3), LDB3 (0.3), SYNM (0.3), FLNC (0.3).

ECM Glycoproteins

FGB (43.1), FGL1 (12.4), SLIT1 (9.2), ZP1 (6.4), VWA5B1 (6.0), CTHRC1 (4.3), COMP (4.0),
SPON2 (3.5), THBS4 (3.2), ZP3 (2.5), LGI1 (2.4), NTN5 (2.0), EMILIN1 (0.5), NTN4 (0.5), FBLN1

(0.5), THSD4 (0.5), MATN2 (0.5), NID1 (0.5), NTN1 (0.5), FN1 (0.5), SPARCL1 (0.5), RSPO2
(0.5), VWA5A (0.4), EMILIN3 (0.4), GAS6 (0.4), BMPER (0.4), RSPO3 (0.4), SLIT3 (0.4),

EFEMP2 (0.4), VTN (0.4), NDNF (0.4), MFAP5 (0.4), TINAGL1 (0.4), EDIL3 (0.4), EFEMP1 (0.4),
LGI3 (0.3), VIT (0.3), SPON1 (0.3), NELL2 (0.3), SMOC1 (0.3), VWCE (0.3), LAMB3 (0.3), DPT

(0.3), GLDN (0.3), WISP2 (0.3), SBSPON (0.2), DMBT1 (0.2), VWA5B2 (0.2).

Collagens COL2A1 (15.1), COL10A1 (5.9), COL11A1 (5.6), COL9A2 (3.5), COL28A1 (2.6), COL11A2 (2.4),
COL12A1 (2.0), COL21A1 (0.4), COL9A1 (0.4), COL23A1 (0.3), COL4A6 (0.3), COL17A1 (0.3).

Proteoglycans ASPN (4.5), ACAN (2.8), HAPLN2 (0.5), HAPLN1 (0.4), OGN (0.4), SPOCK3 (0.4).

ECM-Affiliated Proteins

SFTPA2 (4.3), GPC2 (4.3), CLEC18A (4.2), HPX (3.5), REG4 (3.5), MUC13 (3.1), C1QTNF3 (3.0),
MUC2 (2.4), CSPG5 (2.4), COLEC12 (2.3), ELFN2 (2.2), SEMA3D (0.5), SEMA7A (0.5), ANXA2

(0.5), SEMA3B (0.5), SDC1 (0.5), SEMA5A (0.5), CLEC3B (0.5), PARM1 (0.4), ANXA6 (0.4),
ANXA8L1 (0.4), CSPG4 (0.4), PLXNA4 (0.4),CLEC3A(0.3), SEMA3A (0.3), ANXA8 (0.3),

C1QTNF1 (0.3), SEMA6D (0.3), LGALS4 (0.3), MUC4 (0.2), C1QL1 (0.2), MUC15 (0.2), ANXA9
(0.1), MUCL1 (0.1), MUC6 (0.0), ANXA13 (0.0).

ECM Regulators

CST2 (13.3), MMP26 (12.8), CST1 (9.8), ADAM2 (8.3), SERPINA11 (5.9), HABP2 (5.4), TGM3
(5.1), ADAM21 (5.0), F12 (3.9), PCSK6 (3.7), MMP9 (2.7), MMP10 (2.6), MMP11 (2.5), ITIH4
(2.5), ADAM32 (2.2), ADAMDEC1 (2.1), MMP12 (2.0), TIMP4 (0.5), LEPREL2 (0.5), F10 (0.5),

SERPINB1 (0.5), EGLN3 (0.5), SERPINB3 (0.5), ADAMTSL4 (0.5), SERPINF1 (0.5),
SERPINB11 (0.5), PRSS12 (0.4), ITIH5 (0.4), TIMP3 (0.4), PAPPA (0.4), CPAMD8 (0.4), MASP1
(0.4), ADAM7 (0.4), TGM1 (0.4), SERPINA4 (0.3), SERPINA1 (0.3), SERPINF2 (0.3), ADAMTS5
(0.3), SERPINB5 (0.3), TGM4 (0.2), CST6 (0.2), KY (0.2), CST4 (0.1), SLPI (0.1), SERPINA5 (0.0).

Secreted Factors

ANGPTL3 (25.1), AMH (13.9), GDF1 (6.7), CCL18 (5.3), C1QTNF9B (4.5), GDF15 (3.1), SFRP4
(3.1), CXCL11 (3.1), CXCL14 (2.5), CXCL10 (2.4), CCL22 (2.3), EGF (2.3), CXCL9 (2.3), INHA

(2.3), WFIKKN1 (2.1), FGF14 (2.1), CHRD (2.1), FGFBP3 (2.0), FGF2 (0.5), S100A9 (0.5),
CHRDL2 (0.5), S100A2 (0.5), ANGPTL4 (0.5), PDGFD (0.5), LEFTY1 (0.5), CSF3 (0.4), FGF7

(0.4), KITLG (0.4), BDNF (0.4), TGFB3 (0.4), S100A16 (0.4), AREG (0.4), S100B (0.4), NTF4 (0.4),
WNT3A (0.4), S100A6 (0.4), NRG1 (0.4), IL1RN (0.4), SCUBE3 (0.4), CXCL13 (0.4), CRHBP

(0.4), WNT2B (0.4), CTF1 (0.4), WNT10A (0.3), FGFBP1 (0.3), SCUBE1 (0.3), NRG2 (0.3), PGF
(0.3), ANGPTL1 (0.3), CHRDL1 (0.3), ANGPT1 (0.3), CCBE1 (0.3), GDF10 (0.2), S100A14 (0.2),

WIF1 (0.2), BMP5 (0.2), SFRP5 (0.1).

3.2. ECM- and IACs-Related Genes Are Involved in Prognosis of Progression-Free Survival in
Prostate Cancer Patients

Recursive partitioning is the method recommended by the AJCC for the analysis of
prognostic studies [42,43]. Therefore, we used the rpart method to determine the prognostic
value of the following variables (Table 1): age, Gleason score, TNM staging, residual tumor
information, and the gene expression data for the ECM- and IACs-related genes. The
ECM- and IACs-related genes were separately analyzed. The importance of individual
variables is shown in Figures 3A and 4A. By performing the rpart analysis, our result
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from a previous publication, which found the Gleason score to be the strongest prognostic
factor in prostate cancer among the studied variables, was confirmed [26]. The five most
informative variables in Figure 3A in addition to the Gleason score were the expressions
of FMOD, MMP11, COL1A1, COL3A1, and COL5A2 genes. Among them, only FMOD
emerged on the survival tree. In Figure 4A, the five most informative variables in addition
to the Gleason score were the expressions of PTPN2, RPL23A, MRTO4, PTPN1, and BRIX1.
Among those, only the PTPN2 gene expression variable emerged on the survival tree. From
the variable importance analysis, it was evident that even the most informative individual
variable (the Gleason score) had a score of only 36 (matrisome data) and 27 (adhesome data)
in comparison to the whole model, bearing the score of 100. Therefore, the multivariate
approach to survival analysis is the only way to correctly describe the patients’ prognosis.
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AJCC guidelines for prognostic studies suggest that a prognostic value of a single
variable is evaluated by considering the other variables [42,43]. The rpart method follows
this criterion because rpart uses all variables in the analysis. The results of the rpart
algorithm performed on our data are presented on a survival tree (Figures 3B and 4B).
Figures 3B and 4B show that, by using two variables in each survival tree, patients were
further subdivided into two decision nodes and three terminal nodes (leaves) in each tree.

Variables used in the decision nodes in Figures 3B and 4B are the Gleason score and the
FMOD and PTPN2 gene expressions. FMOD and PTPN2 refined the prognosis of patients
with a Gleason score < 9, respectively. The importance of the variables in Figures 3B and 4B
was determined by their position in the survival tree: the topmost variable (the Gleason
score) holds the largest amount of information, the variable below the topmost is the second
largest by the content of information, and so on. It is obvious from Figures 3B and 4B that
there were three prognostic subgroups on each. For Figure 3B, they were: (a) low Gleason
score and high FMOD expression, (b) low Gleason score and low FMOD expression, and
(c) high Gleason score. The HR gradually increased from the left to the right of the survival
tree. By using the complexity parameter (CP) = 0.0592, we did not find a variable that
further refined the high Gleason score patients (≥9). However, when the CP was set at
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CP = 0.0371, we obtained a separation in that group of patients according to the expression
of the MFAP3 gene. Namely, MFAP3 high expression (≥1389) was associated with worse
survival (HR 2.8 vs. 0.37). In Figure 4B, we also established three prognostic subgroups:
(a) low Gleason score and low PTPN2 expression, (b) low Gleason score and high PTPN2
expression, and (c) high Gleason score. In this survival tree, the HR also gradually increased
from the left to the right.
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To conclude, by using the Gleason score information supplemented with the expres-
sion of FMOD and PTPN2 genes, a stratification of prostate cancer patients into several
prognostic subgroups with significantly different hazard ratios (low, medium, and high
risk of progression) was achieved.

The results of recursive partitioning (Figures 3B and 4B) were further supplemented by
survival curves obtained using the Kaplan–Meier method for subgroups from each decision
node. The difference in survival for subgroups defined by the left and the right branches
of the decision node 1 (the Gleason score) is shown in our previous publication [26]. The
subgroups from decision node 2 are shown in Figure 5 (FMOD expression) and Figure 6
(PTPN2 expression). The log-rank test p-value was statistically significant (p < 0.001) for
both genes (Figures 5 and 6).
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4. Discussion

The driving processes in prostate cancer progression encompass intertwined actions
of several signaling pathways, which are potentiated by genetic and epigenetic alter-
ations, changes in gene expression, and post-transcriptional and post-translational modifi-
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cations [1,2,48]. However, although a large amount of data exists regarding the mentioned
processes, one of the greatest barriers in prostate cancer treatment is still the inability to
precisely foresee the course of a disease, and therefore, to define the risk subgroups which
would guide the treatment options. In our previous work, we added to the efforts which
try to reveal prostate cancer PFS prognosis biomarkers [26]. In that work, the Gleason score
emerged as the most informative prognostic factor among all the clinical and the gene ex-
pression variables studied. Herein, we extended the analysis to the ECM- and IACs-related
genes. Our results are based on the TCGA PRAD dataset, and they dissect differential
expression of ECM- and IACs-related genes and their value as prognostic factors in the
progression-free survival of prostate cancer patients.

4.1. Extracellular Matrix-Related Genes’ Expression and Prognostic Significance in
Progression-Free Survival of Prostate Cancer Patients

The ECM is emerging among the main determinants of tumor growth and dissemina-
tion [49,50]. Therefore, it does not come as a surprise that its components bear prognostic
and therapeutic value in many different cancer types [11]. The numerous examples in-
clude: breast cancer [51], metastatic melanoma [52], gastric cancer [53], acute myeloid
leukemia [54], non-small-cell lung cancer [55], glioblastoma [56], colon cancer [57], hepa-
tocellular carcinoma [58], esophageal squamous cell carcinoma [59], and renal clear cell
carcinoma [60].

In this article, based on the TCGA PRAD dataset, ECM (matrisome) gene expression
appeared to be highly aberrant in prostate cancer tissue. The enrichment analysis on the
DEGs showed that the GO term ‘extracellular matrix’ (N = 35 genes) was among those
that were enriched in the Gene Ontology Cellular Component (GO CC) category (Figure 2).
Genes from all the ECM categories (Table 2) showed changed expression. As mentioned
in the Results Section, with such a comprehensive change in the expression of individual
components, it is hard to speculate which of the ECM general characteristics are changed in
prostate cancer. However, it is known from the literature that the cancers’ ECMs in general
gain an increase in density and mechanical stiffness [47].

In a search for prognostic factors among the ECM-related genes, the expression of the
FMOD gene appeared to refine the prognosis based on the Gleason score. Namely, the
patients with a Gleason score lower than 9 were further subdivided into two prognostic
subgroups based on the FMOD gene expression. The patients with high FMOD expression
had better survival (Figure 5). The FMOD gene encodes the fibromodulin protein, which
belongs to the family of small interstitial proteoglycans [61]. This protein interacts with type
I and type II collagen fibrils and inhibits fibrillogenesis in vitro. Therefore, fibromodulin
may play a role in the assembly of the extracellular matrix. It may also regulate TGF-
beta activities by sequestering TGF-beta into the extracellular matrix (www.genecards.
org accessed on 1 December 2022). In the prostate cancer setting, FMOD was shown
to be overexpressed in human prostate epithelial cancer cell lines in vitro. Additionally,
the authors showed that the cancerous tissue expressed significantly higher levels of
intracellular fibromodulin compared to matched, benign tissue from the same patients.
Higher levels were also detected in cancerous tissue in comparison to tissue from patients
with only a benign disease [62,63]. Furthermore, in a study based on Brazilian individuals,
FMOD gene variants were suggested to be potential biomarkers for prostate cancer and
benign prostatic hyperplasia [64]. However, in a recent article, it was shown that higher
FMOD expression was associated with better disease-free survival of prostate cancer
patients, a finding that agrees with our results [65]. This would mean that, although
the cancerous tissue has higher FMOD expression than non-transformed prostate tissue,
in prostate cancer, higher FMOD expression bears a better prognosis. Here, it needs to
be remembered that, besides FMOD, our analysis showed that COL1A1, COL3A1, and
COL5A2 genes were also shown to have high informative value in the prognosis of PFS
when individually analyzed (Figure 3A). It would be interesting to imply their functional

www.genecards.org
www.genecards.org
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role and to further delineate whether FMOD and these three collagen genes are interacting
in the architecture of certain prostate cancer phenotypes that affect the patients’ survival.

4.2. Integrin Adhesion Complexes-Related Genes Expression and Prognostic Significance in
Progression-Free Survival of Prostate Cancer Patients

Integrin receptors are involved in almost every process of cancer formation and pro-
gression [66]. Therefore, it is not surprising that numerous preclinical studies on targeting
integrins in different cancer types revealed encouraging results. However, there are still
obstacles in translating these results into the clinics [67,68]. In addition to all the difficul-
ties [69,70], in our recent paper [19], we suggested that integrin crosstalk could potentially
complicate and undermine the effects of targeting integrins. Integrin crosstalk is a phe-
nomenon in which the modulation of the activity and/or expression of one integrin (subunit
or a heterodimer) affects the activity and/or expression of other integrin(s) (subunit(s) or
heterodimer(s)). To circumvent integrin crosstalk, but to keep the advantages of targeting
the integrin pathway, we suggest that the analysis of proteins downstream of integrin
ligation and activation could reveal effective therapeutic targets. Therefore, in this paper,
we focused on integrin adhesion complexes (IACs), in a search for potential prognostic
biomarkers and therapeutic targets in prostate cancer. IACs are essential protein-composed
adhesion structures whose components were also detected outside of Metazoa, confirming
their ancient evolutionary origin [71]. There are several types of IACs recognized [21],
which include nascent adhesions [72], focal complexes [73], focal adhesions [74], fibrillar
adhesions [75], reticular adhesions [76], and hemidesmosomes [77]. Although IACs vary
in their appearance, size, dynamics, and composition, the core components of integrin
adhesome have been identified by several groups [35–37]. The integrin adhesome consists
of proteins that are affiliated with the structure and signaling activity of integrin-mediated
adhesions [36]. By analyzing the core integrin adhesome components, we found that their
expression is highly perturbed in prostate cancer. Namely, the category ‘integrin com-
plex’ appeared among the top functionally enriched Gene Ontology Cellular Component
(GO CC) terms (Figure 2). Furthermore, we detected 44/264 (16.7%) adhesome genes
whose expression was significantly changed by ≥2 times (either up- or down-regulated) in
prostate cancer, in comparison to non-transformed prostate tissue (Table 2). An important
notion is that majority of these genes are downregulated in the prostate cancer tissue. Their
functional role and the potential compensatory mechanisms remain to be investigated.

In addition to changes in gene expression, in our analysis, we found that the expression
of some of the adhesome genes was correlated with PFS in univariate and multivariate
approaches. The examples of genes implicated in the univariate approach are PTPN2,
RPL23A, MRTO4, PTPN1, and BRIX1 (Figure 4A). However, except for PTPN2, those
genes did not emerge on the survival tree. This would mean that the expression of the
mentioned genes is probably correlated with some of the variables which already hold
a prognostic value, such as, for example, the Gleason score. It is interesting to note that
three genes (PTPN1, PTPN2, and PTPN12) from the PTPN family of protein tyrosine
phosphatases emerged in univariate analysis. Tyrosine phosphorylation is an important
post-translational modification in cell adhesion that is dynamically regulated by the protein
tyrosine phosphatases and kinases [78]. While PTPN1 [79–81] and PTPN12 [82,83] were
implicated in prostate cancer biology, the involvement of PTPN2 in prostate cancer is
not documented [84]. Regarding integrin signaling, complex roles for PTPN1 [85–88],
PTPN2 [89], and PTPN12 [90] have been documented. Despite this, it needs to be mentioned
that PTPN proteins have other, broader roles [84]. Therefore, it cannot be ruled out that
some of these other roles are also important for the biology of prostate cancer.

The PTPN2 gene expression appeared on the survival tree as a variable that refines the
PFS of lower (<9) Gleason score patients. Our results suggested that its higher expression
bears a poorer prognosis. PTPN1 and PTPN2 are highly related PTPs [84], but, as men-
tioned previously, PTPN2 has not been implicated in prostate cancer. However, PTPN2
is a key predictor of prognosis for pancreatic adenocarcinoma, and its higher expression



Biomedicines 2023, 11, 2006 13 of 17

is associated with a poor prognosis [91]. Overexpression of PTPN2 also predicted a poor
survival in clear cell renal cell carcinoma [92], which agrees with our results. However, low
PTPN2 expression was associated with poor overall survival in ovarian serous cystadeno-
carcinoma [93], indicating its versatile roles in different cancer types. The connection of
PTPN2 with integrin signaling was confirmed by several articles, which indicate activation
of PTPN2 by integrins. Namely, it was recently shown that the catalytic activity of PTPN2
is auto-regulated by its intrinsically disordered tail and activated by ITGA1 [89]. An earlier
article also documented that PTPN2 is activated by the integrin ITGA1/ITGB1 and that
it subsequently dephosphorylates EGFR and negatively regulates EGF signaling [94]. In
line with this, the same group showed that PTPN2 activity was induced upon integrin-
mediated binding of endothelial cells to the collagen matrix [95]. However, the potential
role of PTPN2 activation by integrins in prostate cancer remains to be investigated. To
conclude, PTPN2 might be a potential target in prostate cancer treatment, whose targeting
is achievable because the PTPN2 inhibitors are available.

An interesting notion is that neither ECM- nor IACs-related genes defined risk sub-
groups for the Gleason score ≥ 9, according to the conservative complexity parameters that
we selected. It could be that the high Gleason score cancers show such aberrant ECM- and
IACs-related genes’ expression that are of a great importance for cancer progression and,
therefore, are common to all patients. This would mean that ECM- and IACs-related genes’
aberrant expression is underlying for all high Gleason score (≥9) patients.

4.3. Methodological Considerations

In this article we used recursive partitioning to define the risk subgroups of prostate
cancer patients in the analysis that included clinical information and the gene expression
data. Recursive partitioning is the method recommended by AJCC for the analysis of
prognostic studies [42,43]. Due to the prostate cancer heterogeneity, it is to be expected that
this method better describes its diversity than the Cox regression analysis, which is used by
majority of papers dealing with similar questions. Moreover, the survival tree, obtained by
recursive partitioning, is easier to interpret than the Cox regression results. Therefore, we
believe that our approach is more appropriate to analyze the prostate cancer survival data.

5. Conclusions

ECM is the first frontier of the cell towards its surroundings, and it is among the
main determinants of the cell’s behavior. Therefore, important roles of the ECM in cancer
development, progression, and prognosis were documented. By using the TCGA PRAD
dataset, in this article, the expression of ECM genes in prostate cancer was analyzed and
correlated with progression-free survival of prostate cancer patients. We revealed that the
expression of ECM-related genes changed in prostate cancer. Moreover, the ECM-related
genes showed prognostic significance for the prostate cancer patients, who were stratified
according to the Gleason score. Our results confirmed the important roles for the ECM-
related genes in prostate cancer and suggested the potential biomarkers of prostate cancer
progression from the list of the ECM-related genes.

Integrins are among the main receptors for the ECM ligands. Several unique character-
istics, including integrin crosstalk and the formation of IACs, make integrins exceptional
among the signaling receptors. Therefore, their roles in tumor formation, progression, and
drug resistance were noted early on [96]. In this paper, we showed that the expression of
integrin and IAC genes changed in prostate cancer. Moreover, some of these genes are ap-
pearing in univariate and multivariate approaches in the prognosis of PFS, suggesting their
potential role in the discovery of biomarkers of prostate cancer progression. Consequently,
our results support the early notion that considered integrins (and downstream proteins)
attractive therapeutic targets, a strategy that is still hotly debated [68,70].
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