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Abstract: Background: Pediatric inflammatory bowel disease (IBD) is a chronic inflammatory intesti-
nal disease that affects both children and adolescents. Symptoms can significantly affect a child’s
growth, development, and quality of life, making early diagnosis and effective management crucial.
This study focuses on treatment-naïve pediatric IBD patients and their immediate families to identify
the role of the microbiome in disease onset. Methods: Nine families with pediatric IBD were recruited,
comprising seven drug-naïve Crohn’s disease (CD) patients and two drug-naïve ulcerative colitis
(UC) patients, as well as twenty-four healthy siblings/parents. Fecal samples were collected for 16S
ribosomal RNA gene sequencing and bioinformatics analysis. Results: We identified patterns of
dysbiosis and hallmark microbial taxa among patients who shared ethnic, habitual, and dietary traits
with themselves and their families. In addition, we examined the impact of the disease on specific
microbial taxa and how these could serve as potential biomarkers for early detection. Conclusions:
Our results suggest a potential role of maternal factors in the establishment and modulation of
the early life microbiome, consistent with the current literature, which may have implications for
understanding the etiology and progression of IBD.

Keywords: Crohn’s disease; ulcerative colitis; microbiome; inflammatory bowel disease; family

1. Introduction

Pediatric IBD is a chronic inflammatory bowel disease that affects children and ado-
lescents. The two main types of IBD are Crohn’s disease (CD) and ulcerative colitis (UC),
which are characterized by inflammation and damage to the digestive tract. Children with
IBD may experience a variety of symptoms, including abdominal pain, diarrhea, rectal
bleeding, weight loss, and fatigue [1]. These symptoms can significantly impact a child’s
growth, development, and quality of life, making early diagnosis and effective management
crucial. Diagnosis of pediatric IBD can be challenging, as symptoms can be similar to those
of other digestive disorders or infections. Pediatric gastroenterologists will often perform
a variety of tests, including blood work, stool samples, endoscopy, and imaging studies,
to help confirm a diagnosis [2]. Once a diagnosis has been made, treatment will typically
involve a combination of medications and dietary changes [3,4]. Some children may require
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surgery in more severe cases [5]. One of the unique challenges of managing pediatric IBD
is ensuring that treatment plans are appropriate for a child’s age and developmental stage.
Medications may need to be adjusted based on weight and age, and some medications
may not be appropriate for use in young children. In addition, dietary changes may be
necessary to help manage symptoms, but it is important to ensure that a child’s nutritional
needs are being met [4]. In addition to physical symptoms, pediatric IBD can also impact
a child’s emotional well-being. Children with IBD may experience anxiety, depression,
and social isolation, especially if they are unable to participate in normal childhood activi-
ties [6]. Overall, managing pediatric IBD requires a multidisciplinary approach, involving
gastroenterologists, dietitians, mental health professionals, and other healthcare providers.
Regular monitoring and follow-up appointments are important to ensure that symptoms
are managed effectively and to identify any potential complications. With proper diagnosis,
treatment, and support, children with IBD can lead healthy and fulfilling lives.

Although the cause of IBD is not fully understood, various potential factors have been
linked to its development and progression. These include gene expression dysregulation
and polymorphisms [7,8], lifestyle choices, and the role of microbiota [9,10]. Despite
research, it remains unclear why the disease affects people of all ages. Previous studies
have suggested that genetics play an important role in developing IBD [11–13] with an
up to 12% increased risk for disease occurrence [14]. More recently, with the rise of
microbiome-focused research, it has been shown that the intrafamilial microbiome can be
linked to specific genetic traits and be studied for its behavior during dysbiosis [15,16].
It has also been reported that microbiota composition is shared between cohabitating
individuals [17–19] but also displays patterns of similarity that differ between families [20].
Perhaps the most important questions shared by scientists today revolve around whether
the microbiome can act as a mediator, a causative agent of disease, or is just its innocent
victim [21–25].

Microbiome analysis via bioinformatics (metagenomics analysis) is a rapidly growing
field that focuses on analyzing the genetic material of microbial communities present in
different environments, including the human body [26]. This involves the use of computa-
tional tools and statistical methods to study the diversity and abundance of microorganisms
and their functional characteristics [27]. With the advent of high-throughput sequencing
technologies, it has become possible to study the microbiome at an unprecedented level
of detail, enabling researchers to explore the relationship between microbial communities
and human health and disease [28,29]. These techniques play a crucial role in identifying
specific microbial taxa associated with different diseases and understanding their functional
roles. It also aids in the development of diagnostic and therapeutic tools that can modulate
the microbiome to treat various diseases. Moreover, metagenomics analysis is essential for
interpreting the vast amount of data generated by microbiome studies, allowing researchers
to identify patterns and relationships that are otherwise difficult to detect. As the field
continues to expand, it is likely to lead to new insights into the complex interplay between
microbial communities and their host organisms, paving the way for the development
of personalized medicine approaches that consider an individual’s unique microbiome
composition.

In this spirit, our study explores the dynamics of the microbiome within families of
pediatric IBD patients, attempting to understand its characteristics during dysbiosis and the
different microbial profiles formed within a family. Our methodology was structured for
the identification of dysbiosis patterns and hallmark microbial taxa among these patients
and their healthy first-degree relatives (parents and siblings). This allowed us not only to
present the pediatric microbiome in a unique way but also to identify potential markers of
diagnosis and treatability.
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2. Results
2.1. IBD versus HC Overall

To identify differences between IBD patients and healthy controls (HC), several anal-
yses were performed for evaluating the quantitative and qualitative differences between
them. This allows us to study the potential of microbial taxa as biomarkers for IBD in
general and also compare our results to previous works.

2.1.1. Microbiota Composition and Univariate Analysis

The overall relative abundance of microbial phyla when comparing HC and IBD
samples presents an increase in Bacteroidetes (10% increase) and Proteobacteria (7% in-
crease) in patients while Firmicutes are decreased (16% decrease) (Figure 1A). On the
genus taxonomic level in relative abundance, the patient samples are characterized by an
increase in Bacteroides (17%) and a decrease in Faecalibacterium (7%), among other changes
(Figure 1B). The univariate analysis of phyla provides statistical significance (p.adjust < 0.05)
for Bacteroidetes and Proteobacteria only when the genera Veillonella, Haemophilus,
Granulicatella, Erysipelatoclostridium, Shigella, and Streptococcus are significantly increased
and members of Candidatus Soleaferrea are decreased. In addition, the species Veillonella
parvula, Streptococcus parasanguinis, Haemophilus parainfluenzae, Granulicatella paradiacens,
Ruminococcus flavefaciens, Dorea massiliensis, Shigella sonnei, Bacteroides fragilis, Bacteroides
acidofaciens, and Bacteroides caccae are significantly increased (FC > 8 and p.adjust < 0.05)
while Ruminococcus flavefaciens and Alistipes massiliensis are significantly decreased (FC > 6
and p.adjust < 0.05). The top 10 over- and under-abundant species and genera in the patient
group versus all healthy controls are depicted in Table 1. All univariate analysis results for
the aforementioned taxonomic levels via DESEQ2 can be found in Supplementary File S1.
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Table 1. Top 10 over- and under-abundant species and genera in the pediatric patient group versus
all healthy controls.

Genera More Abundant in IBD Genera Less Abundant in IBD Species More Abundant in IBD Species Less Abundant in IBD

Veillonella Candidatus Soleaferrea Veillonella_parvula Ruminococcus__flavefaciens

Haemophilus Prevotella Haemophilus_parainfluenzae Bacteroides__massiliensis

Granulicatella Holdemanella Erysipelatoclostridium_ramosum Prevotella__copri

Sutterella Anaerobacterium Granulicatella_paradiacens Bacteroides__stercoris

Shigella Lactobacillus Streptococcus_parasanguinis Dialister__succinatiphilus

Erysipelatoclostridium Holdemania Bacteroides_caccae Lachnoclostridium__xylanolyticum

Pantoea Catenibacterium Shigella_sonnei Eubacterium__hallii

Streptococcus Lachnospira Sutterella_wadsworthensis Alistipes__indistinctus

Butyricimonas Dorea Bacteroides_fragilis Holdemanella__biforme

Alcaligenes Anaerovorax Bacteroides_acidofaciens Anaerobacterium__chartisolvens

2.1.2. Diversity Metrics

When comparing the pool of the nine pediatric IBD patients against the pool of healthy
family members (Figure 2A), alpha diversity appears to be reduced, but without achieving
statistical significance between the two groups (Kruskal–Wallis p = 0.11). The same effects are
also true when subgrouping the HC group according to their familial relationship with the
patients (Figure 2B), where the mother/father/brother/sister subgroups appear to exhibit
comparable alpha diversities. The loss of statistical significance can be attributed to the wide
distribution of values in the patient group, which will be discussed later on. The NMDS plot
(Figure 3), used to depict beta diversity, presents clear clustering of the HC samples, while the
patient samples are distributed differently. ANOSIM statistics of R = 0.19878 (p < 0.04) signify
a high similarity between the groups.
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Figure 2. Alpha diversity indices (Shannon index) representing how biodiverse the sample groupings
are. (A) Comparing healthy controls, in total, versus pediatric IBD patients. (B) Comparing healthy
controls grouped by their familial relationship with the patients versus those patients. (C) Comparing
individual patients from all families among themselves.
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2.2. Intrafamilial Microbiome Changes

By analyzing each family individually, we were able to identify patterns of microbiota
behavior during IBD in our pediatric patients and ascertain that the microbiome is heavily
affected by the disease in individuals who share lifestyles with our healthy controls.

2.2.1. Biodiversity

Comparing how diverse the microbiomes of family members are shows that pediatric
IBD patients diverge significantly. In Figure 4, all a-diversity indices of members of the
nine families are shown individually. In six of the nine families, the patients exhibit less
biodiversity compared to their healthy family members, while in the rest, they appear to
be richer in microbiota from their parents/siblings. This finding, although surprising, can
be explained when comparing the alpha diversity indices of patients only, which shows
that they are more or less equal, with the exception of Patients 4 and 5, for whom the
alpha diversity indices were further decreased. For example, Patients 2 and 9 appear to
have lower and higher, respectively, Shannon indices in Figure 4, but the comparison in
Figure 2C shows that there is no discernable difference between them. In addition, we
observed no differences between children with CD and UC.
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2.2.2. Similarity Clustering

As part of our investigation into the dynamics of the microbiome within families
of pediatric IBD patients, we utilized Ward’s hierarchical clustering to identify closer
similarities among the microbiomes of specific family members. Figure 5 displays the
resulting dendrograms, which revealed that in most cases, the microbiome of the patient
was found to be either closer to that of the mother or diverging from all other family
member microbiomes.

2.2.3. Microbial Composition

To extend our previous analyses of microbiota differential abundance, we performed the
same analysis in each family, comparing the pediatric patients against a pool of their family
members. Additionally, we calculated the intersection of microbial genera (Figure 6A) and
species (Figure 6B) with increases and decreases in their counts. This analysis enabled us
to identify patients who exhibit shared differentially abundant taxa. For instance, patients
belonging to Families 1 and 2 have only two enriched genera in common (Butyricimonas and
Lachnoclostridium) but share 12 genera (Anaerosporobacter, Anaerobacterium, Prevotella, Dorea,
Holdemanella, Paraprevotella, Clostridium, Ruminococcus, Lachnobacterium, Pantoea, Peptococcus,
and Shigella) that demonstrate decreased population levels. Similarly, Patients 3 and 6 share six
enriched genera (Veillonella, Haemophilus, Shigella, Pantoea, Bifidobacterium, and Flavonifractor)
and eighteen genera (Phascolarctobacterium, Akkermansia, Anaerobacterium, Trigonala, Holdemanella,
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Intestinimonas, Spiroplasma, Alistipes, Caloramator, Clostridium, Ruminiclostridium, Sporobacter,
Vallitalea, Victivallis, Holdemania, Odoribacter, Coprobacter, and Porphyromonas) displaying reduc-
tions in population size. Because of the paucity of samples in each family, we disregarded
statistical significance and considered all taxa with a fold change in abundance greater than
two (FC > 2). The genera Butyricimonas and Veillonella exhibited increased abundance in the
patients of at least six families (considering all multiple combinations), while Anaerosporobac-
ter, Phascolarctobacterium, Akkermansia, Anaerobacterium, Anaerovorax, Lachnospira, Prevotella,
and Trigonala were decreased. In addition, the species Butyricimonas virosa and Bacteroides
xylanisolvens were more abundant in the patients of at least six families (considering all multiple
combinations), while Lachnoclostridium xylanolyticum, Ruminococcus albus, Eubacterium eligens,
Ruminococcus lactaris, Blautia luti, Anaerosporobacter mobilis, Holdemanella biforme, Ruminococcus
bromii, Anaerobacterium chartisolvens, Trigonala elaeagnus, Coprococcus eutactus, Ruminococcus
flavefaciens, Dorea formicigenerans, Akkermansia muciniphila, Anaerovorax odorimutans, Lachnospira
pectinoschiza, Lactobacillus rogosae, Streptococcus salivarius, and Sporobacter termitidis showed
decreased numbers when compared with the healthy family members. Supplementary File S2
includes the comparative analysis of differential abundance between patients and their healthy
relatives within each family. It also provides information on the shared genera and species
that are either overabundant or underabundant across multiple families as those appear in
Figure 6.
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Figure 6. Intersections of differentially abundant taxa (FC > 2 upregulation or downregulation of
abundance) among families based on intrafamilial differential abundance comparisons between
patients and non-IBD members. (A) Intersections of microbial genera. (B) Intersections of microbial
species. Color intensity represents higher intersection values. Numbers in each box are the number
of differentially abundant taxa in each intersection.
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3. Discussion

This work focuses on treatment-naïve pediatric IBD patients and their immediate
families to identify the role of the microbiome in disease onset. Our results elucidate the
fact that even though family members share lifestyle and dietary habits, the patients exhibit
unique microbiome patterns which could only be attributed to the disease. IBD-related
dysbiosis shown here carries common characteristics among patients who share ethnic,
habitual, and dietary traits among themselves and their families. In addition, we further
examine the disease’s impact on specific microbial taxa and how those can serve as potential
biomarkers for early detection.

In terms of comparing IBD patients with healthy controls, our study successfully repli-
cates and validates the findings of previous research, such as the loss of Firmicutes [30,31]
and the increase in the phylum Bacteroidetes and the genus Bacteroides [32,33] along with
Proteobacteria [34], which are well documented in IBD. In addition, several studies have shown
that Faecalibacterium prausnitzii, which exhibits anti-inflammatory potential [35], is decreased
significantly in IBD [36], a fact that can only partially be confirmed by this study since the
genus Faecalibacterium shows a statistically significant reduction in patients but the specific
species fails to achieve the required p-value cutoff of reporting. This can be attributed to the
wide distribution of F. prausnitzii among all samples due to its universal presence but also
given the fact that there are studies showing an actual increase in some pediatric patients [37],
balancing out its statistical power. We also report on several other bacterial taxa differentially
abundant between patients and healthy controls able to serve as potential IBD biomarkers
as we have in previous works with disease activity [38] and response to treatment [39]. Our
findings regarding Prevotella align with previous research [40,41], which observed a signif-
icant decrease or even depletion of this genus in IBD patients. In a systematic review of
gut microbiota profiles in pediatric IBD patients [42], the genus Lachnospira was highlighted
as being consistently underabundant in several studies [16,43–46], in agreement with our
own findings. Lachnospira along with Prevotella are two well-established short-chain fatty
acid (SCFA)-producing bacterial genera, and their paucity in IBD, and especially CD, is a
known factor in promoting inflammation [47]. The role of short-chain fatty acids (SCFAs)
in maintaining homeostasis and supporting overall health has been extensively discussed,
particularly in relation to dietary habits, which have a significant impact on the composition
of the microbiota [48]. Interestingly, despite the influence of geopolitical designations, religion,
and daily life on dietary habits, a study conducted on new-onset pediatric Crohn’s patients
from Saudi Arabia [49] reported findings consistent with ours regarding Holdemanella and
Lactobacillus. Additionally, Sila et al. [50] reported a similar underabundance of Lactobacillus
in newly diagnosed pediatric patients with IBD. Furthermore, a study by Malham et al. [51],
investigating the role of the microbiome in predicting disease severity and diagnosis in pedi-
atric IBD patients, revealed similar findings to our research regarding the underabundance of
Catenibacterium and Akkermansia in patients. Notably, Akkermansia has also been reported to
exhibit lower abundance in patients from at least two other studies [52,53]. Another interesting
result was the overabundance of Alcaligenes, which, in a previous study [54], the authors had
shown that in innate lymphoid-cell-depleted mice, the presence of Alcaligenes was sufficient to
promote systemic inflammation, while systemic immune responses to it have been associated
with Crohn’s disease. It is not uncommon for studies conducted in different countries, which
inherently involve variations in microbiome profiles, to report on the same bacterial taxa with
differences in terms of changes in abundance for a given condition. Streptococcus serves as an
example, as it has been found to be overabundant in our pediatric IBD patients, consistent
with findings from Kowalska-Duplaga et al. [43], Tang et al. [44], Wang et al. [55], Ijaz et al. [45],
and Lewis et al. [56], while El Mouzan et al. [49] and Assa et al. [57] report an underabundance
in pediatric IBD.

Considering the low biodiversity exhibited by patients in most families when com-
pared to their healthy first-degree relatives, a few things can be deduced. Starting from the
fact that even though the patients live in a microbiota-rich environment, they appear to be
“resistant” to becoming hosts of more bacteria, and bacteria that attempt to colonize them
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are either instantly killed by an overactive immune system or do not find enough space to
thrive. The spread of pathogenic taxa must either create a hostile microenvironment via
metabolism or absorb all the nutrients which are crucial for the survival of the commensal
ones. These hypotheses are in line with our current knowledge of dysbiosis [58,59]. Regard-
ing the three families in which healthy relatives show reduced biodiversity when compared
to patients, there might be a few reasons to explain the phenomenon, like pathogenic bacte-
ria invasion in patients, strong but low diversity colonies in healthy controls which regulate
their immunities, and differences in socioeconomic/dietary/environmental factors when
compared to the other families. The fact that alpha diversity among patients is comparable
in most cases hints at immunity mechanisms targeting taxa of specific functions, which
needs to be further investigated since we were not able to find a specific cause for this when
comparing patient samples according to their metadata.

Clustering microbiome profiles according to their similarities has provided evidence
that in most cases, pediatric patient microflora either resembles that of the mother or differs
significantly from those of all healthy family members. This suggests a potential role for
maternal factors in the establishment and modulation of the microbiome in early life, which
is consistent with the literature and may have implications for understanding the etiology
and progression of IBD. Previous works have shown that the human microbiome is shaped
early in life (first 2–3 years) [60,61] and is modulated by maternal-related factors like mode
of birth [62,63] and breastfeeding [64,65]. In our results, we could not identify these factors
as co-factors of differentiation, but the close resemblance between the patient and maternal
microbiome profiles is always an interesting finding, especially when we expand studies
beyond neonates, infants, and children into adolescence. This is important because even
though the maternal microbiome is essential in early life, adolescents (ages 10–19), due
to school and social lives, often diverge from the pure familial environment, with studies
expanding beyond common pathophysiological changes in known microbiota-associated
disorders like IBD [66,67].

Another consideration for future works is how the non-IBD siblings’ microbiome
might show signs of divergence from the parents’ “healthy plane”, as defined by Jacobs
et al. [16]. For example, in our study, the siblings’ microbiomes are mostly clustered closer
to those of the parents but show, in total, a slight drop in alpha diversity, as shown in
Figure 2B. Additionally, some of the differentially abundant taxa characterizing patients
observed here might also be prominent in those children. For example, since Butyricimonas
and Veillonella appear to be prominent in the patients of most families, along with their
increased abundance noted in the literature, they have the potential to serve as prognos-
tic markers of disease occurrence. In Wang et al. [55], Veillonella not only demonstrates
increased prevalence in patients undergoing anti-TNF treatment, but it also maintains
a notable abundance even after therapy, suggesting resistance to regulation by external
factors. In addition, Veillonella appears to be more abundant in several pediatric Crohn’s
studies, as reported by a recent meta-analysis [42], suggesting a constant factor among
diverse populations. Furthermore, Butyricimonas, with its elevated prevalence, can reveal
immunological dysfunctions and impacts, as highlighted by Chen et al. [68], whose re-
search suggests that adhesive bacteria, such as Butyricimonas found in the terminal ileum
of pediatric patients, contribute to heightened activation of Th17 cells and the secretion of
immunoglobulin A in the gut lumen. These mechanisms can contribute to the inflammatory
processes, and given Butyricimonas’ proximity to the intestinal wall, it represents a promis-
ing candidate for further investigation. Interestingly, butyrate-producing Clostridia, like
Erysipelatoclostridium and Butyricimonas, were found in our study to be enriched in pediatric
IBD patients, but not in other studies. This observation is intriguing, as butyrate production
has been correlated with the mitigation of inflammation [69]. These discrepancies may
be even more pronounced within other families, underscoring the importance of vigilant
monitoring in children who may be susceptible to developing IBD.

As is true for all works based on 16S rRNA amplicon sequencing, this study has the
potential for small sample sizes to affect the accuracy and reliability of the results. This
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is because the technique relies on amplifying and sequencing a specific region of the 16S
rRNA gene, which may not represent the entire microbial community present in a given
sample (in our case the V3/V4 hypervariable regions). Additionally, small sample sizes
can also increase the likelihood of sampling bias, as there may be significant variation in
microbial communities between individual samples [70]. Furthermore, 16S rRNA amplicon
sequencing is limited in its ability to accurately identify certain microbial species and may
provide only a broad taxonomic classification of the microorganisms present. This can limit
the depth of analysis and hinder the ability to detect important microbial interactions [71].
We have tried to alleviate this by utilizing a pipeline with strict taxonomic identification
parameters and cross-checking the results with the literature, but uncertainty still exists
when it comes to species-level analyses. Finally, the use of fecal samples provides more
diluted information about IBD-related dysbiosis when compared to biopsies [72].

By delving into the intrafamilial microbiome, our investigation yields additional
evidence that underscores the complex dynamics involved in the development and progres-
sion of IBD, particularly concerning treatment approaches. The modulation of some of the
taxa highlighted here has been investigated as a potential therapeutic strategy, and our find-
ings may provide more targets. Candidatus Soleaferrea, shown in our study to have reduced
abundance in pediatric patients, has been found to be upregulated in Svolos et al. [73]
after Exclusive Enteral Nutrition (ENT) and a food-based diet that simulates it. ENT is
considered a first-line treatment for CD and its sub-phenotypes [74]. Haemophilus and the
specific species Haemophilus parainfluenzae highlighted in this study are also promising can-
didates for modulation-based therapies since they were also highlighted as some of the taxa
more abundant in first-diagnosis pediatric CD patients by Kansal et al. [75]. Haemophilus
parainfluenzae is an opportunistic pathogen that can also be detected in the oral cavity and
respiratory tract which a recent study [76] has linked to CD progression and severity. In a
recent study by our group [77], we reported on a reverse correlation between Granulicatella
and IFN type II expression levels, which holds promise as a prognostic marker for anti-TNF
treatment. Similarly, modulating this taxon may have the potential to not only influence
the occurrence and outcomes of IBD but also enhance the effectiveness of treatment. There
is no definitive proof that modulating dysregulated bacterial populations can treat IBD
effectively, but symptom alleviation can significantly improve a patient’s life.

However, it is still unclear why only some family members who share genetic and
environmental traits develop IBD. Is it a stroke of luck or a “perfect storm” of aligning
factors that cause the disease? Should we blame the specific taxa found to be differentially
abundant in this work for mediating the inflammatory process, or do genetic traits spark
the onset and the microbiome follows? Further research on this subject remains essential
for collecting additional data and delivering answers.

4. Materials and Methods
4.1. Samples

Nine CD (n = 7) and UC (n = 2) probands younger than the age of 16 were recruited
from the Pediatric Department of “Attikon” General University Hospital (Table 2). All
patients were newly diagnosed and drug-naïve at the time of fecal sample collection. The
diagnosis was based on clinical symptoms, laboratory tests, and histological, radiological,
and endoscopic findings based on the Porto Criteria recommended by The European
Society for Pediatric Gastroenterology Hepatology and Nutrition (ESPGHAN). Family
members of these probands were recruited and none of them had a history of IBD or
other immune- and/or inflammation-related disorders. Fecal samples from all participants
were obtained by Fecal Swab Collection and Preservation System (Norgen BioTek Corp,
Thorold, ON, Canada) according to the manufacturer’s instructions. Fecal calprotectin
was measured by an enzyme-linked immunosorbent assay (MyBioSource, Inc., San Diego,
CA, USA) according to the manufacturer’s instructions. Informed consent was obtained
from the parents, and methods were carried out in accordance with relevant guidelines
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and regulations. The research and all associated experimental protocols were performed in
accordance with institutional approval from the hospital ethics committee.

Table 2. Patient demographic data.

Family
Identifier

Age at
Diagnosis Gender IBD

Phenotype

Fecal
Calprotectin
(µg/fecal gr)

CRP 1

(mg/dL)
ESR 2

(mm/h) PUCAI/PUCDAI 3 Birth Mode Prematurity

1 13 F CD 250 <3 1 25 (Mild) Cesarean Yes

2 12 M CD 530 <3 40 30 (Moderate) Cesarean No

3 14 F UC 600 8 50 20 (Mild) Vaginal No

4 4.5 F CD 95 96 120 >40 (Severe) Vaginal No

5 16 M CD 1660 110 65 >40 (Severe) Vaginal No

6 9 M CD 1200 100 40 >40 (Severe) Cesarean No

7 13 M CD 1500 40 30 37.5 (Moderate) Cesarean Yes

8 16 M CD 1200 20 55 >40 (Severe) Cesarean No

9 13.5 M UC 1270 <3 15 50 (Moderate) Vaginal No

1 CRP: C-reactive protein; 2 ESR: erythrocyte sedimentation rate; 3 PUCAI/PUCDAI: Pediatric Ulcerative Colitis
Activity Index/Pediatric Crohn’s Disease Activity Index.

4.2. DNA Extraction and 16S rRNA Amplicon Sequencing

Total DNA was purified from the fecal samples using the Stool DNA Isolation Kit (Norgen
BioTek Corp, Thorold, ON, Canada) following the manufacturer’s instructions. Sequencing
services were performed by external independent facilities (MR DNA -Molecular Research
LP, Shallowater, TX, USA). Sequencing was performed at MR DNA (www.mrdnalab.com
(accessed on 1 July 2023), Shallowater, TX, USA) on a MiSeq following the manufacturer’s
guidelines. Sequenced reads were quality-controlled, with sequences < 150 bp and containing
ambiguous base calls removed. After dereplication, the unique sequences were denoised
and had chimeras removed based on the standard QIIME2 [78] pipeline using DADA2 [79],
providing a denoised sequence or zOTU. Final zOTUs were taxonomically classified using
BLASTn [80] (99% sequence similarity) against a curated database derived from NCBI. The
final library contained samples with an average of 30,000 aligned reads.

4.3. 16S rRNA Bioinformatics Analysis

Aligned raw read counts, sample metadata, and taxonomy information files were
formatted and used as input to the MicrobiomeAnalyst [81] platform for analysis. The
original total of 1099 zOTUs was filtered to 384 after accounting for low read counts (<20%
prevalence in all samples). Samples were normalized using total sum scaling (TSS) to avoid
isolation/sequencing biases. All samples were included for the IBD versus healthy controls
(HC) comparisons and sub-grouped for the per-family analyses. Alpha diversity analysis
(unfiltered raw counts) was performed using the Shannon index on the zOTU level, beta
diversity was calculated via NMDS and ANOSIM, and univariate differential abundance
calculations were performed on the genera and species levels using DESEQ2 considering
their fold change (FC) and false discovery rate adjusted p-values (p.adjust). Intrafamily
microbiome similarity clustering was performed using Ward’s hierarchical clustering
method. To ensure the reproducibility of results, we include in the supplementary material
the necessary input files for MicrobiomeAnalyst from our data: “Supplementary File S3.txt”,
“Supplementary File S4.txt”, and “Supplementary File S4.txt”; these files contain the raw
counts, metadata, and taxonomic classification of our samples, respectively. Intersections
of microbial taxa between families were created using the multiple-list intersection of the
Molbiotools online platform [82].

www.mrdnalab.com
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