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Abstract: Therapeutic drug monitoring (TDM) is a specialized area of laboratory medicine which
involves the measurement of drug concentrations in biological fluids with the aim of optimizing
efficacy and reducing side effects, possibly modifying the drug dose to keep the plasma concentration
within the therapeutic range. Plasma and/or whole blood, usually obtained by venipuncture, are the
“gold standard” matrices for TDM. Microsampling, commonly used for newborn screening, could
also be a convenient alternative to traditional sampling techniques for pharmacokinetics (PK) studies
and TDM, helping to overcome practical problems and offering less invasive options to patients.
Although technical limitations have hampered the use of microsampling in these fields, innovative
techniques such as 3-D dried blood spheroids, volumetric absorptive microsampling (VAMS), dried
plasma spots (DPS), and various microfluidic devices (MDS) can now offer reliable alternatives
to traditional samples. The application of microsampling in routine clinical pharmacology is also
hampered by the need for instrumentation capable of quantifying analytes in small volumes with
sufficient sensitivity. The combination of microsampling with high-sensitivity analytical techniques,
such as liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), is particularly
effective in ensuring high accuracy and sensitivity from very small sample volumes. This manuscript
provides a critical review of the currently available microsampling devices for both whole blood
and other biological fluids, such as plasma, urine, breast milk, and saliva. The purpose is to provide
useful information in the scientific community to laboratory personnel, clinicians, and researchers
interested in implementing the use of microsampling in their routine clinical practice.

Keywords: microsampling; drug monitoring; narrative review; liquid chromatography tandem mass
spectrometry

1. Introduction

Microsampling has emerged as a promising tool for collecting biological fluid samples
and has proven to be a suitable strategy for the therapeutic drug monitoring (TDM) of
many drugs [1,2]. TDM is a specialized area of laboratory medicine that concerns the
personalization of therapies. In particular, TDM refers to the measurement of drugs
concentrations in biological liquids to optimize their efficacy, possibly modifying the dose
of the drug to keep the plasma concentration within a therapeutic range. This is to reduce
the risk of unwanted or toxic effects and increase the benefits of the drug for a specific
patient [3]. TDM is especially important in special populations, such as pediatric patients,
elderly patients, and patients on polypharmacy, because the pharmacokinetic (PK) profile of
drugs can be altered by many physiological and pathological factors [3,4]. TDM is already
successfully applied in clinical routines for several classes of drugs. For some drugs, TDM
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is not yet an established practice, but the availability of methods for monitoring drug
levels could certainly be a very useful tool for studying possible pharmacokinetic and/or
pharmacodynamic differences in special populations.

Conventional venipuncture is currently the sampling used in clinical practice for
TDM. Typically, large volumes of biological fluid samples (>1 mL) are collected, requiring
multi-step preparation to obtain the cleanest samples for analysis [2]. The collection of
large volumes of blood is not suitable for some clinical settings, such as for pediatric and,
in particular, neonatal patients [5]. Microsampling offers several practical advantages
over traditional samples, such as minimal invasiveness for patients and simplified logis-
tical requirements. Although equivalence with or without correction factors has been
demonstrated in many cases [5–9], it is necessary to validate drug-specific reference/target
ranges for each microsampling device. In fact, because of possible differences in the drug
concentrations among alternative matrices (capillary blood, urine, breast milk, saliva) [10]
and possible interactions of analytes with filtration or adsorption materials, which must
be evaluated during method development [11], the reference/target ranges established
for TDM in plasma cannot be transferred directly to microsamples [12]. Plasma and/or
whole blood are the “gold standard” matrices for TDM, depending on the distribution
characteristics of the drugs, but in some cases, alternative matrices also can be applied
to TDM.

Dried blood spots (DBS), commonly used worldwide for newborn screening, are
obtained by pricking the heel or finger with a lancet and represent a safer and more
comfortable procedure than conventional venipuncture [13]. DBS can also be collected
independently, as in the case of blood glucose self-testing in diabetic patients, and unlike
conventional samples, it can be easily stored and shipped without the need for dry ice [14].
Dried micro samples obtained from biological fluids other than blood, such as dried plasma
spots (DPS) [15], dried urine spots (DUS) [16], dried breast milk spots (DBMS) [17], and
dried saliva spots (DSS) [18], can be useful for pharmacokinetic studies by overcoming
the general requirements of wet samples, such as the need for centrifugation, separation,
aliquots, and storage under freezing conditions.

Currently, the application of microsampling in routine clinical pharmacology is still
limited [19,20], mainly because of the need for instrumentation capable of quantifying
analytes in very small volumes with sufficient sensitivity, such as liquid chromatography
coupled with tandem mass spectrometry (LC-MS/MS), which are found only in specialized
centers. LC-MS/MS instrumentation is sensitive enough to enable microsample drug
assays and has already enabled their application in routine practice [21], for example,
for immunosuppressants [6,20,22–24]. Automated dried spot processing devices directly
coupled to an LC-MS system with integrated direct elution and extraction steps [25,26]
have been successfully applied to the analysis of many drugs, such as antiretrovirals [27],
antimycotics [28,29], and antiepileptics [30]. It has been demonstrated that paper spray
mass spectrometry (PS-MS) [31] allows for the direct determination of drugs, such as
immunosuppressants at part per billion (ppb) levels, from dried spots [22,32].

The use of microsampling, which usually allows low-cost shipping, can facilitate
access to this type of analysis even for small centers that cannot afford the significant costs
of these instruments.

This manuscript offers a concise review of currently available microsampling tech-
niques and highlights the critical issues that can be commonly encountered when using
microsamples from different matrices in pharmacokinetics and TDM.

2. Blood Microsamples

DBS have been used in newborn screening since the sixties [33] and in many other
bioanalytical fields, such as elemental analysis [16,34], nucleic acids research [35], forensic
toxicology [36], proteomics, genomics, and metabolomics [37]. DBS have also been used
for the TDM of several classes of drugs, such as antiepileptics drugs (AEDs) [38–40],
antiretrovirals [41], anticancer drugs [42–44], immunosuppressants [11,45], antibiotics [9],
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antituberculosis [46], and neuroactive drugs [47–50]. Using DBS is a very convenient
option compared with traditional sampling, but drug concentrations in capillary blood may
be slightly different from those measured in venous blood [51]; therefore, drug-specific
reference intervals are needed to implement DPS-based TDM in clinical practice [12].
Generally, in the dry matrix, given the absence of water, drugs are more stable, but the
stability in DBS must be verified for each specific analyte. For example, the stability
of ceftolozane is more limited in DBS than in liquid blood [9]. Different types of filter
paper can show different matrix effects on the analytes [52]. Interestingly, different matrix
effects in the quantification of antipsychotic drugs and their metabolites were observed
when results obtained with various cellulose-based untreated filter papers—such as the
Whatman® 903 Protein Saver Card or the Fast Transient Analysis (FTA®) Drug Metabolism
and Pharmacokinetic (DMPK) type C Card—were compared [53].

The main issue for drug quantification in DBS is the hematocrit (Hct) effect. Hct is the
percentage of red blood cell volume in blood and strongly influences blood viscosity, blood
droplet volume, blood droplet migration on the paper substrate, drying time, homogeneity,
and spot size, affecting the accuracy and precision of drug quantification. Different Hct
values may compromise the reproducibility of the analysis because of the uneven migration
of cells and fluids on the paper structure [54,55]. Many attempts have been made to solve
the Hct issue [56]. Abu-Rabie et al. (2015) showed that the overall bias given by Hct
includes an Hct-based area bias, an Hct-based recovery bias, and an Hct-based matrix
effect bias [57]. One example is whole spot analysis, which could overcome the problem of
uneven blood distribution on the paper substrate, but the exact volume of blood drawn
must be known [58].

The quantification of drugs in microsamples can also be strongly influenced by pre-
analytical variables, such as the type of solvent used for drug extraction [42,44,45,48,59]
or the way the internal standard (IS) is added to the samples [57,60]. Despite some
novel techniques to address the IS having been proposed in the literature, such as the
TouchSpray® [60] or the post-column infusion modality (PCI-IS) [61,62], the IS is usually
pre-diluted into the extraction solvents. Placing the IS on the DBS and drying it before
extraction should be considered the most reliable method to verify drug recovery. Sonica-
tion, heating, and the addition of water before extraction for partial rehydration of samples
can greatly improve extraction efficiency. Interestingly, it has been observed in several
cases that paper substrates can retain proteins, lipids, and phospholipids, providing very
clean extracts from dried microsamples, thus improving the performance of LC-MS/MS in
analyzing the corresponding liquid microsamples [63].

Several methods for TDM of different classes of drugs are reported in the litera-
ture. For example, TDM is used for different AEDs to optimize dosing in individual
patients. DBS dosing appears to be a viable alternative to conventional TDM on plasma.
Pohanka et al. (2014) [40] developed and validated an LC-MS method for the measurement
of valproic acid in dried blood spots. The use of blood samples ranging in size from 20 to
100 µL did not yield significantly different valproic acid concentrations, and the method
proved robust in the 30–60% hematocrit range. A comparison between DBS and plasma was
performed, and plasma concentrations were significantly higher than DBS, emphasizing
the need to create method-specific reference ranges for each analysis. LC-MS/MS methods
for the quantitation in DBS were developed also for topiramate [64], phenobarbital [65,66],
lamotrigine [66,67], rufinamide [68], clobazam [69], clonazepam [69], levetiracetam [66],
and carbamazepine [66,70]. DBS-based methods have also been applied in the TDM of
anticancer drugs. Recently, Poetto et al. (2021) [71] developed and validated a dried blood
spot LC-MS/MS method for the TDM of palbociclib, ribociclib, and letrozole in patients
affected by cancer, and they observed a positive correlation between DBS and plasma con-
centrations for the three drugs. Berm et al. (2015) [48] presented a method for therapeutic
drug monitoring of the tricyclic antidepressants amitriptyline, nortriptyline, imipramine,
clomipramine, and their active metabolites in DBS using LC-MS/MS. The authors observed
that a low hematocrit (≤30%) was associated with a negative bias (≥15%) for all analytes.
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In contrast, punching the blood spot sample from the perimeter instead of the center was
associated with a positive bias. A good correlation was found between the patients’ plasma
and DBS samples for all analytes except clomipramine.

DBS devices have been widely used in the TDM of immunosuppressants.
Veenhof et al. (2023) [72] conducted a pilot proficiency test for the microsampling of im-
munosuppressants (tacrolimus, cyclosporine, everolimus, sirolimus, mycophenolic acid) in-
volving 14 laboratories from seven countries in three rounds of proficiency testing. Immuno-
suppressant microsampling methods showed high interlaboratory variation compared with
the whole blood methods, underscoring the need for harmonization and standardization.
Proficiency testing should be routinely performed for laboratories using immunosuppres-
sant microsampling techniques in patient care. In fact, Veenhof et al. (2019) [73] applied a
DBS assay to measure sirolimus and everolimus in transplant patients. Passing–Bablok
regression showed no significant differences between whole blood and DBS, but the limits
or clinical significance were not reached (77.3% and 61.5%, respectively). In an effort to
reduce the hematocrit effect and volume problem that plague DBS, devices capable of
collecting definite volume samples have been designed [74], such as disposable low-cost
viable capillaries [75] and DBS with metering capillary channels. Alternatives for an Hct-
independent determination of drugs in blood microsamples are the Volumetric Absorptive
Paper Minidiscs (VAPD-mini) [76] and the Hemapen® [77].

A popular technique to control the volume of blood microsamples is volumetric ab-
sorptive microsampling (VAMS), a device consisting of a globular hydrophilic tip mounted
on a plastic tip to collect a fixed volume of sample [78–80]. In 2014, Neoteryx commercial-
ized a microdevice called Mitra®, based on the principle of VAMS [80], which has been
designed to present all the advantages of the DBS technique without the effect of hema-
tocrit, simplifying the workflow for the analysis of whole blood samples [81]. Different
configurations of VAMS device are available, allowing 10, 20, and 30 µL of whole blood to
be collected [80]. A finger or heel prick is made, then the adsorbent sampling tip is placed
in contact with only the surface of the head of the tip in the blood drop [80,82]. The tip is
inserted into the blood drop, allowing adsorption by capillarity. The tip must be held in
contact with the blood drop for approximately 2–3 s to allow complete filling [82]. Contact
times longer than 6 s may alter the volume collected by overfilling the tip. The VAMS
method results were accurate and reproducible, even under home sampling conditions [83].
From the standpoint of home sampling, where collection is carried out without the help
of trained health care personnel, adequate training on how to sample with VAMS is ex-
tremely critical to ensure a good sample quality. An often-adopted solution, which has
proven successful, is to provide training video tutorials and instructions online [80,82,84].
Several studies have demonstrated the low impact of Hct on the analytical performance of
VAMS [85–90].

Again, a comparison of plasma/blood and VAMS methods is needed to apply them
in the clinical setting. For cannabidiol (CBD) and its main metabolites, it has been shown
that concentrations in VAMS devices and plasma are not significantly different [91,92].
Therapeutic drug monitoring of blood levels of cannabinoids is crucial for optimizing
the medical cannabis therapy, and the use of microsampling devices could facilitate the
widespread adoption of this clinical practice, as well as simplify the sampling in patients
who are not compliant with venipuncture. Another technique for collecting blood mi-
crosamples is three-dimensional (3D) dried blood spheroids (3D-DBS), a device based on
hydrophobic papers, in contrast to traditional planar (2D) hydrophilic cellulose-based pa-
pers. Cellulose is functionalized with trichloro(3,3,3-trifluoropropyl)silane. Aqueous blood
samples are deposited on the surface as droplets, leading to the formation of 3D-DBS. The
blood spheroids form a barrier between the analytes and air that protects the analytes from
oxidative degradation and thermal conduction [93]. Paper functionalization has recently
been exploited also for the production of molecularly imprinted-interpenetrating polymer
network (MI-IPN) devices [94].
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3. Plasma Microsamples

Plasma and/or whole blood represent the “gold standard” matrices for TDM [2].
The use of plasma or blood as a matrix depends on the distribution characteristics of the
drugs. DPS is obtained by spotting the plasma obtained after laboratory centrifugation
of very small quantities of blood on classic cellulose paper substrates or on special glass
substrates [95]. DPS presents all logistic and managerial advantages of DBS [8] but is
not affected by the Hct effect [96]. In this case, the disadvantage is the need to perform
a conventional venipuncture, which, therefore, requires qualified healthcare personnel
and a laboratory that processes the whole blood sample by centrifuging it, separating the
plasma, and identifying a known volume of blood on the card. For these reasons, the DPS
is useful when there is a need to send the sample to an external laboratory, for example, in
multi-center studies or in non-standard hospitals, because dry samples are usually more
stable than fresh ones, but it does not avoid the inconvenience caused by venipuncture
and the need for patients to move to a hospital for blood collection [97]. Recently, devices
have been introduced on the market that allow the collection of DPS without the need for
centrifugation. In these devices, whole blood is filtered by the action of capillary forces
through passive microfluidics, and the excess sample is drained to avoid overfilling, thus
allowing a known volume of blood to be collected [98]. Other self-contained microflu-
idic plasma sampling devices consist of two layers of material: an asymmetric polymer
membrane that serves as a filter for red blood cells and a cellulose layer responsible for
absorbing plasma from the first layer [99]. TDM based on DPS is a clinical practice for
some classes of drugs, such as anti-epileptics [7,100], antibiotics [8,101,102], antivirals [5],
antipsychotics [63], antiretrovirals [103,104], and amantadine hydrochloride [105].

In our opinion, these innovative DPS devices offer an attractive alternative to tradi-
tional plasma samples for TDM, and the new devices with filter membranes could be useful
for the development of home sampling strategies.

4. Urine Microsamples

Urine is an excreted biological fluid and requires simple, noninvasive collection be-
cause it does not require skin puncture. Plasma and/or whole blood are the gold standard
matrices for TDM, while urine is widely used in forensic toxicology for the identification
of illicit substances [106]. Urine is not a sample of choice for TDM, but urinary TDM has
applications in some specific contexts, for example, to verify treatment compliance and
therapeutic adherence and to identify cases of abuse [106–109]. TDM in urinary samples
can also be used to study the urinary disposition of drugs with renal toxicity, where drug
penetration might be a predictor of renal damage [110].

Dried urine microsamples (DUS) are easily obtained by spotting a drop of the urine
sample onto a filter paper and then drying it. Although stability must be evaluated analyte
by analyte, as with other microsampling methods, DUSs, being dry, usually offer greater
analyte stability than fresh urine, reducing shipping costs. They have been tested in differ-
ent applications, such as newborn screening [111], clinical diagnosis of diseases such as
metabolic disorders [112], and clinical assessments of urinary hormone disorders [113], and
they can be very useful in the determination of illicit drug substances and their metabo-
lites [114]. In pharmacology, urine is a helpful alternative matrix in special cases, such as
in elderly patients who are taking multiple medications since the presence of metabolites
in the urine depends on metabolic pathways and the patients’ renal function [115,116].
They have been applied to antimicrobials [117], antiparkinsonians [118], antivirals, and
antiretrovirals, in particular to predict tenofovir nephrotoxicity and to tailor the appropriate
dosage of this drug [110]. VAMS spotted with urine have been studied [80] in the field of
the anti-doping analysis of glucocorticoids, such as cortisol in urine samples from athletes.
Three matrices were compared: urine, VAMS spotted with urine, and DUS. For VAMS
spotted with urine, a higher extraction accuracy and yield were found; however, the study
should be repeated by analyzing a greater sample number [80,119].
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5. Breast Milk Microsamples

Breast milk is not a conventional sampling matrix for TDM, but the study of drug
penetration in breast milk is a key aspect in directing breastfeeding mothers toward the
best drug therapy. The availability of analytical methods that allow the assay of drugs
in human breast milk can be very useful for ensuring appropriate dosage of maternal
drugs and reducing the risk of adverse drug reactions in breastfed babies [120–123]. The
possible risk of drug-induced toxicity in breastfed infants can be predicted based on the
milk–plasma ratio [2]. Antiretrovirals [124], antidepressants [125], antihypertensives [126],
antipsychotics, opioids, benzodiazepines, nicotine, caffeine, and alcohol [122] have been
determined in breastfeeding women to evaluate the risk for infants to be exposed to these
therapeutic agents through lactation. Sample collection is noninvasive and simple, but
breast milk is a complex matrix rich in proteins, carbohydrates, and fats, which requires
a relatively complete extraction process to achieve higher recovery analytical results [2].
From the analytical point of view, dried milk breast spots (DBMS) can help overcome
drug extraction issues. DMBS present the same logistic advantages of other dried spot
microsamples. DMBS have been used for studying the complete PK profiles of efavirenz
in human breast milk and for the TDM of other antiretrovirals [127], such as lamivudine,
emtricitabine, tenofovir [17,128], and nevirapine [129]. It has also been used for the quantifi-
cation of the rheumatoid arthritis therapy agent tocilizumab [130] and antidepressants [131].
Muller et al. (2013) [132] studied the concentration of sertraline in breast milk and breastfed
infants by LC-MS/MS analysis. O’Halloran et al. [123] quantified amisulpride in breast
milk by LC-MS/MS and found high concentrations of the drug in breast milk, resulting in
therapeutic levels of this drug in the infant with potential toxic effects.

6. Saliva Microsamples

Saliva contains only the free fraction of drugs, which can infiltrate through salivary
tissues [133,134], so the concentration of drugs in saliva is strongly correlated with the
therapeutically active fraction of the drug [134]. Saliva, or oral fluid, is an emerging
matrix among biological fluids because it has many advantages over traditional venipunc-
ture. Therefore, saliva has been increasingly used for the therapeutic monitoring of several
drugs [133,135], such as codeine phosphate [136], carbamazepine [137–139], phenytoin, phe-
nobarbital [139,140], and primidone [139,140], demonstrating a relationship between drug
concentrations in saliva and plasma [141]. Saliva outperforms traditional plasma/blood
sampling in terms of ease of use for the patient, allowing noninvasive, safe, and painless
sampling that is easily applicable to home self-sampling [141,142]. However, in saliva,
debris and contamination from food intake can affect the concentration of the analytes, and
the nonsterility increases the risk of bacterial degradation of the analytes during long-term
storage, especially in the absence of refrigeration during transport [141]. Dried saliva
samples (DSS) can be a solution to overcome this issue. DSS are obtained by staining
collected saliva on pure cellulose filter paper. The saliva collection paper is allowed to
dry and is then stored at room temperature. In fact, the saliva and target analytes ad-
here to the filter paper, increasing the stability of the saliva sample [141]. It has been
demonstrated that alginate- and chitosan-treated papers further improved the sample
stability for up to 30 days [143]. This approach has proven useful in the assay of the
oral cancer biomarker (matrix metalloproteinase-1) [144] in the diagnosis of congenital cy-
tomegalovirus [145] and for the measurement of antiepileptic [18,133], cannabinoids [146],
and metabolites [103,147,148].

In addition, VAMS devices have been applied to saliva samples [80].
Marasca et al. (2020) [149] used saliva to quantify antidepressants, but VAMS concentra-
tions in saliva were significantly higher than VAMS concentrations in whole blood, and
they found no correlation between blood and saliva levels.
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7. Conclusions

The main limitation of microsampling is the high cost of instrumentation capable of
quantifying analytes in very small volumes with sufficient sensitivity, such as liquid chro-
matography coupled with tandem mass spectrometry (LC-MS/MS), which is found only
in specialized centers. In addition, it is necessary to validate the specific reference/target
intervals for each microsampling device. However, the use of microsampling usually has
the advantage of higher stability of the analytes, to be evaluated on a case-by-case basis,
and, thus, facilitates shipping because of both lower costs and a lower risk of sample
damage. Microsampling can, thus, ensure more equal access to TDM and an optimization
of the therapies. Moreover, the availability of new microsampling devices that allow home
sampling collection—avoiding venipuncture and collecting a known volume of sample
and eliminating the need for patients to move to a hospital for blood collection—could
lead to a reduction in public health system costs and prove to be time-saving for patients.
Table 1 shows a summary of the microsampling techniques described with the relevant
literature references.

Table 1. Summary of microsampling devices in different matrices and relative references.

Matrix Microsampling Devices References

Blood

Dried Blood Spot [11,38–62,64–75]
Volumetric Absorptive Paper Minidiscs (VAPD-mini) [76]

Hemapen® [77]
VAMS [78–80,85–94,96]

Plasma
Dried Plasma Spot [5,7,8,63,71,95–105,117]

Novel membrane devices [98]

Urine
Dried Urine Spot [108–118]

VAMS spotted with urine [80,119]

Breast Milk Dried Breast Milk Spot [16,120–122,124–132]

Saliva
Dried Saliva Spot [18,135,137,138,140,141,143–148]

VAMS spotted with saliva [149]
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