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Abstract: Background: Systematically assessing the causal associations between medications and
neurodegenerative diseases is significant in identifying disease etiology and novel therapies. Here,
we investigated the putative causal associations between 23 existing medication categories and major
neurodegenerative diseases (NDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD),
and amyotrophic lateral sclerosis (ALS). Methods: A two-sample mendelian randomization (MR)
approach was conducted. Estimates were calculated using the inverse-variance weighted (IVW)
method as the main model. A sensitivity analysis and a pleiotropy analysis were performed to
identify potential violations. Results: Genetically predisposition to antihypertensives (OR = 0.809,
95% CI = 0.668–0.981, p = 0.031), thyroid preparations (OR = 0.948, 95% CI = 0.909–0.988, p = 0.011),
and immunosuppressants (OR = 0.879, 95% CI = 0.789–0.979, p = 0.018) was associated with a
decreased risk of AD. Genetic proxies for thyroid preparations (OR = 0.934, 95% CI = 0.884–0.988,
p = 0.017), immunosuppressants (OR = 0.825, 95% CI = 0.699–0.973, p = 0.022), and glucocorticoids
(OR = 0.862, 95% CI = 0.756–0.983, p = 0.027) were causally associated with a decreased risk of
PD. Genetically determined antithrombotic agents (OR = 1.234, 95% CI = 1.042–1.461, p = 0.015),
HMG CoA reductase inhibitors (OR = 1.085, 95% CI = 1.025–1.148, p = 0.005), and salicylic acid
and derivatives (OR = 1.294, 95% CI = 1.078–1.553, p = 0.006) were associated with an increased risk
of ALS. Conclusions: We presented a systematic view concerning the causal associations between
medications and NDs, which will promote the etiology discovery, drug repositioning and patient
management for NDs.

Keywords: neurodegenerative diseases; Alzheimer’s disease (AD); Parkinson’s disease (PD);
amyotrophic lateral sclerosis (ALS); medication use

1. Introduction

Neurodegenerative diseases (NDs), represented by Alzheimer’s disease (AD), Parkin-
son’s disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by a pro-
gressive loss of selectively vulnerable populations of neurons [1]. The World Health
Organization (WHO) predicts that NDs will overtake cancer and become the second-most
prevalent cause of death after cardiovascular diseases in the next 20 years. However, the
etiology of NDs remains largely unknown. The current treatments available only manage
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the symptoms or halt the progression of the disease [2]. Therefore, there is an urgent
and unmet need for the identification of disease mechanisms and new clinical treatments
for NDs.

Identifying the causal associations between existing medications and NDs is conve-
nient and meaningful to probe disease etiology and identify novel therapies [3,4]. Ex-
isting medications target a range of mechanisms, including immune and inflammatory
responses [5], lipid metabolism [6], oxidative stress [7], platelet function [8], and others,
all of which are involved in either neuron survival or degeneration. It was famously
stated by the pharmacologist and Nobel laureate James Black that “the most fruitful basis
for the discovery of a new drug is to start with an old drug” [9]. Drug repurposing is
substantially more cost-effective than designing and optimizing a new drug, since the
safety and tolerability have already been established in clinical practice [3]. However, it is
still quite challenging to systematically analyze the causal effects of thousands of existing
clinical drugs on NDs. Randomized controlled trials (RCTs) or observational studies need
heavy investments in people and money. In addition, RCTs are sometimes unethical, and
observational studies often suffer from confounding or reverse causation [10,11]. Therefore,
in these traditional studies, it is almost impossible to achieve reliable and high-throughput
screening for the causal associations between existing medications and NDs.

During the last decade, significant advances in large-scale genome-wide association
studies (GWASs) and the powerful statistical tool mendelian randomization (MR) have
provided us with the chance to systematically and cost-effectively assess the causal relation-
ship between different phenotypes. GWASs have identified thousands of single nucleotide
polymorphisms (SNPs) associated with major diseases and phenotypes [12]. These SNPs
can be employed as unconfounded proxies (instrumental variables) for exposures by MR
to estimate the causal effect of the exposure on the outcome of interest [13]. MR analysis
relies on three assumptions regarding the genetic variant used as an instrumental variable
(IV). Firstly, the IV is related to the exposure being investigated. Secondly, the IV is not
influenced by confounding variables. Thirdly, the effect of the IV on the outcome is through
the exposure of interest [13,14]. In this framework, MR minimizes the biased results arising
from confounding or reverse causation in observational studies and has analogies with
RCTs because the two alleles of an SNP are randomly segregated in gamete formation [13].
Moreover, MR only uses publicly available GWAS data, providing an obvious advantage
over traditional clinical studies in terms of high throughput.

Therefore, the objective of this study is to provide a comprehensive view of the po-
tential causal associations between existing medications and major neurodegenerative
diseases (AD, PD and ALS) using these systematic medication-use GWAS data and the MR
approach. GWAS data for 23 medication categories based on the UK Biobank have been
obtained, and some have already been used in MR studies to evaluate the effects of opioid
use on major depression [15] and cardiovascular diseases [16], as well as the effects of
immunosuppressants on Parkinson’s disease [17]. Firstly, we will systematically screen the
associations between 23 medication categories and neurodegenerative diseases (NDs) using
medication-use GWAS data. Secondly, we will evaluate the causal link between the primary
diseases that these medications are used for and NDs, before and after removing instrumen-
tal variants associated with medications, in order to clarify the medication-ND relationship.
This study will identify potential disease mechanisms and new treatment opportunities,
while also avoiding side effects in the treatment of neurodegenerative diseases.

2. Materials and Methods

Two-sample MR was performed to systematically explore the causal associations
between 23 medication categories and three major neurodegenerative diseases (AD, PD
and ALS). The two-sample MR approach is a frequently used method in MR studies, where
the exposure and outcome data are derived from separate datasets, usually based on
summary statistics offered by GWAS consortia [14,18].
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2.1. Exposure Data: GWAS Summary Statistics for 23 Medication Categories

For medication-taking traits, the GWAS summary statistics were obtained from Wu
et al.’s study [12]. Briefly, Wu et al. employed self-reported regular medication data
(no medication duration and dosage data) in the UK Biobank (Data Field: 20003) and
classified these medications into 23 categories using the Anatomical Therapeutic Chemical
(ATC) Classification System, a system developed by the WHO that classifies all drugs into
definite groups based on their therapeutic, pharmacological, and chemical properties [19].
Then, they performed 23 medication-use GWASs. The ATC code and corresponding
drug category name are shown in Figure 1. The detailed drug list included in each ATC
code and the particulars (such as case/control number) of 23 medication-use GWASs
can be found in Santos R et al.’s study [19] and Wu et al.’s study [12], respectively. The
23 categories of medications represent common existing drugs in the clinic and link with
specific mechanisms and drug targets, which have important clinical significance [12]. The
medication-use GWAS data were also applied in recent MR studies; for example, evaluating
the effect of opioid use on major depression [15–17].
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Figure 1. The concept and design of this study. Using MR approach to systematically screen the causal
pharmacological effects of 23 categories of medications (exposures) and 3 major neurodegenerative
diseases (outcomes) including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic
lateral sclerosis (ALS).

2.2. Outcome Data: GWAS Summary Statistics for Three Major Neurodegenerative Diseases

We used summary statistics from the publicly available GWAS summary statistics
for AD (21,982 cases and 41,944 controls) [20], PD (33,674 cases and 449,056 controls) [21]
and ALS (20,806 cases and 59,804 controls) [22] of European ancestry (Figure 1). Via the
R package ‘TwoSampleMR’ version 0.5.6 in R software version 4.0.3 (R Foundation for
Statistical Computing, Vienna, Austria), we accessed the GWAS summary statistics for
AD (GWAS ID: ieu-b-2), PD (GWAS ID: ieu-b-7) and ALS (GWAS ID: ebi-a-GCST005647)
through the IEU OpenGWAS database API https://gwas.mrcieu.ac.uk/ (accessed on 23
October 2022).

https://gwas.mrcieu.ac.uk/
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2.3. MR Analysis

We assessed the relationships between 23 medication categories and three major
neurodegenerative diseases (AD, PD and ALS) using a two-sample MR approach, in which
the selections of IVs are based on GWAS summary statistics. Independent SNPs identified
in each GWAS that reached the threshold (p-value < 5 × 10−8 and r2 < 0.001) were selected
as instrumental variants (IVs) for each medication category. SNPs absent in the outcome
data were replaced by proxy SNPs (LD r2 values for proxies at 0.8 and a MAF threshold for
aligning palindromes at 0.3) [23]. The statistical power was calculated using the F-statistic.

We used the inverse variance-weighted (IVW) method as the principal MR analyt-
ical method to provide an overall estimate of the causal effect [24]. Sensitivity analysis,
including weighted median [25] and MR-Egger regression methods [26], was additionally
performed. Pleiotropy was evaluated by the MR-Egger intercept test [26]. If the MR-
Egger intercept test showed pleiotropy (p < 0.05), meaning IV violations, we used the MR
pleiotropy residual sum and outlier (MR-PRESSO) test [27] to identify the outliers driving
the pleiotropy, and then excluded these outliers for performing a corrected MR analysis. To
assess the robustness of the significant results, we also performed leave-one-out analyses
to detect high influence points [28]. The results are expressed as odds ratios (ORs) and
95% confidence intervals (CIs) for per unit increase in log odds of the medication use. A
multiple-testing adjusted p < 0.00072 (0.05 divided by 69 (23 × 3)), known as the Bonferroni
correction, was defined as statistical significance. However, a p value above 0.00072 but be-
low 0.05 was also considered evidence of a potential association. We performed all analyses
using the ‘TwoSampleMR’ package version 0.5.6 in R software version 4.0.3 (R Foundation
for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/).

2.4. Further Analysis for Identified Associations between Medications and NDs

Medications are prescribed when primary diseases exist, so the genetic variants used
as instruments are also associated with primary diseases. It is necessary to interpret whether
the associations between medications and NDs are attributed to the primary diseases. If
we find the potential associations between medications and NDs (p < 0.05), there will
be three relationship possibilities (Figure S1 in Supplementary File S2): (1) the primary
disease is associated with NDs independent of medication; (2) the association between
primary disease is mediated by medication use; and (3) the medication is associated
with NDs independent of primary disease, for example, through side effects. To further
interpret the relationship between primary disease, medications and NDs, we first assess
the associations between primary disease and NDs. The major primary disease that each
medication category is prescribed for has been indicated in the previous work [12]. GWAS
information about primary diseases is shown in Supplementary File S3. If there is no
association between primary disease and NDs, it suggests the possibility that medication
is associated with NDs independent of the primary disease. If the primary disease was
associated with NDs, we compared the associations before and after removing instrumental
variants associated with medications (p-value < 5 × 10−8) to indicate whether medication
use mediates the associations.

3. Results

Using the MR approach, we systematically screened the causal associations between
23 categories of existing medications and the risk of major neurodegenerative diseases,
including AD, PD, and ALS (Figure 1). Because the vasodilators used in cardiac diseases
(C01D) and antidepressants (N06A) only have one SNP achieving the p-value level of
5 × 10−8, the remaining 21 categories of medications were used to perform MR (Figure 2).
All the F-statistics were above 10 (Supplementary File S1), indicating that there was no
obvious weak instrument bias. After screening, we identified that a genetic predisposition
to antihypertensives (C02), thyroid preparations (H03A), and immunosuppressants (L04)
was causally associated with a decreased risk of AD, a predisposition to thyroid prepa-
rations (H03A), immunosuppressants (L04), and glucocorticoids (R03BA) was causally

http://www.R-project.org/
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associated with a lower risk of PD, and a predisposition to antithrombotic agents (B01A),
HMG CoA reductase inhibitors (C10AA), and salicylic acid and derivatives (N02BA) was
causally associated with a higher risk of ALS (Figures 2 and 3). In this way, we presented
the whole picture with regard to the causal association between existing medications and
major neurodegenerative diseases. The details of the analysis will be shown as follows.
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Figure 2. The overview diagram for the relationships between medications and neurodegenerative
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3.1. The Putative Causal Relationship between Medication-Taking Traits and AD

First, we examined the relationship between 21 genetically determined medication-
taking traits and the risk of AD. The number of SNPs (IVs) for each medication and
the IVW results are shown in Figure 4. Initially, IVW suggested four genetically deter-
mined medication-taking traits were associated with AD, including antihypertensives
(nSNP = 2, OR = 0.809, 95% CI = 0.668–0.981, p = 0.031), thyroid preparations (nSNP = 93,
OR = 0.960, 95% CI = 0.924–0.998, p = 0.040), immunosuppressants (nSNP = 4, OR = 0.879,
95% CI = 0.789–0.979, p = 0.018), and HMG CoA reductase inhibitors (nSNP = 65, OR = 1.269,
95% CI = 1.028–1.567, p = 0.027). However, the MR-Egger intercept analysis of thyroid
preparations and HMG CoA reductase inhibitors showed horizontal pleiotropy (thyroid
preparations: intercept, −0.010 ± 0.004, p = 0.019; HMG CoA reductase inhibitors: inter-
cept, −0.043 ± 0.012, p = 0.001). Then, we used the method of MR-PRESSO to identify the
outliers driving the horizontal pleiotropy and excluded these outliers for performing a new
MR analysis. After excluding outliers, we repeated the MR-Egger intercept analysis, and
no horizontal pleiotropy was indicated (thyroid preparations: intercept, −0.008 ± 0.005,
p = 0.134; HMG CoA reductase inhibitors: intercept, −0.009 ± 0.008, p = 0.269). A total of
87 SNPs remained for thyroid preparations, and the IVW analysis showed a more signif-
icant association (OR = 0.948, 95% CI = 0.909–0.988, p = 0.011). In comparison, 65 SNPs
remained for HMG CoA reductase inhibitors, and the IVW analysis showed no association
with AD (p = 0.328). The IVW results were generally consistent with associations from
the weighted median and MR-Egger methods (Figure 3A–C; Supplementary File S1). The
leave-one-out analysis did not identify any single genetic variant with a high influence (Sup-
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plementary File S2). There was no association between the other 18 medication categories
and AD, with p values > 0.05 in all of the analyses (Figure 4). Thus, these data indicated
that genetic predisposition to antihypertensives, thyroid preparations, and immunosup-
pressants was associated with a decreased risk of AD. To further interpret whether the
associations between medications (antihypertensives, thyroid preparations, immunosup-
pressants) and AD are attributed to the primary diseases, we assessed the effects of systolic
blood pressure (SBP), hypothyroidism, and rheumatoid arthritis (RA) on AD, respectively.
As shown in Table 1 and Supplementary File S3, there was no evidence for an association
between genetically estimated SBP or hypothyroidism and AD, which indicates that SBP
and hypothyroidism were not driving the associations between medications and AD. RA
is negatively associated with AD (OR = 0.958, 95% CI = 0.922–0.996, p = 0.032). However,
after removing the IVs associated with immunosuppressants, the association between RA
and AD was absent (OR = 0.968, 95% CI = 0.923–1.015, p = 0.173), which suggests that the
use of immunosuppressants may mediate the association between RA and AD.
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Table 1. IVW results between primary diseases and NDs before and after removing medication use
associated SNPs.

Medication Primary Disease NDs

Associations between Primary Disease
and ND

(before Removing Medication Use
Associated SNPs)

Associations between Primary Disease
and ND

(after Removing Medication Use
Associated SNPs)

p OR before SNPs (N) p OR SNPs (N)

Antihypertensives Systolic blood
pressure (SBP) AD 0.399 0.997

(0.990–1.004) -- -- -- --

Thyroid
preparations Hypothyroidism AD 0.701 1.585 (0.150–

16.706) -- -- -- --

Immunosuppressants Rheumatoid
arthritis (RA) AD 0.032 0.958

(0.922–0.996) 51 0.173 0.968
(0.923–1.015) 48

Thyroid
preparations Hypothyroidism PD 0.172 0.088

(0.003–2.872) -- -- -- --

Immunosuppressants Rheumatoid
arthritis (RA) PD 0.001 0.926

(0.886–0.969) 50 0.071 0.947
(0.893–1.005) 47

Glucocorticoids Asthma PD 0.686 0.981
(0.894–1.077) -- -- -- --

Antithrombotic
agents/Salicylic

acid and
derivatives

Coronary artery
disease (CAD) ALS 0.285 1.034

(0.972–1.100) -- -- -- --

HMG CoA
reductase
inhibitors

Low density
lipoprotein
cholesterol

(LDL-C)

ALS 0.017 1.075
(1.013–1.141) 310 0.432 1.036

(0.949–1.131) 266

3.2. The Putative Causal Relationship between Medication-Taking Traits and PD

Next, the causal relationship between medication-taking traits and PD was also as-
sessed by MR analysis. The number of SNP proxies for each medication and the IVW
results are shown in Figure 5. It was suggested that genetically determined thyroid prepa-
rations (OR = 0.934, 95% CI = 0.884–0.988, p = 0.017), immunosuppressants (OR = 0.825,
95% CI = 0.699–0.973, p = 0.022), and glucocorticoids (OR = 0.862, 95% CI = 0.756–0.983,
p = 0.027) were causally associated with a lower risk of PD. The associations were broadly
consistent with associations from the sensitivity analyses, including weighted median and
MR-Egger methods (Figure 3D–F; Supplementary File S1). The MR-Egger intercept analy-
sis did not indicate horizontal pleiotropy (thyroid preparations: intercept, 0.002 ± 0.006,
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p = 0.758; immunosuppressants: intercept, 0.089 ± 0.032, p = 0.070; glucocorticoids: in-
tercept, 0.045 ± 0.023, p = 0.066). We did not find a single genetic variant that drove the
observed effect in the leave-one-out analysis (Supplementary File S2). The other 18 cate-
gories of medications showed no causal association with PD risk (Figure 5). Our results
identified that a genetic predisposition to thyroid preparations, immunosuppressants, and
glucocorticoids was causally associated with a lower risk of PD development. Then, we
evaluated the effects of hypothyroidism, RA, and asthma on PD, respectively (Table 1;
Supplementary File S3). We found no associations between hypothyroidism or asthma and
PD, indicating that the associations between thyroid preparations/glucocorticoids and PD
were not very likely to be attributed to the primary diseases. At the same time, RA was
negatively associated with PD (OR = 0.926, 95% CI = 0.886–0.969, p = 0.001). However, after
removing the IVs associated with immunosuppressants, the association between RA and
PD was absent (OR = 0.947, 95% CI = 0.893–1.005, p = 0.071), suggesting the possibility that
immunosuppressants mediated the association between RA and PD.
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Figure 5. IVW results between 21 medication-taking traits and Parkinson’s disease (PD). The number
of SNP (nSNP) as instruments, odds ratio (OR), and 95% confidence interval (CI) are shown. Hori-
zontal lines represent 95% CI and the square represents OR. The asterisk represents the presence of
potential associations between medications and Parkinson’s disease.

3.3. The Putative Causal Relationship between Medication-Taking Traits and ALS

Finally, we used the MR approach to identify the causal relationship between 21 cat-
egories of medications and ALS. As shown in Figure 6, three medications were found to
have suggested associations with higher ALS development risk: antithrombotic agents
(OR = 1.234, 95% CI = 1.042–1.461, p = 0.015), HMG CoA reductase inhibitors (OR = 1.085,
95% CI = 1.025–1.148, p = 0.005), and salicylic acid and derivatives (OR = 1.294, 95%
CI = 1.078–1.553, p = 0.006). IVW and other sensitivity analyses were generally consis-
tent (Figure 3G–I; Supplementary File S1). The Egger analysis did not show directional
pleiotropy (antithrombotic agents: intercept, −0.011 ± 0.020, p = 0.597; HMG CoA reduc-
tase inhibitors: intercept, −0.005 ± 0.003, p = 0.166; salicylic acid and derivatives: intercept,
0.009 ± 0.018, p = 0.621). There was no distortion in the leave-one-out plot, meaning that no
single SNP was driving the observed effect (Supplementary File S2). The other 18 categories
of medications showed no causal association with ALS risk (Figure 6). Our findings showed
that antithrombotic agents, HMG CoA reductase inhibitors, salicylic acid and derivatives
were positively causally associated with a higher ALS risk. B01A (antithrombotic agents)
and N02BA (salicylic acid and derivatives) showed a similar pattern in associations with
diseases because the two medication categories both include the original medication aspirin,
which has multiple ATC codes (A01AD05, B01AC06 and N02BA01) [8], and coronary artery
disease (CAD) is the major primary disease for aspirin. Thus, we then explored the causal
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effects of CAD and low density lipoprotein cholesterol (LDL-C) on ALS. In Table 1 and
Supplementary File S3, it is shown that CAD had no causal association with ALS while
LDL-C was positively associated with ALS (OR = 1.075, 95% CI = 1.013–1.141, p = 0.017).
After removing the IVs associated with HMG CoA reductase inhibitors, the association
between LDL-C and ALS was absent (OR = 1.036, 95% CI = 0.949–1.131, p = 0.432). These
data indicated that the associations between B01A / N02BA and ALS were not due to
the primary disease CAD, and the use of HMG CoA reductase inhibitors (statins) may
contribute to the LDL-C-related ALS risk.
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Figure 6. IVW results between 21 medication-taking traits and amyotrophic lateral sclerosis (ALS).
The number of SNP (nSNP) as instruments, odds ratio (OR), and 95% confidence interval (CI) are
shown. Horizontal lines represent 95% CI and the square represents OR. The asterisk represents the
presence of potential associations between medications and ALS.

4. Discussion

Our MR study systematically screened for the causal relationships between existing
medications and major NDs and exhibited a whole picture for these relationships. There
were seven potential categories of medications causally associated with NDs: immunosup-
pressants, glucocorticoids, salicylic acid and derivatives, antithrombotic agents, HMG CoA
reductase inhibitors, antihypertensives, and thyroid preparations. These results are sup-
ported by some of the scattered observational epidemiological literature and animal-based
evidence [17,29–37]. Establishing these relationships not only deepens our understanding
of the nature and mechanisms of neurodegenerative diseases, but also potentially opens
the rapid green way for treatment and prevention.

From the methods aspect, there are already several kinds of genetic proxies used
as IVs in MR to study drug effects. These include genetic proxies for the mechanisms
targeted by these medications (e.g., LDL-lowering variants in the gene encoding HMGCR
for statins), genetic proxies for the expression of specific genes that are drug targets, and
genetic proxies for the response to these medications. However, these proxies are mostly
derived by assessing specific markers in circulating blood rather than the central nervous
system or specific neurons in situ [38–40]. The blood–brain barrier (BBB) tightly controls the
movement of ions, molecules, and cells between the blood and the brain so that the central
nervous system is relatively independent and has different patterns from other peripheral
tissues in metabolism, immunity, etc. The BBB also influences drug delivery to the central
nervous system [41]. Thus, for many drugs or drug targets, such as those used in or being
developed for treating neurological conditions, a circulating biomarker may not represent a
strong proxy for the drug target. Evidence shows that gene expression-based MR estimates
may differ in magnitude and even direction across different tissues [38]. On the other
hand, these proxies predict solely on-target effects of drug use; they do not encapsulate
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off-target consequences of related therapeutic medications. However, the ‘off target’ of
existing medications is usually critical for drug repositioning. Our study employed a
medication-use GWAS to extract IVs, which provides the possibility to evaluate the direct
and total effect of existing medications on NDs (not identification of a single molecular
target) and can screen the medications in categories systematically.

Because the specific category of medication targets a specific mechanism, our findings
indicate several major mechanisms involved in the development of neurodegenerative
diseases. Even though various NDs have the common feature that neurons progressively
degrade, our data also give some clues that the major nature and mechanism of each ND
are different from each other. First, we found that immunosuppressants (targeting immu-
nity), antihypertensives (targeting blood pressure or vascular remodeling), and thyroid
preparations (targeting thyroid function dysregulation) were negatively associated with
AD, indicating that mechanisms involved in AD include immunity, vascular mechanism,
and thyroid function dysregulation; second, our results showed that immunosuppressants,
glucocorticoids (targeting immunity), and thyroid preparations (targeting thyroid function
dysregulation) were negatively associated with PD, suggesting that mechanisms involved
in PD include immunity and thyroid function dysregulation; third, our data showed that
HMG CoA reductase inhibitors (targeting lipid metabolism dysfunction), antithrombotic
agents, and salicylic acid and derivatives (mainly including aspirin and targeting inflam-
mation or platelet function) were positively associated with risk of ALS, meaning that
mechanisms involved in ALS may include lipid metabolism dysfunction, inflammation, or
platelet dysfunction. These findings deepened the understanding of the specific nature of
each ND, which provides the potential of precise targeting for specific ND types. For the
quite confusing area of the NDs, which is full of varying and numerous hypotheses and
theories, these causal associations between existing medications and NDs are worthy of
more attention and a follow-up in the future. In addition to the above positive results, our
work also showed meaningful noncausal associations between NDs and some medications.
These drugs, such as opioids, drugs used in diabetes, were also previously found to be
associated with the risk of neurodegenerative diseases, but it is not certain whether these
associations are causal [42–45]. In our study, there was no association found between these
medications and NDs. Reverse causation or comorbidities might be the main explana-
tion for these associations. Therefore, our findings also helped to clarify and clear up the
noncausal associations between medications and NDs.

Combining our work with previous findings will promote our understanding of the
mechanisms by which medications influence NDs. If medication use is associated with
NDs while the primary disease is not, we consider that the effect of medication on NDs
may be attributed to an ‘off-target’ mechanism that is independent of the primary disease.
For example, in our results, antihypertensives was associated with AD but SBP is not, so it
is reasonable to conclude that antihypertensives can affect AD by some mechanisms (such
as alleviating vascular remodeling or affecting ion channels) other than lowering blood
pressure. Interestingly, a similar conclusion is also derived from previous work [46]. On
the other hand, if primary disease and medication use are both associated with NDs with
similar associations, there is the possibility that the medication prescribed for treating the
primary disease is eventually the mediator to influence NDs rather than the primary disease
itself. For example, our data showed rheumatoid arthritis and immunosuppressants are
both associated with a lower risk of AD and PD; however, when we removed the IVs
of rheumatoid arthritis associated with the use of immunosuppressants, the associations
between rheumatoid arthritis and NDs were absent. Thus, it is possible that immunosup-
pressants contribute to a reduced risk of PD and AD in rheumatoid arthritis, which is also
consistent with recent works [17,47].

Based on the understanding of the ND mechanisms and drug functional mechanisms,
the framework of our MR studies will provide a potentially valuable resource to gener-
ate new leads relevant to optimizing drug repositioning, new drug target identification,
and prediction of unfavorable side effects to promote precise medicine for NDs. (i) Drug
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repositioning. Our work is based on existing drugs in the clinic, some of which have
potentially beneficial effects on specific neurodegenerative diseases. Thus, it will promote
drug repositioning and provide an expressway for drug development because the profiles
(such as safety and pharmacokinetics) of the repurposed drugs are already established.
(ii) Patient management. Our findings will contribute to quantifying the future risk of
medication taking for ND patients. Comorbidity is commonly observed in clinical practice.
Our MR results highlight evidence that some existing medications might increase the risk
of neurodegenerative diseases (risky medical exposures), thereby promoting precision
medicine based on risk prediction and management. (iii) Guiding an aging population.
Aging is a significant risk factor for many neurodegenerative diseases [48], and as individ-
uals age, they may require multiple medications to manage various health conditions. Our
research provides insights into identifying medications that may have a positive impact on
the aging population and potentially modify the course of developing neurodegenerative
diseases. This knowledge can guide healthcare professionals in prescribing appropriate
medications and optimizing treatment strategies for elderly individuals, with the aim of
improving their overall health outcomes and quality of life.

Our work also has limitations. In general, it is important to recognize the limitations
of the MR approach. One of the key assumptions in MR is the validity of IVs. Violations of
this assumption, such as pleiotropy, can introduce bias into the estimates. We acknowledge
this limitation and emphasize the importance of careful selection of IVs and conducting
sensitivity analyses to assess the robustness of the results. However, it is extremely difficult
to completely rule out the horizontal pleiotropy and alternative direct causal pathway in
MR tests. Another challenge in MR is the limited availability of appropriate IVs. It can
be challenging to identify genetic variants that meet very precise criteria for IVs. This
limitation can impact the precision and generalizability of the results. Specific limitations of
our study are as follows: First, limited by the source data, the duration and dosage were not
recorded. Thus, the dose and the duration of drug exposure differ among individuals and
may change dynamically. Consequently, we could not identify SNPs associated with dosage
levels, making accurate measurement of medication exposure very difficult. Second, the
SNP associations were identified in only the European population aged 38–73 years, which
may not be generalizable to other populations. Third, many p-values in our tests were
below 0.05 but unfortunately did not survive in strict Bonferroni correction. However, we
should caution against interpreting study findings solely based on a p-value threshold [49].
A p-value above the Bonferroni correction criteria but below 0.05 was also considered
suggestive evidence for a potential association. Fourth, the medication–mechanism–disease
axis is quite complex. Diseases caused by specific mechanisms will influence the behaviors
of taking medications, and medications targeting specific mechanisms can also alleviate
diseases to change the behaviors of patients. Moreover, the interactions have a spatial–
temporal variation. There is no perfect approach to completely rule out the confounding
caused by the intricate interactions between medications and diseases. Even RCTs cannot
rule out this kind of confounding [50]. Thus, even though our study used genetically
predicted data to reduce much confounding and reverse caution, and there are also many
successful examples in detecting the causal associations between medications and diseases
using medication-use GWAS [15–17,51], we still consider that it is quite difficult to clarify
that the medications are beneficial or harmful only by this single study. It is more rigorous
to combine different levels of evidence reported now or in the future and to consider the
spatial–temporal variation.

5. Conclusions

Through an MR approach, our study systematically screened the potential causal
associations between clinical medications and major NDs, indicating negative causal asso-
ciations between immunosuppressants, antihypertensives, and thyroid preparations and
AD risk, negative causal associations between immunosuppressants, glucocorticoids, and
thyroid preparations and PD risk, and positive causal associations between HMG CoA re-
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ductase inhibitors, antithrombotic agents, and salicylic acid derivatives and ALS risk. This
work provides us with a whole understanding of the relationship between medications and
NDs. In addition to clarifying the nature and mechanisms of neurodegenerative diseases,
this work also helps with drug repositioning and clinical management for ND patients.
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Author Contributions: Conceptualization, D.F., T.H. and W.W.; methodology, W.W., L.Z., W.C., K.X.
and J.H.; software, W.W., L.Z., W.C., K.X. and J.H.; validation, L.Z., W.C., K.X. and J.H.; formal analysis,
W.W., L.Z., W.C., K.X. and J.H.; investigation, W.W.; resources, W.W.; data curation, W.W., L.Z., W.C.,
K.X. and J.H.; writing—original draft preparation, W.W.; writing—review and editing, D.F. and T.H.;
visualization, W.W.; supervision, D.F. and T.H.; project administration, D.F.; funding acquisition, D.F.
and W.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(82101489, 81873784, 82071426), China Postdoctoral Science Foundation (2021M690255), Young
Elite Scientists Sponsorship Program by BAST (BYESS2023317), and Clinical Cohort Construction
Program of Peking University Third Hospital (BYSYDL2019002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Medication-use GWASs are available in Wu et al.’s study [12]. GWASs
for different diseases can be assessed through the IEU OpenGWAS database API (https://gwas.
mrcieu.ac.uk/). These have also been shown in Section 2.

Acknowledgments: We are grateful to the UKB and the researchers making the GWAS summary
data publicly available. We also thank the participants in previous studies. The researchers of the
GWAS have obtained informed consent from the participants.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jucker, M.; Walker, L.C. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat. Neurosci.

2018, 21, 1341–1349. [CrossRef]
2. Gammon, K. Neurodegenerative disease: Brain windfall. Nature 2014, 515, 299–300. [CrossRef]
3. Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals 2018, 11, 44.

[CrossRef] [PubMed]
4. Novac, N. Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci. 2013, 34, 267–272. [CrossRef] [PubMed]
5. Heneka, M.T.; Kummer, M.P.; Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 2014, 14,

463–477. [CrossRef] [PubMed]
6. Yang, D.; Wang, X.; Zhang, L.; Fang, Y.; Zheng, Q.; Liu, X.; Yu, W.; Chen, S.; Ying, J.; Hua, F. Lipid metabolism and storage in

neuroglia: Role in brain development and neurodegenerative diseases. Cell Biosci. 2022, 12, 106. [CrossRef] [PubMed]
7. Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3, 205–214.

[CrossRef]
8. Leiter, O.; Walker, T.L. Platelets in neurodegenerative conditions—Friend or foe? Front. Immunol. 2020, 11, 747. [CrossRef]
9. Chong, C.R.; Sullivan, D.J. New uses for old drugs. Nature 2007, 448, 645–646. [CrossRef]
10. Sanson-Fisher, R.W.; Bonevski, B.; Green, L.W.; D’Este, C. Limitations of the randomized controlled trial in evaluating population-

based health interventions. Am. J. Prev. Med. 2007, 33, 155–161. [CrossRef]
11. Jepsen, P.; Johnsen, S.P.; Gillman, M.; Sørensen, H. Interpretation of observational studies. Heart 2004, 90, 956–960. [CrossRef]
12. Wu, Y.; Byrne, E.M.; Zheng, Z.; Kemper, K.E.; Yengo, L.; Mallett, A.J.; Yang, J.; Visscher, P.M.; Wray, N.R. Genome-wide association

study of medication-use and associated disease in the uk biobank. Nat. Commun. 2019, 10, 1891. [CrossRef] [PubMed]
13. Emdin, C.A.; Khera, A.V.; Kathiresan, S. Mendelian randomization. JAMA 2017, 318, 1925–1926. [CrossRef] [PubMed]
14. Hartwig, F.P.; Davies, N.M.; Hemani, G.; Davey Smith, G. Two-sample mendelian randomization: Avoiding the downsides of a

powerful, widely applicable but potentially fallible technique. Int. J. Epidemiol. 2017, 45, 1717–1726. [CrossRef] [PubMed]
15. Rosoff, D.B.; Smith, G.D.; Lohoff, F.W. Prescription opioid use and risk for major depressive disorder and anxiety and stress-related

disorders: A multivariable mendelian randomization analysis. JAMA Psychiatry 2021, 78, 151–160. [CrossRef] [PubMed]
16. Cai, J.; He, L.; Wang, H.; Rong, X.; Chen, M.; Shen, Q.; Li, X.; Li, M.; Peng, Y. Genetic liability for prescription opioid use and risk

of cardiovascular diseases: A multivariable mendelian randomization study. Addiction 2022, 117, 1382–1391. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/biomedicines11071930/s1
https://www.mdpi.com/article/10.3390/biomedicines11071930/s1
https://gwas.mrcieu.ac.uk/
https://gwas.mrcieu.ac.uk/
https://doi.org/10.1038/s41593-018-0238-6
https://doi.org/10.1038/nj7526-299a
https://doi.org/10.3390/ph11020044
https://www.ncbi.nlm.nih.gov/pubmed/29751602
https://doi.org/10.1016/j.tips.2013.03.004
https://www.ncbi.nlm.nih.gov/pubmed/23582281
https://doi.org/10.1038/nri3705
https://www.ncbi.nlm.nih.gov/pubmed/24962261
https://doi.org/10.1186/s13578-022-00828-0
https://www.ncbi.nlm.nih.gov/pubmed/35831869
https://doi.org/10.1038/nrd1330
https://doi.org/10.3389/fimmu.2020.00747
https://doi.org/10.1038/448645a
https://doi.org/10.1016/j.amepre.2007.04.007
https://doi.org/10.1136/hrt.2003.017269
https://doi.org/10.1038/s41467-019-09572-5
https://www.ncbi.nlm.nih.gov/pubmed/31015401
https://doi.org/10.1001/jama.2017.17219
https://www.ncbi.nlm.nih.gov/pubmed/29164242
https://doi.org/10.1093/ije/dyx028
https://www.ncbi.nlm.nih.gov/pubmed/28338968
https://doi.org/10.1001/jamapsychiatry.2020.3554
https://www.ncbi.nlm.nih.gov/pubmed/33175090
https://doi.org/10.1111/add.15767
https://www.ncbi.nlm.nih.gov/pubmed/34859517


Biomedicines 2023, 11, 1930 13 of 14

17. Guo, X.; Chong, L.; Zhang, X.; Li, R. Immunosuppressants contribute to a reduced risk of parkinson’s disease in rheumatoid
arthritis. Int. J. Epidemiol. 2022, 51, 1328–1338. [CrossRef]

18. Lawlor, D.A. Commentary: Two-sample mendelian randomization: Opportunities and challenges. Int. J. Epidemiol. 2016, 45,
908–915. [CrossRef]

19. Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I. A
comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 2017, 16, 19–34. [CrossRef]

20. Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; Van Der Lee, S.J.; Amlie-Wolf,
A. Genetic meta-analysis of diagnosed alzheimer’s disease identifies new risk loci and implicates aβ, tau, immunity and lipid
processing. Nat. Genet. 2019, 51, 414–430. [CrossRef]

21. Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue,
A. Identification of novel risk loci, causal insights, and heritable risk for parkinson’s disease: A meta-analysis of genome-wide
association studies. Lancet Neurol. 2019, 18, 1091–1102. [CrossRef] [PubMed]

22. Nicolas, A.; Kenna, K.P.; Renton, A.E.; Ticozzi, N.; Faghri, F.; Chia, R.; Dominov, J.A.; Kenna, B.J.; Nalls, M.A.; Keagle, P.; et al.
Genome-wide analyses identify kif5a as a novel als gene. Neuron 2018, 97, 1268–1283.e1266. [CrossRef] [PubMed]

23. Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.;
et al. The mr-base platform supports systematic causal inference across the human phenome. eLife 2018, 7, e34408. [CrossRef]
[PubMed]

24. Burgess, S.; Bowden, J.; Fall, T.; Ingelsson, E.; Thompson, S.G. Sensitivity analyses for robust causal inference from mendelian
randomization analyses with multiple genetic variants. Epidemiology 2017, 28, 30–42. [CrossRef] [PubMed]

25. Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent estimation in mendelian randomization with some invalid
instruments using a weighted median estimator. Genet. Epidemiol. 2016, 40, 304–314. [CrossRef]

26. Burgess, S.; Thompson, S.G. Interpreting findings from mendelian randomization using the mr-egger method. Eur. J. Epidemiol.
2017, 32, 377–389. [CrossRef] [PubMed]

27. Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from
mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [CrossRef]

28. Hemani, G.; Bowden, J.; Davey Smith, G. Evaluating the potential role of pleiotropy in mendelian randomization studies. Hum.
Mol. Genet. 2018, 27, R195–R208. [CrossRef]

29. Khachaturian, A.S.; Zandi, P.P.; Lyketsos, C.G.; Hayden, K.M.; Skoog, I.; Norton, M.C.; Tschanz, J.T.; Mayer, L.S.; Welsh-Bohmer,
K.A.; Breitner, J.C. Antihypertensive medication use and incident alzheimer disease: The cache county study. Arch. Neurol. 2006,
63, 686–692. [CrossRef]

30. Fu, A.L.; Zhou, C.Y.; Chen, X. Thyroid hormone prevents cognitive deficit in a mouse model of alzheimer’s disease. Neuropharma-
cology 2010, 58, 722–729. [CrossRef]

31. Van Osch, L.A.; Hogervorst, E.; Combrinck, M.; Smith, A.D. Low thyroid-stimulating hormone as an independent risk factor for
alzheimer disease. Neurology 2004, 62, 1967–1971. [CrossRef] [PubMed]

32. Meier-Stephenson, F.S.; Meier-Stephenson, V.C.; Carter, M.D.; Meek, A.R.; Wang, Y.; Pan, L.; Chen, Q.; Jacobo, S.; Wu, F.; Lu,
E. Alzheimer’s disease as an autoimmune disorder of innate immunity endogenously modulated by tryptophan metabolites.
Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12283. [CrossRef] [PubMed]

33. Charoenngam, N.; Rittiphairoj, T.; Ponvilawan, B.; Prasongdee, K. Thyroid dysfunction and risk of parkinson’s disease: A
systematic review and meta-analysis. Front. Endocrinol. 2022, 13, 863281. [CrossRef] [PubMed]

34. Chen, S.-F.; Yang, Y.-C.; Hsu, C.-Y.; Shen, Y.-C. Risk of parkinson’s disease in patients with hypothyroidism: A nationwide
population-based cohort study. Parkinsonism Relat. Disord. 2020, 74, 28–32. [CrossRef]

35. Herrero, M.-T.; Estrada, C.; Maatouk, L.; Vyas, S. Inflammation in parkinson’s disease: Role of glucocorticoids. Front. Neuroanat.
2015, 9, 32. [CrossRef]

36. Diekmann, K.; Kuzma-Kozakiewicz, M.; Piotrkiewicz, M.; Gromicho, M.; Grosskreutz, J.; Andersen, P.M.; de Carvalho, M.; Uysal,
H.; Osmanovic, A.; Schreiber-Katz, O. Impact of comorbidities and co-medication on disease onset and progression in a large
german als patient group. J. Neurol. 2020, 267, 2130–2141. [CrossRef]

37. Colman, E.; Szarfman, A.; Wyeth, J.; Mosholder, A.; Jillapalli, D.; Levine, J.; Avigan, M. An evaluation of a data mining signal for
amyotrophic lateral sclerosis and statins detected in fda’s spontaneous adverse event reporting system. Pharmacoepidemiol. Drug
Saf. 2008, 17, 1068–1076. [CrossRef]

38. Schmidt, A.F.; Finan, C.; Gordillo-Marañón, M.; Asselbergs, F.W.; Freitag, D.F.; Patel, R.S.; Tyl, B.; Chopade, S.; Faraway, R.;
Zwierzyna, M. Genetic drug target validation using mendelian randomisation. Nat. Commun. 2020, 11, 3255. [CrossRef]

39. Storm, C.S.; Kia, D.A.; Almramhi, M.M.; Bandres-Ciga, S.; Finan, C.; Hingorani, A.D.; Wood, N.W. Finding genetically-supported
drug targets for parkinson’s disease using mendelian randomization of the druggable genome. Nat. Commun. 2021, 12, 7342.
[CrossRef]

40. Ou, Y.-N.; Yang, Y.-X.; Deng, Y.-T.; Zhang, C.; Hu, H.; Wu, B.-S.; Liu, Y.; Wang, Y.-J.; Zhu, Y.; Suckling, J. Identification of novel
drug targets for alzheimer’s disease by integrating genetics and proteomes from brain and blood. Mol. Psychiatry 2021, 26,
6065–6073. [CrossRef]

41. Daneman, R.; Prat, A. The blood–brain barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [CrossRef] [PubMed]
42. Cai, Z.; Ratka, A. Opioid system and alzheimer’s disease. Neuromol. Med. 2012, 14, 91–111. [CrossRef] [PubMed]

https://doi.org/10.1093/ije/dyac085
https://doi.org/10.1093/ije/dyw127
https://doi.org/10.1038/nrd.2016.230
https://doi.org/10.1038/s41588-019-0358-2
https://doi.org/10.1016/S1474-4422(19)30320-5
https://www.ncbi.nlm.nih.gov/pubmed/31701892
https://doi.org/10.1016/j.neuron.2018.02.027
https://www.ncbi.nlm.nih.gov/pubmed/29566793
https://doi.org/10.7554/eLife.34408
https://www.ncbi.nlm.nih.gov/pubmed/29846171
https://doi.org/10.1097/EDE.0000000000000559
https://www.ncbi.nlm.nih.gov/pubmed/27749700
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1007/s10654-017-0255-x
https://www.ncbi.nlm.nih.gov/pubmed/28527048
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1093/hmg/ddy163
https://doi.org/10.1001/archneur.63.5.noc60013
https://doi.org/10.1016/j.neuropharm.2009.12.020
https://doi.org/10.1212/01.WNL.0000128134.84230.9F
https://www.ncbi.nlm.nih.gov/pubmed/15184598
https://doi.org/10.1002/trc2.12283
https://www.ncbi.nlm.nih.gov/pubmed/35415204
https://doi.org/10.3389/fendo.2022.863281
https://www.ncbi.nlm.nih.gov/pubmed/35600588
https://doi.org/10.1016/j.parkreldis.2020.04.001
https://doi.org/10.3389/fnana.2015.00032
https://doi.org/10.1007/s00415-020-09799-z
https://doi.org/10.1002/pds.1643
https://doi.org/10.1038/s41467-020-16969-0
https://doi.org/10.1038/s41467-021-26280-1
https://doi.org/10.1038/s41380-021-01251-6
https://doi.org/10.1101/cshperspect.a020412
https://www.ncbi.nlm.nih.gov/pubmed/25561720
https://doi.org/10.1007/s12017-012-8180-3
https://www.ncbi.nlm.nih.gov/pubmed/22527793


Biomedicines 2023, 11, 1930 14 of 14

43. D’Ovidio, F.; d’Errico, A.; Farina, E.; Calvo, A.; Costa, G.; Chiò, A. Amyotrophic lateral sclerosis incidence and previous
prescriptions of drugs for the nervous system. Neuroepidemiology 2016, 47, 59–66. [CrossRef] [PubMed]

44. Yarchoan, M.; Arnold, S.E. Repurposing diabetes drugs for brain insulin resistance in alzheimer disease. Diabetes 2014, 63,
2253–2261. [CrossRef]

45. Gebre, A.K.; Altaye, B.M.; Atey, T.M.; Tuem, K.B.; Berhe, D.F. Targeting renin–angiotensin system against alzheimer’s disease.
Front. Pharmacol. 2018, 9, 440. [CrossRef]

46. Walker, V.M.; Kehoe, P.G.; Martin, R.M.; Davies, N.M. Repurposing antihypertensive drugs for the prevention of alzheimer’s
disease: A mendelian randomization study. Int. J. Epidemiol. 2020, 49, 1132–1140. [CrossRef]

47. Bae, S.-C.; Lee, Y. Causal association between rheumatoid arthritis and a decreased risk of alzheimer’s disease: A mendelian
randomization study. Z. Rheumatol. 2019, 78, 359–364. [CrossRef]

48. Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative
disease. Nat. Rev. Neurol. 2019, 15, 565–581. [CrossRef]

49. Amrhein, V.; Greenland, S.; McShane, B. Scientists rise up against statistical significance. Nature 2019, 567, 305–307. [CrossRef]
50. Power, M.C.; Weuve, J.; Sharrett, A.R.; Blacker, D.; Gottesman, R.F. Statins, cognition, and dementia—Systematic review and

methodological commentary. Nat. Rev. Neurol. 2015, 11, 220–229. [CrossRef]
51. Wang, W.; Zhang, L.; Xia, K.; Huang, T.; Fan, D. Mendelian randomization analysis reveals statins potentially increase amyotrophic

lateral sclerosis risk independent of peripheral cholesterol-lowering effects. Biomedicines 2023, 11, 1359. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1159/000448618
https://www.ncbi.nlm.nih.gov/pubmed/27561959
https://doi.org/10.2337/db14-0287
https://doi.org/10.3389/fphar.2018.00440
https://doi.org/10.1093/ije/dyz155
https://doi.org/10.1007/s00393-018-0504-8
https://doi.org/10.1038/s41582-019-0244-7
https://doi.org/10.1038/d41586-019-00857-9
https://doi.org/10.1038/nrneurol.2015.35
https://doi.org/10.3390/biomedicines11051359
https://www.ncbi.nlm.nih.gov/pubmed/37239030

	Introduction 
	Materials and Methods 
	Exposure Data: GWAS Summary Statistics for 23 Medication Categories 
	Outcome Data: GWAS Summary Statistics for Three Major Neurodegenerative Diseases 
	MR Analysis 
	Further Analysis for Identified Associations between Medications and NDs 

	Results 
	The Putative Causal Relationship between Medication-Taking Traits and AD 
	The Putative Causal Relationship between Medication-Taking Traits and PD 
	The Putative Causal Relationship between Medication-Taking Traits and ALS 

	Discussion 
	Conclusions 
	References

