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Abstract: Neovascular age-related macular degeneration (nAMD) with choroidal neovascularization
(CNV) is a leading cause of blindness in the elderly in developed countries. The disease is currently
treated with anti-angiogenic biologics, including aflibercept, against vascular endothelial growth
factor (VEGF) but with limited efficacy, treatment resistance and requirement for frequent intravitreal
injections. Although anti-VEGF gene therapy may provide sustained therapy that obviates multiple
injections, the efficacy and side effects related to VEGF pathway targeting remain, and alternative
strategies to block angiogenesis independently of VEGF are needed. We recently reported that
secretogranin III (Scg3) induces only pathological angiogenesis through VEGF-independent pathways,
and Scg3-neutralizing antibodies selectively inhibit pathological but not physiological angiogenesis
in mouse proliferative retinopathy models. Anti-Scg3 antibodies synergize dose-dependently with
VEGF inhibitors in a CNV model. Here, we report that an adeno-associated virus-8 (AAV8) vector
expressing anti-Scg3 Fab ameliorated CNV with an efficacy similar to that of AAV-aflibercept in a
mouse model. This study is the first to test an anti-angiogenic gene therapy protocol that selectively
targets pathological angiogenesis via a VEGF-independent mechanism. The findings support further
safety/efficacy studies of anti-Scg3 gene therapy as monotherapy or combined with anti-VEGF to
treat nAMD.

Keywords: age-related macular degeneration; choroidal neovascularization; gene therapy; secretogranin
III (Scg3); anti-Scg3 gene therapy; disease-targeted gene therapy; vascular endothelial growth factor
(VEGF); anti-VEGF gene therapy

1. Introduction

Neovascular age-related macular degeneration (nAMD), also known as exudative
or wet AMD, is a leading cause of blindness in the elderly populations of developed
countries, with the incidence currently estimated to be >1.5 million cases in the US [1]. Wet
AMD manifests as choroidal neovascularization (CNV) in the macula and was traditionally
treated with thermal laser or photodynamic therapy but with poor efficacy and potential
side effects [2]. The advent and approval of anti-angiogenic biological drugs against
vascular endothelial growth factor (VEGF), such as ranibizumab and aflibercept, delivered
by intravitreal injections represent a major breakthrough for nAMD therapy but with
limited efficacy. Clinical trials reported visual acuity improvement (>15 letters) only in
14.6–40.3% of patients treated with anti-VEGF vs. 3.8–5.6% in sham controls [3]. The
requirement for frequent intravitreal injections is a major drawback. The half-lives of
intravitreally injected ranibizumab and aflibercept are 9 and 11 days, respectively, so
monthly injections are required to maintain therapeutic efficacy [4,5]. Frequent intravitreal
injections increase the risk of eye complications, including ocular pain, cataract, retinal
and vitreous hemorrhage, retinal detachment, endophthalmitis and elevated intraocular
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pressure [6]. When combined with the physical and psychological stresses associated with
repeated ocular injections, the treatment regimens severely impact patient quality of life.
Real-world visual outcomes after anti-VEGF therapy often fall short of those in published
randomized clinical trials, as a consequence of poor patient compliance, lower injection
rates and undertreatment [7–10].

The possibility for anti-VEGF treatments to be synergized by simultaneously targeting
alternative signaling pathways was explored in trials by combining ranibizumab with Fo-
vista or nesvacumab as the antagonist of platelet-derived growth factor (PDGF) or angiopoi-
etin 2 (Ang2), respectively, but failed to achieve endpoints [11,12]. Although safety/efficacy
limitations and patient tolerance were cited as reasons for the failures, it seems likely
that the common VEGF-dependent signaling pathways of PDGF and Ang2 preclude syn-
ergy with anti-VEGF while retaining the limitations of anti-VEGF monotherapy [13–15].
Faricimab, a bispecific antibody that simultaneously targets VEGF-A and Ang2, delivered
by an intravitreal injection every 12–16 weeks was found to be clinically equivalent to
aflibercept for the treatment of nAMD and approved by the FDA on the basis of “no inferi-
ority” [16,17]. The VEGF pathway remains the exclusive target of most ongoing clinical
trials [18]. Alternative approaches to replace or synergize with anti-VEGF therapeutics are
rarely reported largely because the relevant VEGF-independent regulators of angiogenesis
have not been identified.

Gene therapy protocols to deliver aflibercept and ranibizumab are currently in Phase
1/2 clinical trials [19]. The goal is to circumvent the requirement for repeated injections by
delivering sustained therapy via a single intraocular injection. The strategy is important
but will not address other issues related to limited anti-VEGF efficacy across patient groups.
We recently identified secretogranin III (Scg3) as a unique disease-restricted angiogenic
factor that drives pathological but not physiological angiogenesis via a VEGF-independent
signaling pathway [20]. Scg3-neutralizing antibodies alleviate CNV and dose-dependently
synergize with aflibercept in mouse models [21–23]. Anti-Scg3 therapeutic antibodies
represent potential alternatives or add-ons to anti-VEGF therapy for proliferative ocular
diseases but share the same durability obstacles and requirements for repeated injections.
The benefits of adapting these therapies to gene therapy are clear and uncontroversial.
Here, we investigated the feasibility of anti-Scg3 gene therapy to ameliorate laser-induced
CNV in mice and compared efficacies with anti-VEGF gene therapy.

2. Materials and Methods
2.1. Animals and Materials

C57BL/6J mice (6–8 weeks old, strain # 000664) were purchased from the Jackson Lab-
oratory (Bar Harbor, ME, USA). All animal procedures were approved by the Institutional
Animal Care and Use Committee at Baylor College of Medicine (Protocol # AN-8362). An
anti-Scg3 clone mT4 monoclonal antibody (mAb) was generated by Everglades Biopharma,
LLC (Houston, TX, USA), and it was characterized for Scg3-neutralizing activity, as previ-
ously described [20,22]. AAV-CAG-mCherry was purchased from Charles River (Rockville,
MD, USA).

2.2. Endothelial Cell Proliferation Assay

An endothelial cell proliferation assay was performed to characterize the neutralizing
activity of an anti-Scg3 mAb Fab fragment (2.5 µg/mL) in human umbilical vein endothelial
cells (HUVECs) in the presence or absence of Scg3 (1 µg/mL), as previously described [23].

2.3. Production of Recombinant AAV Vectors

The cDNA coding sequence of anti-Scg3 mouse Fab was amplified using PCR and
cloned into an AAV2-CAG plasmid at EcoRI and XhoI sites (Figure 1A). A furin GT2A
cleavage site was inserted between the heavy and light chains, and a signal peptide of
the human/murine IgG heavy chain was inserted at the N-termini (Figure 1A) [24,25].
The cDNA for aflibercept with a C-terminal FLAG tag and the same N-terminal signal
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peptide was synthesized by Synbio Technologies (Monmouth Junction, NJ, USA) and
cloned into an AAV2-CAG plasmid at EcoRI and XhoI sites (Figure 1A). All plasmids were
verified using DNA sequencing. AAV8 was packaged and purified by SignaGen (Frederick,
MD, USA) using CsCl gradient centrifugation, followed by dialysis against phosphate-
buffered saline (PBS). The viral genome (vg) was titrated via qPCR using a standard curve
and subsequently verified using digital PCR (dPCR) (Applied Biosystems/Thermo Fisher
Absolute Q, Waltham, MA, USA) [26].
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Figure 1. Construction and characterization of AAVs. (A) Design of AAV-anti-Scg3Fab, AAV-
aflibercept and AAV-mCherry. (B) Neutralizing activity of anti-Scg3 mAb to block Scg3-induced
proliferation of HUVECs. n = 3 wells/group. (C) Functional validation of AAV-mediated transgene
expression. HEK293 cells were transduced by indicated AAVs. Conditioned media were analyzed for
binding activity to immobilized Scg3, VEGF or BSA (negative control) using ELISA. n = 3 wells/group.
(D) AAV-mediated FLAG-tagged transgene gene expression in mouse retinas. Indicated AAVs were
intravitreally injected into mice, and retinas were isolated one month after AAV injection and analyzed
using Western blot with anti-FLAG mAb. ± SEM, one-way ANOVA test.

2.4. Characterization of AAV Plasmids and Viral Vectors

Human embryonic kidney 293 cells (HEK293) were seeded on 6-well plates at
2 × 105 cells/well in Dulbecco’s modified Eagle’s minimum essential medium (DMEM)
(Gibco/Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine
serum (FBS) (Gibco), 1x GlutaMAX (Thermo Fisher) and 1% penicillin/streptomycin (Gibco)
and incubated at 37 ◦C overnight in a humidified atmosphere with 5% CO2. The cells were
transduced with AAV-anti-Scg3Fab, AAV-aflibercept or AAV-mCherry at 5 × 106 vg/mL.
The medium was replaced with a serum-free 293SFM II medium (Thermo Fisher) the
following day. Five days post-transduction, the conditioned medium was collected and
concentrated using an Amicon® Ultra-4 Centrifugal Filter Unit (UFC801008, Millipore
Sigma, St. Louis, MO, USA). An enzyme-linked immunosorbent assay (ELISA) was per-
formed with pre-immobilized Scg3 (5 µg/mL, 100 µL/well, Sino Biological, Wayne, PA,
USA), recombinant human VEGF (VEGF, 5 µg/mL, R&D Systems, Minneapolis, MN, USA)
or bovine serum albumin (BSA, Sigma). Bound anti-Scg3 mAb and aflibercept were detected
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with biotin-conjugated anti-FLAG M2 mAb and horseradish peroxidase (HRP)-conjugated
streptavidin (Sigma), followed by a colorimetric assay [27].

2.5. AAV Administration

Mice were anesthetized via an intraperitoneal (i.p.) injection of ketamine (40 mg/kg
body weight, Covetrus North America, Portland, ME) and xylazine (8 mg/kg, Akom, Lake For-
est, IL, USA). AAV-anti-Scg3Fab, AAV-aflibercept or AAV-mCherry (5.0 × 108 vg/1 µL/eye)
was blind-coded and intravitreally injected.

2.6. Laser-Induced Choroidal Neovascularization

Mice were subjected to laser photocoagulation to induce CNV at 1 or 4 months after
the AAV injection by using the following procedures: For pupil dilation, anesthetized
mice received a topical eye drop of 1% tropicamide (Akorn, Lake Forest, IL, USA) and
2.5% phenylephrine (Paragon BiTeck, Portland, ME, USA). A green laser beam (532 nm,
240 mW, 150 ms, 50 µm spot) was applied to the retina around the optic disk (4 spots/retina)
using a Micron IV retinal imaging system (Phoenix Research Labs, Pleasanton, CA, USA).
Gaseous bubbles formed at laser spots indicated the rupture of Bruch’s membrane. Lesions
with retinal hemorrhage on Day 0 and linear or fused lesions on Day 7 were excluded.

2.7. Fluorescein Angiography

Fluorescein angiography was conducted on Day 7 after laser photocoagulation. All
fluorescein angiography images were taken 6 min after an injection of fluorescein sodium
(0.1 mL/mouse, 2.5%, Akorn) in anesthetized mice with standardized instrument settings
using a Spectralis Tracking OCTA system (Heidelberg Engineering, Franklin, MA, USA).
Fluorescein angiography images were analyzed using ImageJ software (NIH). The area
and intensity of the laser spots were normalized to cognate the entire viewing field of the
eye. After fluorescein angiography, the retinal pigment epithelium (RPE)–choroid–sclera
eyecups (RPE eyecups) were isolated from the euthanized mice, fixed, stained with Alexa
Fluor 488-isolectin B4 (AF488-IB4, 10 µg/mL, Thermo Fisher), flat-mounted, and analyzed
using a Keyence BZ-X810 structured illumination microscope (SIM) and Keyence software.

2.8. Immunohistochemistry

The mice with CNV were euthanized with CO2 inhalation after fluorescein angiog-
raphy, and they were immediately perfused intracardially with PBS, followed by 4%
paraformaldehyde (PFA) and eye enucleation. The anterior segments, including the cornea
and lens, were removed to yield RPE eyecups that were embedded in the optimal cutting
temperature (OCT) compound (Tissue-Tek; Miles Scientific, Napierville, IL, USA) and
cryosectioned with a 10 µm thickness. The retinal sections were immunostained with
anti-FLAG mouse M2 mAb (Sigma, #F1804, dilution 1:200), followed by Alexa Fluor 594-
conjugated anti-mouse IgG F(ab’)2 (Cell Signaling, Danvers, MA, USA; #8889S; dilution
1:1000) and Hoechst staining, and analyzed using SIM microscopy.

2.9. Western Blot

Western blots were performed as previously described [20]. Briefly, the total protein
was isolated from the retinas and homogenized in a RIPA buffer (Sigma) supplemented
with a protease inhibitor cocktail (Sigma, Cat. #P8340). The total protein was quantified
using a BCA protein assay Kit (Thermo Fisher), separated by SDS-PAGE (20µg/lane), and
transferred onto nitrocellulose membranes (Millipore). The membranes were probed with
anti-FLAG M2 mAb (1:1000) and a horseradish peroxidase (HRP)-conjugated secondary
antibody (Ab) for chemiluminescence signal detection, followed by stripping and reprobing
with anti-β-actin mAb.



Biomedicines 2023, 11, 1910 5 of 14

2.10. Statistical Analysis

Data are expressed as mean ± SEM. A statistical analysis was performed using a
one-way ANOVA test. p < 0.05 was considered significant.

3. Results
3.1. Construction and In Vitro Characterization of AAVs

We chose anti-Scg3 mAb over the related humanized antibody (hAb) [20,23] for this
project to minimize potential mouse anti-human IgG Ab that may attenuate the efficacy
of anti-Scg3 gene therapy. We constructed a mouse anti-Scg3 mAb Fab fragment in an
AAV2 vector with a CAG promoter [28]. The heavy and light chains contained the same
human/murine IgG heavy chain signal peptide, separated by a furin GT2A cleavage
site (Figure 1A) [24,25]. A FLAG tag was attached to the C-terminus of the light chain.
AAV-aflibercept was constructed in a similar fashion. Anti-Scg3 mAb Fab was verified for
its neutralizing activity to block Scg3-induced endothelial proliferation of HUVECs in a
culture before AAV construction (Figure 1B). After packaging into AAV8, purified AAVs
were used to transduce HEK293 cells. Conditioned media were collected and analyzed
for binding activity to immobilized VEGF or Scg3 using ELISA. The results show that the
HEK293 cells transduced with AAV-anti-Scg3Fab and AAV-aflibercept secreted functionally
active anti-Scg3 Fab and aflibercept with corresponding binding activity to Scg3 and VEGF,
respectively (Figure 1C). The results suggest that the heavy and light chains of anti-Scg3
Fab are appropriately processed by the furin protease cleavage and assembled into a
functionally active Fab fragment. By contrast, a similar construct of anti-Scg3 Fab without
the second signal peptide produced non-functional Fab without Scg3-binding activity.

3.2. Transgene Expression In Vivo

To characterize gene expression in mouse retinas, we intravitreally injected AAV-anti-
Scg3Fab, AAV-aflibercept and AAV-mCherry into mice and analyzed gene expression one
month post-injection. Western blot detected the expressions of the FLAG-tagged anti-
Scg3 Fab light chain and aflibercept at approximately 27 kDa and 67 kDa, respectively,
under reduced and denaturing conditions (Figure 1D). The predicted molecular weight
was 26.7 kDa for anti-Scg3 light chain-FLAG and 51.4 kDa for aflibercept-FLAG without
glycosylation. The size of the anti-Scg3 light chain also confirmed the cleavage by the
furin protease. According to FDA drug information, the aflibercept dimer produced from
CHO cells is 97 kDa (monomer 48.5 kDa) but migrates as 115 kDa, with the additional
15% of the total molecular weight attributed to glycosylation [29]. Therefore, aflibercept
expressed in the mouse retina by AAV-aflibercept was glycosylated with a ~30% increase
in the molecular weight.

To independently validate the transgene expression pattern in the mouse retinas, we
performed immunohistochemistry one month after the AAV injection using anti-FLAG
mAb. The assay detected the expressions of FLAG-tagged anti-Scg3 Fab and aflibercept in
the retinal ganglion cell (RGC) layer, inner plexiform layer (IPL), inner nuclear layer (INL),
outer plexiform layer (OPL), photoreceptor inner segments (PISs) and RPE. A reduced
expression was also detected in the outer nuclear layer (ONL) and photoreceptor outer
segments (POSs) (Figure 2). These expression patterns suggest that the transgenes are
expressed throughout the entire retina. No or a minimal FLAG signal was detected for
AAV-mCherry or retinal sections without the primary Ab, supporting the signal specificity.
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Figure 2. Immunohistochemistry to detect AAV-mediated gene expression in mouse retinas. AAV-
anti-Scg3Fab (A), AAV-aflibercept (B) and AAV-mCherry (C) were intravitreally injected into mice,
and eyes were isolated from euthanized mice 1 month after AAV injection. Immunohistochemistry
was performed using anti-FLAG mAb. Yellow scale bar = 200 µm. GCL, retinal ganglion cell
layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer
nuclear layer; PIS, photoreceptor inner segment; POS, photoreceptor outer segment; RPE, retinal
pigment epithelium.

3.3. Anti-Angiogenic Gene Therapy to Inhibit CNV

To compare efficacies, we intravitreally injected AAV-anti-Scg3Fab, AAV-aflibercept
and AAV-mCherry into mice, followed by CNV induction one month after the AAV in-
jection. We quantified the CNV leakage and related therapeutic efficacy in anesthetized
mice using fluorescein angiography 7 days after CNV induction. The results indicate that
AAV-anti-Scg3Fab significantly ameliorated CNV leakage in terms of the leakage area and
intensity (Figure 3A–C). AAV-aflibercept as a positive control reduced the CNV leakage
area and intensity by the same degree as the vehicle control vector AAV-mCherry.
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Figure 3. Short-term therapeutic efficacy of AAV-anti-Scg3 and AAV-aflibercept in alleviating CNV.
Indicated AAVs (blind-coded) were injected intravitreally into mice. After one month, mice were
treated with laser photocoagulation to induce CNV. (A) Representative images of fluorescein angiog-
raphy performed in anesthetized mice 7 days post-laser. (B) Quantification of CNV leakage area in
(A). (C) Quantification of CNV leakage intensity in (A). n = 27 laser spots in 9 eyes (AAV-mCherry),
28 laser spots/8 eyes (AAV-aflibercept) and 32/10 (AAV-anti-Scg3Fab). (D) Representative images of
eyecups isolated from mice 7 days post-laser and immunostained with Alexa Fluor 488-isolection
B4 (AF488-IB4). (E) Quantification of CNV maximal lesion area in (D). (F) Quantification of CNV
3D volume in (D). n = 29 laser spots/9 eyes (AAV-mCherry), 21/8 (AAV-aflibercept) and 25/10
(AAV-anti-Scg3Fab). ± SEM; one-way ANOVA test. Scale bar = 100 µm.

To quantify CNV lesions using histopathology, we euthanized the mice after fluo-
rescein angiography, and we isolated and stained the RPE–choroid–sclera eyecups with
AF488-IB4 to label CNV vessels. An SIM microscopy analysis confirmed that AAV-anti-
Scg3Fab and AAV-aflibercept significantly reduced CNV lesion size and 3D volume with
similar efficacy (Figure 3D–F).

3.4. Long-Term Efficacy in Alleviating CNV

To investigate whether gene therapy in this model provides long-term therapeutic ben-
efits, we induced CNV in mice 4 months after AAV transduction and analyzed therapeutic
efficacy via fluorescein angiography and immunostaining with AF488-IB4 7 days after the
CNV induction. The results show that both AAV-anti-Scg3Fab and AAV-aflibercept signif-
icantly and similarly reduced CNV lesion size and 3D volume (Figure 4D–F). However,
unlike the 1-month protocol, the CNV leakage size and intensity were not significantly
reduced by either treatment at 4 months (Figure 4A–C). Compared to transgene expression
at one month after the AAV injection, immunohistochemistry revealed that the transgene
expression at 4 months was markedly reduced (Figure 2 vs. Figure 5).
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with laser photocoagulation to induce CNV and analyzed, as described in Figure 3. (A) Representative
images of fluorescein angiography. (B) Quantification of CNV leakage area in (A). (C) Quantification
of CNV leakage intensity in (A). n = 19 laser spots in 6 eyes (AAV-mCherry), 30 laser spots/9 eyes
(AAV-aflibercept) and 26/8 (AAV-anti-Scg3Fab). (D) Representative images of eyecups isolated from
mice 7 days post-laser and immunostained with AF488-IB4. (E) Quantification of CNV maximal
lesion area in (D). (F) Quantification of CNV 3D volume in (D). n = 14/6 (AAV-mCherry), 25/9
(AAV-aflibercept) and 24/8 (AAV-anti-Scg3Fab). ± SEM; one-way ANOVA test. Scale bar = 100 µm.
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Figure 5. Immunohistochemistry to detect long-term AAV-mediated gene expression in mouse
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and eyes were isolated from euthanized mice 4 months after AAV injection. Immunohistochemistry
was performed using anti-FLAG mAb. Yellow arrows indicate FLAG+ transgene signals. Yellow
scale bar = 200 µm.
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4. Discussion

We provide the first evidence that an Scg3 antagonist with a signaling pathway distinct
from that of VEGF reduced CNV lesion size and leakage in a gene therapy protocol that is
quantitatively equivalent to AAV-aflibercept administered according to the same regimen
and gene dosing. Both genes were delivered by AAV8, a serotype appropriate for ocular
indications [25]. The vectors delivered equivalent levels of expression at one month after
intravitreal injections in mice with 5.0 × 108 vg/eye and generated secreted gene products
that displayed the expected selective binding to immobilized VEGF and Scg3 ligands.
Immunohistochemistry revealed common distributions of the respective AAV-aflibercept
and AAV-anti-Scg3Fab gene products in all retinal layers (Figure 2). AAV-anti-Scg3Fab
and AAV-aflibercept reduced the CNV 3D volume and maximal lesion area by the same
degrees, indicating equivalent efficacy at both short and extended time intervals after
AAV transduction. However, protection against CNV leakage was significantly effective
only in the 1-month group and not at 4 months after transduction. We attribute the
diminished efficacy to the relatively low vector dose, resulting in a gradual reduction in
transgene expression over time (Figure 2 vs. Figure 5). The reduced transgene expression
over time may be due to epigenetic regulations after AAV integration. Although the
sustained expression of AAV in ocular tissues is well established [25,30–32], Liu et al.
reported a strict dose-dependent expression and therapeutic efficacy of AAV8 anti-VEGF
Fab at 1 month in a mouse CNV model with a markedly reduced efficacy at doses below
~109 vg/eye [25]. This is also consistent with the high dose of 2 × 1012 vg/eye used to
express AAV-aflibercept in African green monkeys, equivalent to ~2 × 109 vg/eye in mice
assuming a factor of ~660× for primate versus mouse vitreous volume [30–33]. Such
a low-dose instability may account for the variable results seen in some gene therapy
trials. In a Phase I trial of intravitreal AAV2-sFLT01, gene expressions in the aqueous
humor of patients injected with <2 × 1010 vg/eye were below the limits of detection [34].
An insufficient transgene expression of 1 × 1011 vg/eye AAV2 via subretinal delivery
in patients is suspected for the low efficacy and failure of sFLT01 clinical trials [35,36].
The results suggest a narrow window or threshold of the AAV vector dose to achieve
sustained therapeutic gene expression [25]. In future studies, we will characterize the dose–
response curves of AAV-anti-Scg3Fab and AAV-aflibercept in parallel to determine the
dose requirement for persistent anti-Scg3 gene therapy. Additionally, we will investigate
whether AAV2 and AAV2.7m8 further improve therapeutic duration [34,37].

Aflibercept contains the Ig domains of VEGFR1 and VEGFR2 fused to the Fc region
of human IgG and functions as a soluble VEGF decoy receptor that binds and neutralizes
VEGF-A, VEGF-B and placental growth factor (PIGF) [38]. Aflibercept is currently a first-
line therapy for nAMD, macular edema following retinal vein occlusion, DR and diabetic
macular edema [38]. The related and competing first-line VEGF-neutralizing reagents that
are also FDA-approved for the same or similar ocular indications include ranibizumab;
bevacizumab (used off-label for nAMD); brolucizumab; and more recently faricimab, a
bispecific anti-VEGF and anti-Ang2 Ab [39]. To achieve stable efficacy for nAMD, all the
approved drugs of this category require frequent intraocular injections, a requirement that
adversely affects patient quality of life and treatment compliance [9,10]. Multiple studies
have confirmed the requirement for rigid adherence to injection regimens and the loss
or reversal of therapy caused by non-compliance [7,8]. Consequently, intense efforts are
underway to circumvent monthly injections by devising sustained-release technologies
and/or gene therapy that promises persistent therapy via a single intraocular injection [37].
After the failure of early efforts to translate endogenous angiogenesis inhibitors, such as
angiostatin/endostatin and pigment epithelial-derived factor, into gene therapy applica-
tions, the field focused on adapting the current FDA-approved repertoire of VEGF pathway
blockers [40]. After promising preclinical results [37], ADVM-022, an optimized AAV2
vector encoding aflibercept, is currently in a Phase 2 trial to treat nAMD [19,41]. In a second
ongoing Phase I/IIa trial, RGX-314, an AAV8 vector expressing a mAb fragment similar
to ranibizumab, delivered by a subretinal injection is being evaluated in patients with
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nAMD [36]. The safety/efficacy results at 1.5 years reported an improved or stabilized
best-corrected visual acuity (BCVA), a reduced central retinal thickness (CRT) and markedly
decreased requirements for supplemental anti-VEGF injections [42].

The progression of anti-angiogenesis protocols to gene therapy clinical trials promises
to relieve the constraints of frequent intravitreal injections for patients with nAMD but fails
to address the confounding issues of suboptimal therapy and other adverse side effects
associated with current anti-VEGF therapy. Recent studies reported that VEGF inhibitors
are effective in alleviating CNV in young but not aged animal models [43,44], implying that
the promised efficacy of anti-VEGF in young animals may not be translated quantitatively
to aged patients with nAMD. The alternating use and/or combination of these reagents
with inhibitors of VEGF-dependent accessory factors, such as PDGF, Ang2 and semaphorin
6A [45], are unlikely to significantly improve efficacy as next-generation pharmacology or
gene therapy for CNV indications [11,12]. Central to this dilemma is that the independence
of VEGF signaling is a likely prerequisite for synergistic combinations with current anti-
VEGF protocols, and, except for anti-Scg3, no inhibitors of pathological angiogenesis that
work independently of VEGF signaling have been described.

Scg3 was discovered by our group using a novel comparative ligandomics technology
to screen for disease-restricted ligands in mouse models of DR and CNV [20,22]. Scg3 is
a disease-restricted angiogenic factor that selectively binds to diseased but not healthy
vessels. Scg3-neutralizing Abs alleviated CNV, DR and retinopathy of prematurity (ROP)
in mouse models with an efficacy equivalent to that of aflibercept [20–23,46–48]. The
inhibition of angiogenesis by anti-Scg3 Abs in all cases was independent of VEGF, consistent
with separate angiogenic signaling pathways and synergy between anti-Scg3 hAb and
aflibercept [23]. In Scg3, we appear to have uncovered a hitherto invisible but long-sought-
after disease-restricted proangiogenic pathway that operates in parallel but independent of
VEGF in pathological states [20]. Such a property that restricts Scg3 actions to pathological
angiogenesis is consistent with our findings of safety and wide therapeutic windows of
anti-Scg3 vs. anti-VEGF [46,47]. Because, like anti-VEGF biologics, intraocular anti-Scg3
hAb is expected to have a short therapeutic duration, and clinical applications will also
require repeated injections. Therefore, translation from protein pharmacology to gene
therapy is an important next step to relieve these constraints.

Safety concerns have overshadowed the progression of anti-VEGF gene therapy since
its inception. In addition to indiscriminate binding to diseased and healthy vessels, VEGF
possesses neurotrophic and neuroprotective properties that promote neuronal growth and
survival [49–51]. We and others have shown that intravitreal aflibercept induces abnor-
malities in electroretinography (ERG) and retinal structure in animal models [47,48,52].
Similar adverse effects on retinal function and structure were also reported in patients
treated with VEGF inhibitors in some clinical studies [53–56]. Clinical studies also re-
vealed that intravitreal anti-VEGF agents can interfere with the function of the central
nervous system [57–59]. Long-term anti-VEGF therapy for nAMD may increase the risk of
geographic atrophy [60]. A recent study reported trends of b-wave suppression by AAV-
aflibercept in adult non-human primates 19 months after gene therapy [37]. Aged neurons
in patients with AMD may be more susceptible to low-ambience VEGF ligands caused
by anti-VEGF therapy, thereby contributing to a limited improvement in visual acuity [3].
Indeed, the possible neurotoxicity of anti-VEGF was implied in clinical trials of nAMD
and diabetic macular edema (DME), in which high-dose ranibizumab inversely reduced
long-term visual acuity despite improving vascular symptoms [61,62]. It is unclear whether
neurotoxicity is caused by the direct effects of VEGF blockade on neurons or indirectly
through the suppression of healthy vessels. It seems possible that patients with nAMD are
more sensitive to manipulations of VEGF homeostasis due to age and comorbidities. Safety
concerns related to chronic VEGF suppression prompted the testing of multiple strategies to
regulate anti-VEGF gene therapy [63–65]. Because our studies indicate that Scg3 regulates
only pathological angiogenesis, with no effect on healthy vessels or neurons [24,26], such
safety issues may not apply, and long-term constitutive gene therapy with anti-Scg3 hAb is
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expected to be safe. Our findings warrant further investigation to compare the efficacy and
safety of optimized AAV-anti-Scg3 and AAV-anti-VEGF for monotherapy or combination
therapy in large animal models.
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