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Abstract: This study addressed the use of manganese dioxide nanorods/graphene oxide nanocom-
posite (MnO2 NRs/GO) for modifying a glassy carbon electrode (GCE). The modified electrode
(MnO2 NRs/GO/GCE) was used as an electrochemical sensor for the determination of hydro-
quinone (HQ) in water samples. Differential pulse voltammetry (DPV), cyclic voltammetry (CV),
and chronoamperometry were used for more analysis of the HQ electrochemical behavior. Analyses
revealed acceptable electrochemical functions with lower transfer resistance of electrons and greater
conductivity of the MnO2 NRs/GO/GCE. The small peak-to-peak separation is an indication of a
rapid electron transfer reaction. Therefore, this result is probably related to the effect of the MnO2

NRs/GO nanocomposite on the surface of GCE. In the concentration range of 0.5 µM to 300.0 µM
with the detection limit as 0.012 µM, there was linear response between concentration of HQ and the
current. The selectivity of the modified electrode was determined by detecting 50.0 µM of HQ in the
presence of various interferent molecules. At the end, the results implied the acceptable outcome of
the prepared electrode for determining HQ in the water samples.

Keywords: electrochemical sensing; hydroquinone; voltammetry; modified electrode; MnO2

NRs/GO nanocomposite

1. Introduction

The existence of any form of life on earth is dependent on water, which is vital. Water
contamination is the primary cause of the water crisis. Water contamination is primarily
concentrated in areas of industrialization, urbanization, agricultural activities, etc. The level
of water contamination is affected by the abundance of pollutants, their ecological impact,
and the intended use of the water. Water contamination is a significant issue that has
adverse effects on both the ecosystem and human health. Exposure to water contamination
over an extended period is a leading factor in causing various health problems and diseases.
Additionally, it can disrupt ecological environments, including plant and animal life, and
affect food chains. Protecting water systems to maintain public health and detecting
contamination are crucial factors in achieving water security [1,2].

Hydroquinone (HQ) (1,4-dihydroxybenze), as one of the major isomers of
di-hydroxybenzene, has widespread application for preparation of photo-stabilizers, dyes,
cosmetics, plasticizers, drugs, and pesticides. In fact, HQ has an extensive use in producing
food additives, antioxidants, as well as hair dyes. However, since dihydroxybenze isomers
have lower degradability and great toxicity in an ecological environment (according to
the World Health Organization (WHO)), HQ is toxic to several aquatic organisms even at
concentrations below 1 mg L−1 (9.1 µmol L−1) [3]. A main topic, which has been largely
investigated in the environmental pollutants, is how to selectively detect dihydroxyben-
zene [4,5]. Hence, experts in the field have provided several techniques of HQ detection
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such as surface-enhanced Raman spectroscopy [6], spectrophotometry [7], capillary elec-
trophoresis [8], chemiluminescence [9], calorimetric sensor [10], gas chromatography-mass
spectrometry [11], and high-performance liquid chromatography [12]. However, a num-
ber of the mentioned techniques suffer from complex operations, costly equipment, hard
separation procedure, and high toxic organic solvents, but since HQ has an electroactivity
property, electrochemical approaches could be used for its detection [13]. Hence, the devel-
opment of simple and sensitive electrochemical sensors for the determination of HQ has
received considerable attention [14–22].

Electrochemical methods have been increasingly attractive for features such as faster
responses, simplified operations, higher sensitivity, good selectivity, insignificant content
of the samples, and inexpensiveness [23–30]. Nonetheless, direct oxidation of HQ on
the bare electrode adsorbs the oxidized products over the electrodes’ surfaces, leading
to the unstable response of the electrode and electrode fouling [31]. Additionally, one of
the challenges resulting from overlapping their oxidation–reduction peak has been the
direct detection of the dihydroxybenze isomers on the conventional electrodes such as
GCEs [32,33].

It is well known that electrochemical performances can be tuned by tailoring the
material compositions and surface properties of modified electrodes [34–36]. Moreover, an-
alytical response due to the use of the modifiers is generally greater and thus the sensitivity
of the electrode would largely improve. Hence, the well-organized modified electrodes
must be immediately developed for detecting the analytes [37–39].

In recent years, the use of nanomaterials in various fields has progressed consider-
ably [40–48]. On the one hand, scholars have utilized nanostructures as the modification
materials because they have satisfactory features, including larger surface areas, and smaller
sizes [49–52]. The design and fabrication of the nanomaterial-based electrochemical sensors
by amplifying the signal and reducing overvoltage play an important role in electroanalysis.
Graphene oxide (GO), one of the single layers of graphite oxide, was initially created by the
graphite treatment with robust aqueous oxidizing agents. Studies have shown very good
mechanical strength, higher mobility of the charge carriers, greater thermal conductivity,
faster electron transport, and higher surface areas of the two-dimensional matter. These
indicate its satisfactory features for possible uses in numerous areas [53–55]. Furthermore, it
is possible to adjust graphene’s surface properties using chemical modifications, resulting in
simple application in composite materials. Some studies have also referred to the synergetic
effect of graphene and inorganic particles, resulting in the very good features and greater
performance of the graphene-supported hybrids [56–58]. Manganese dioxide (MnO2), as
one of the major functional materials, displays a higher surface area, inexpensiveness,
stronger catalytic activities, as well as acceptable biocompatibility [59–61]. It should be
noted that integrating the MnO2 nanoparticles (NPs) into the GO sheets potentially would
increase the specific surface area and accelerate the transfer of electrons, leading to multiple
channels and higher conductivity to diffuse the electrolyte ions [62,63]. So far, in some
previous works, a GO/MnO2 nanocomposite with various morphologies of MnO2 has
been used as an electrode material in the design and fabrication of electrochemical sensors
for the determination of various analytes, and they showed good performance [22,64–66].

Herein, we developed the MnO2 NRs/GO/GCE for the sensitive detection of HQ in
water samples. The results demonstrated that MnO2 NRs and GO had a good synergistic
effect on the electrochemical oxidation of HQ. The other advantages of the sensor are
excellent reproducibility, repeatability, stability, and high selectivity.

2. Materials and Methods
2.1. Instrumentation and Materials

According to the research design, we employed a General-Purpose Electrochemical
System (GPES) 4.9 and Potentiostat/Galvanostat (Autolab PGSTAT302N, made in The
Netherlands) for performing the electrochemical experiments.
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All the electrochemical studies were performed at 25 ± 1 ◦C. A three electrode assem-
bly was employed in the experiment in a 15 mL borosilicate glass cell containing GCE as a
working electrode, which was bought from Azar electrode Co. (made in Urmia, Iran), a
Pt wire as the counter electrode, and an Ag/AgCl (3 M KCl) reference electrode. The pH
was also measured and buffer solution was prepared using a digital pH meter (Metrohm
AG, Herisau, Switzerland, pH Lab 713). Deionized water used in each experiment was also
taken from a Millipore Direct-Q® 8 UV (ultra-violet) (Millipore, Germany). The morpholog-
ical and elemental analyses of the prepared materials were carried out by a MIRA3 SEM
(Tescan, Brno, Czech Republic).

It should be noted that the precursors for synthesizing the MnO2 NRs/GO nanocom-
posite, HQ, as well as other chemicals were also of analytical grade. It is noted that they
were received from Merck and Sigma-Aldrich chemical companies. Furthermore, phos-
phate buffer solutions (0.1 M, PBS) of various levels of pH were provided via mixing the
suitable contents of sodium hydroxide (NaOH) solution and phosphoric acid (H3PO4), also
known as orthophosphoric acid under the pH-meter.

2.2. Synthesis of MnO2 NRs/GO Nanocomposite

For preparation of MnO2 NRs/GO nanocomposite, 20 mg GO powder was dispersed
in deionized water (30 mL) under ultrasonic condition to form a homogeneous suspension.
Afterwards, 0.316 gr of KMnO4 was poured into the GO suspension and 3.0 M HCl with
strong stirring and continued stirring for half an hour. Next, this mixture was transported
into the Teflon-lined autoclave at 160 ◦C for 6 h. Then, cooling was performed for collecting
a black product through centrifugation and washed with ethanol and deionized water
many times. After 12 h, an oven was used to dry MnO2 NRs/GO at 60 ◦C.

2.3. Modified Electrode Preparation

For the modification of GCE by using MnO2 NRs/GO nanocomposite, the drop-casting
technique was employed. Then, 1 mg of the synthesized MnO2 NRs/GO was distributed
in 1 mL of the deionized water in ultrasonication conditions for 30 min and the cast was
provided by putting the 4 µL water/MnO2 NRs/GO nanocomposite suspensions on GCE
and drying at ambient temperature.

The surface areas of the MnO2 NRs/GO/GCE and the bare electrode were obtained by
CV using 1.0 mM K3Fe(CN)6 at several scan rates. By using the Randles–Sevcik equation,
the value of the surface area for MnO2 NRs/GO/GCE (0.119 cm2) was 3.8 times greater
than bare GCE.

2.4. Preparation of Water Specimens

River water and tap water were also sampled, filtrated with a membrane filter, and
poured into 0.1 M PBS (pH = 7.0). At last, the HQ contents were measured in the water
specimens using the as-developed protocol according to standard addition method.

3. Results and Discussion
3.1. Characterization of MnO2 NRs/GO Nanocomposite by Field Emission Scanning Electron
Microscopy (FE-SEM)

FE-SEM analyses were conducted for studying the morphology and structural proper-
ties of the GO and MnO2 NRs/GO nanocomposite (Figure 1). The FE-SEM image of GO
clearly shows that GO has a sheet structure (Figure 1a). In addition, the FE-SEM image of
the nanocomposite (Figure 1b) represented the distribution and deposition of the MnO2
rod-shaped nanostructures on the GO sheets.
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Figure 1. FE-SEM image of GO (a) and MnO2 NRs/GO nanocomposite (b).

3.2. Electrochemical Behaviors of HQ on the MnO2 NRs/GO/GCE

Studies revealed that electrochemical behaviors of HQ on the modified electrodes
were followed by exchanges of protons. Therefore, the DPV technique was used for
determining the effects of pH on the electrochemical response of MnO2 NRs/GO/GCE for
HQ determination in various pHs of the PBS in ranges between 2.0 and 9.0, and concluded
that a neutral medium would be more suitable to detect HQ electrochemically (Figure 2).
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Figure 2. Plot of the oxidation peak current of 200.0 µM HQ as a function of pH solution on MnO2

NRs/GO/GCE in 0.1 M PBS at different pH value (2.0–9.0).

Figure 3 presents the typical cyclic voltametric response of different electrodes in 0.1 M
PBS (pH = 7.0) in the absence and presence of 200.0 µM HQ. According to Curve a, no peak
was observed on the surface of modified electrode in the absence of HQ.
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Figure 3. CVs of the (a) MnO2 NRs/GO/GCE in 0.1 M PBS (pH = 7.0) in the absence of HQ),
(b–e) bare GCE, MnO2 NRs/GCE, GO/GCE and MnO2 NRs/GO/GCE in 0.1 M PBS (pH = 7.0) with
200.0 µM HQ. The scan rate was equal to 50 mV s−1.

The results of electrochemical responses of 200.0 µM HQ in 0.1 M PBS (pH = 7.0) at the
surface of bare GCE (b), MnO2 NRs/GCE (c), GO/GCE (d), and MnO2 NRs/GO/GCE (e)
are shown in Table 1. Analysis indicated an enhancement in the cathodic and anodic peak
currents by modifying the electrode surface and decrease of over potential. According to
the results, MnO2 NRs/GO/GCE developed the greatest cathodic and anodic peak currents,
demonstrating the maximum activities of the electrode surface for HQ redox reaction.

Table 1. Comparison the electrochemical responses of 200.0 µM HQ in 0.1 M PBS (pH = 7.0) at the
surface of different electrodes.

Electrode Anodic Peak
Current (µA)

Anodic Peak
Potential (mV)

Cathodic Peak
Current (µA)

Cathodic Peak
Potential (mV)

Bare GCE 5.4 290 −4.0 −140
MnO2

NRs/GCE 8.5 240 −6.5 −130

GO/GCE 11.7 215 −9.9 −115
MnO2

NRs/GO/GCE 15.0 200 −13.4 −100

3.3. Scan Rate Exploration

For studying the mechanisms required for the electrocatalytic redox reaction, the
effects of the scanning rate (υ) on the reaction of 120.0 µM HQ on MnO2 NRs/GO/GCE
ranged between 5 and 400 mVs−1. Considering Figure 4, as the scan rate enhanced, a linear
increase in the cathodic and anodic peak currents (Ipc, Ipa) was observed. The inset of
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Figure 4 depicts the plots of the redox peak currents as a function of the square root of the
scan rate (υ1/2) for HQ. The figure represents a linear increase in the redox peak currents
with the square root of the scanning rates for different scan rates. Ultimately, analyses
indicated the control of the electrode process through diffusion.
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Figure 4. CVs of 120.0 µM HQ on MnO2 NRs/GO/GCE in 0.1 M PBS (pH = 7.0) at the various
scanning rates (ν); (Curves a–n: (a) 5 mV/s, (b) 10 mV/s, (c) 20 mV/s, (d) 30 mV/s, (e) 40 mV/s,
(f) 50 mV/s, (g) 60 mV/s, (h) 70 mV/s, (i) 80 mV/s, (j) 90 mV/s, (k) 100 mV/s, (l) 200 mV/s, (m)
300 mV/s, and (n) 400 mV/s. Inset: The plot of Ipa and Ipc vs. the square root of the scanning
rate (υ1/2).

3.4. Chronoamperometric Determinations

In this step, chronoamperometry was employed for HQ on the MnO2 NRs/GO/GCE
surface (Figure 5) and the potential of the working electrode was set at 0.25 V for chronoam-
perometric measurements of various concentrations of HQ on the modified electrode
surface. Then, through chronoamperometry, the diffusion coefficient (D) of HQ was speci-
fied in the aqueous solution by the Cottrell equation:

I = nFACbD1/2π−1/2t−1/2

where C represents the known concentration, D stands for the apparent diffusion coefficient,
and A refers to the electrode area. Experimental plots of I vs. t −1/2 were also utilized for
distinct concentrations of HQ (see Figure 5A) and slopes were drawn of the final straight
lines versus the HQ concentration (Figure 5B). Finally, D was calculated according to the
slope of the resulting plots with the Cottrell equation (8.9 × 10−6 cm2/s).
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in 0.1 M PBS (pH = 7.0) in ranges between 0.1 and 2.0 mM (Curves a–d: (a) 0.1 mM, (b) 0.5 mM,
(c) 1.5 mM, and (d) 2.0 mM). Insets: I-plots vs. t−1/2 for chronoamperograms a–d (A) and the slope
from the straight lines vs. the concentration of HQ (B).

3.5. Calibration Plot

Differential pulse voltammetry (DPV) in the optimum experimental conditions was
employed to quantitatively analyze the concentration of HQ in the PBS (0.1 M, pH = 7.0)
on MnO2 NRs/GO/GCE. Figure 6 depicts the voltammograms for distinct concentrations
of HQ. Considering the figure, as the HQ concentration enhanced, an increase in the peak
currents was observed. Furthermore, the peak current linearly was related to the concen-
tration of HQ in ranges between 0.5 and 300.0 µM (see Figure 6 (Inset)). For calibration
curve of the modified electrode with an acceptable determination coefficient of 0.9996 and
the lowest limit of detection of 0.012 µM, see the inset of Figure 6. The comparison of
MnO2 NRs/GO/GCE sensor with other sensors for the determination of HQ is listed in
Table 2. It can be seen that the MnO2 NRs/GO/GCE offers a proper linear range and a
lower detection limit than some modified electrodes. Hence, our proposed method gives a
straight and faster means of HQ detection in the samples.
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Figure 6. DPVs for diverse concentrations of HQ on MnO2 NRs/GO/GCE in 0.1 M PBS (pH = 7.0) in
ranges from 0.5 to 300.0 µM (Curves a–n: (a) 0.5 µM, (b) 5.0 µM, (c) 10.0 µM, (d) 20.0 µM, (e) 30.0 µM,
(f) 40.0 µM, (g) 50.0 µM, (h) 60.0 µM, (i) 70.0 µM, (j) 80.0 µM, (k) 90.0 µM, (l) 100.0 µM, (m) 200.0 µM,
and (n) 300.0 µM). Inset: the related linear calibration curve of the peak current vs. concentration
of HQ.

3.6. Interference Studies

As a general principle, the relative error in the measurement is controlled at approxi-
mately ±5% and is considered to have no interference. To evaluate the selectivity of the
fabricated MnO2 NRs/GO/GCE sensor, the influence of organic molecules and several
common ions were assayed for 50.0 µM HQ. The results suggested that 120-fold of Pb2+,
NH4

+, Mg2+, Ca2+, NO3
−, Na+, Cl−, K+, Al3+, and Fe3+ ions, 50-fold of citric acid, vitamin

B12, CH3COOH and 5-fold excess of uric acid did not interfere with the determination of
HQ (the relative errors were within ±5%). However, catechol, dopamine, and ascorbic acid
in equal molar concentrations showed interference.
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Table 2. Comparison the sensing performances toward the detection of HQ between the existing
electrochemical sensors and the proposed MnO2 NRs/GO/GCE sensor.

Electrochemical Sensor Analytical Methods Dynamic Linear
Range Limit of Detection Ref.

Zinc @ zinc oxide core-shell/glassy
carbon electrode Cyclic voltammetry 10.0 to 90.0 µM 0.10443 µM [14]

Glassy carbon electrode modified with
multiwall carbon nanotubes

Differential pulse
voltammetry

1.0 × 10−6 M to
1.0 × 10−4 M 7.5 × 10−7 M [15]

Reduced graphene oxide cross-linked
L-cysteine/glassy carbon electrode

Differential pulse
voltammetry 2.0 to 160.0 µM 1.5 µM [16]

Au@Pd nanocomposites/glassy
carbon electrode

Differential pulse
voltammetry 4.0 to 5000.0 µM 0.63 µM [17]

Poly-amidosulfonic acid and
multi-wall carbon nanotubes

composite electropolymerization on
glassy carbon electrode

Differential pulse
voltammetry

6.0 × 10−6 to
4.0 × 10−4 M 1.0 × 10−6 M [18]

Nanodiamond/glassy carbon
electrode

Differential pulse
voltammetry 1.0 to 78.0 µM 0.19 µM [19]

CuS nanocrystals/chitosan/glassy
carbon electrode Cyclic voltammetry 4.5 µM to 4.5 mM 1.5 µM [20]

Electrodeposition of reduced
graphene oxide on glassy carbon

electrode

Differential pulse
voltammetry 6.0 to 200.0 µM 0.2 µM [21]

GO–mesoporous MnO2
nanocomposite/glassy carbon

electrode

Differential pulse
voltammetry 0.01 to 0.7 µM 7.0 nM [22]

MnO2 NRs/GO/GCE Differential pulse
voltammetry 0.5 to 300.0 µM 0.012 µM This Work

3.7. Stability, Repeatability, and Reproducibility Studies

In order to determine the stability of the MnO2 NRs/GO/GCE, its electrocatalytic
response to 50.0 µM HQ in 0.1 M PBS was monitored every day (1 to 14 day intervals).
The electrode presented consistent voltametric responses to HQ during the 14-day storage
period. About 96.1% of initial response current was maintained after 14 days of its consecu-
tive use and this result denoted the admissible stability of the proposed modified electrode
(MnO2 NRs/GO/GCE).

Repeatability and reproducibility of the proposed MnO2 NRs/GO-based sensor have
been evaluated using voltametric studies in 0.1 M PBS (pH = 7.0) containing 50.0 µM
HQ. The MnO2 NRs/GO/GCE sensor presented appreciable repeatability with relative
standard deviation (R.S.D) of 4.9% for 6 repetitive measurements performed using an
individua electrode.

To check the reproducibility, the five MnO2 NRs/GO/GCE were applied in the de-
termination of HQ. Experiments with 3.3% (%RSD) for 50 µM HQ in 0.1 M PBS (pH = 7.0)
were done, which showed the acceptable reproducibility of the fabricated sensor for deter-
mine HQ.

3.8. Application of the MnO2 NRs/GO/GCE Sensor for the Determination of HQ in Real Samples
(River Water and Tap Water)

The capability of the electrocatalytic oxidation of HQ in the real samples was studied
by voltammetry in the water samples (river water and tap water). Table 3 reports the results.
As seen, the method recoveries ranged between 97.3 and 101.4%, reflecting the capability
of MnO2 NRs/GO/GCE for voltametric detection of HQ with acceptable reproducibility.
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Table 3. HQ detection in the real samples with the MnO2 NRs/GO/GCE (concentration in
µM (n = 5)).

Sample Spiked Found Recovery (%) R.S.D. (%)

River water
0 - - -

5.0 4.9 98.0 3.5
7.0 7.1 101.4 1.9

Tap
Water

0 - - -
5.5 5.7 103.6 2.8
7.5 7.3 97.3 2.1

4. Conclusions

In this study, a sensitive electrochemical sensor was made based on the MnO2
NRs/GO/GCE to detect HQ. It was produced through a simple drop-casting of the MnO2
NRs/GO nanocomposite dispersion over the GCE surface. As the synergistic effects of GO
and MnO2 NRs were applied, HQ’s redox peak currents largely enhanced in comparison
to the bare GCE. According to the findings, MnO2 NRs/GO/GCE had very good sensing
functions to determine HQ, with a linear range (0.5 µM–300.0 µM) and lower LOD of
0.012 µM. Finally, the MnO2 NRs/GO/GCE could be satisfactorily utilized for HQ detec-
tion in the real samples. The other advantages of the sensors are excellent reproducibility,
repeatability, stability, and high selectivity.
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