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Abstract: Objective: The RNA-binding protein RBM10 can regulate apoptosis during the proliferation
and migration of pancreatic cancer, endometrial cancer, and osteosarcoma cells; however, the molecu-
lar mechanism underlying lung adenocarcinoma is rarely reported. Recent studies have detected
multiple truncated and missense mutations in RBM10 in lung adenocarcinoma, but the role of RBM10
in lung adenocarcinoma is unclear. This study mainly explored the immune regulation mechanism
of RBM10 in the development of lung adenocarcinoma and its influence on sensitivity to targeted
therapy drugs. Methods: The transcriptome data of CGAP were used to analyze the RNA-seq data
of lung adenocarcinoma patients from different subgroups by using the CIBERSORT algorithm to
infer the relative proportion of various immune infiltrating cells, and Spearman correlation analysis
was performed to determine the gene expression and immune cell content. In addition, this study
utilized drug trial data from the GDSC database. The IC50 estimates for each specific targeted therapy
were obtained by using a regression method, and the regression and prediction accuracy were tested
via ten cross-validations with the GDSC training set. An immunohistochemical test was performed
on the samples of 20 patients with lung adenocarcinoma in the subcomponent analysis of immune
cells, and the protein expression of RBM10 in lung adenocarcinoma tissues was verified by cellular
immunofluorescence assays. Nucleic acids were extracted at low temperatures, and qRT-PCR was
used to verify the expression levels of the mRNA of RBM10 in lung adenocarcinoma tissues and
normal tissues (p < 0.05). Results: After screening and inclusion using a machine language, the
results showed that RBM10 was significantly highly expressed in the lung adenocarcinoma tissues.
The related signaling pathways were mainly concentrated in ncRNA processing, rRNA metabolic
processes, ribosome biogenesis, and the regulation of translation. The qRT-PCR for 20 lung adenocar-
cinoma tissues showed that the expression of RBM10 in these tissues was significantly different from
that in normal tissues (p = 0.0255). Immunohistochemistry analysis and cell immunofluorescence
staining also confirmed that RBM10 was involved in the immune regulation of lung adenocarcinoma
tissues, and the number of immune cell aggregations was significantly higher than that of the control
group. RBM10 regulates B cell memory-CIBERSORT (p = 0.042) and B cell memory-CIBERSOTRT-abs
(p = 0.027), cancer-associated fibroblast-EPIC (p = 0.001), cancer-associated fibroblast- MCPCounter
(p = 0.0037), etc. The risk score was significantly associated with the sensitivity of patients to lapatinib
(p = 0.049), nilotinib (p = 0.015), pazopanib (p = 0.001), and sorafenib (p = 0.048). Conclusions: RBM10
can inhibit the proliferation and invasion of lung adenocarcinoma cells through negative regulation
and promote the apoptosis of lung adenocarcinoma cells through immunomodulatory mechanisms.
The expression level of RBM10 affects the efficacy of targeted drug therapy and the survival prognosis
of lung adenocarcinoma patients, which has a certain guiding significance for the clinical treatment
of these patients.
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1. Introduction

In cell mitosis, chromosomal separation errors lead to whole chromosome aneuploidy
mutation in daughter cells, or DNA damage leads to chromosomal structural changes,
resulting in phenomena such as gene translocation, deletion, inversion, and fracture, which
are all referred to as genomic instability [1,2]. RBM10, one of the gene-unstable groups,
is a significantly mutated gene in tumor cells. In addition, RBM10 also belongs to the
RNA-binding motif protein family [3]. In the process of malignant tumor progression, the
mutation frequency of RBM10 indirectly affects tumor proliferation and migration through
different mechanistic pathways and plays an important role in the apoptosis process of
malignant tumor cells [4].

A related study performed exon and transcriptome sequencing on 98 lung adenocarci-
noma precursor lesions and 99 invasive adenocarcinoma tissue specimens and identified
RBM10 as a significantly mutated gene in the progression of lung adenocarcinoma [5]. It
is closely related to ARM-level copy number alterations and HLA loss of heterozygosity,
among other phenomena, which also shows that RBM10 is involved in the regulation of
the tumor immune environment. Another study [6] found that RBM10 can regulate the
expression of many genes involved in DNA repair, cell metabolism, proliferation, migra-
tion, senescence, and apoptosis by regulating the transfer factor P53 [7–9]. Cancer and
oncology genome mapping (CGA) showed that EGFR mutations were most common in
female lung adenocarcinoma patients, while mutations in RNA-binding motif protein 10
(RBM10) were most common in male lung adenocarcinoma patients. RBM10 was first
identified in 1995 in unclassified cDNA of human bone marrow, and it was located on the
X chromosome p11.23 [10]. The RBM10 transcriptome is about 3.5 KB in length, divided
into 24 exons, and can be translated into 930 amino acid proteins [11]. There are many
potential mechanisms of RBM10 in tumor regulation, including immune regulation in the
tumor microenvironment to activate p53 [12]. The anticarcinogenic properties of RBM10
are achieved in part by blocking MDM2-mediated ubiquitination and p53 degradation, and
it has also been shown to inhibit tumor growth and proliferation by selectively altering
selective splicing [13]. RBM10 is significantly overexpressed in many malignant tumors,
and it inhibits the proliferation and clonal formation ability of A549 cells and enhances
the sensitivity of A549 cells to the chemotherapy drug paclitaxel by inducing apoptosis.
RBM10 is an RNA-binding protein that interacts with telomere regulatory proteins [14]. In
one study, although RBM10 did not affect telomerase activity, it had significant inhibitory
effects on telomere length [15]. In addition, we also found that RBM10 can upregulate
the expression of E-cadherin, downregulate the expression of Vimentin, and inhibit the
migration of renal cell carcinomas (RCC) [16].

Targeted drug therapy is currently one of the effective means used for the treatment
of lung cancer, and it is widely used in the systemic treatment of advanced patients,
preoperative neoadjuvant therapy, and postoperative adjuvant therapy, for example [17].
In the late stage of targeted therapy, tumor sensitivity to drugs is often reduced and drug
resistance occurs, which is the main reason for chemotherapy failure. Unlike cross-drug
resistance, direct and indirect drug resistance are the main causes of death in cancer
patients [18]. Individualization of drug use in cancer patients is also a problem that is
difficult to solve at present [19].

In this study, we obtained sequencing data from the TCGA database of lung adeno-
carcinoma patients with high expression of RBM10 in order to analyze patient sensitivity
to targeted drugs. Through statistical analysis of the data, for the lung adenocarcinoma
patients with positive RBM10 expression, the survival prognosis and drug sensitivity of
the lung adenocarcinoma patients showed statistically significant differences. This also
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suggests that RBM10 is involved in the regulatory process for the mechanisms underly-
ing resistance to targeted drugs for lung adenocarcinoma, which has important clinical
significance for the effective survival of patients [20]. A number of studies have reported
on RBM10 with respect to lung adenocarcinoma, colorectal cancer, pancreatic cancer, en-
dometrial cancer, and the relationship between malignant tumors such as breast cancer,
but most of the research has mainly focused on RBM10 in studies on the function and
mechanism of action of tumors; thus, the effect of the tumor microenvironment on tumor
immune regulation and drug sensitivity is unclear [21]. In addition to exploring the func-
tion and mechanism of RBM10 in the progression of lung adenocarcinoma, this study also
focused on exploring the immune regulation mechanism of RBM10 and its influence on the
sensitivity of targeted therapy drugs.

2. Materials and Methods
2.1. Data Download and Acquisition

We used information from the TCGA (https://portal.gdc.cancer.gov/, accessed on
1 January 2022), GEO (https://www.ncbi.nlm.nih.gov/geo/, accessed on 1 January 2022),
ImmPort (https://www.immport.org/home, accessed on 1 January 2022), and GDSC
(Genomics of Drug Sensitivity in Cancer) (https://www.cancerrxgene.org/, accessed on
1 January 2022) databases to download transcriptome data on lung adenocarcinoma and
clinical data. These data include gene expression data, miRNA expression data, copy num-
ber variation data, and so forth. The downloaded data were transformed and organized.
Perl (https://www.perl.org/, accessed on 1 January 2022) was used to run scripts (merge.pl
and move.pl) to convert gene IDs into gene names in the data, and tumor tissue samples
were grouped with normal tissue samples according to the instability of the genome. The
corresponding mutation data were obtained.

2.2. Data Algorithmic Processing

In R software (V3.6.0), the “edgeR” package was used to identify the downloaded
TCGA data of 361 samples of gene transcription and 107 clinical samples’ data, ad-
justed|logFC|>2 and corrected p < 0.05. In this study, the mutation frequency of unstable
genomes was screened and sorted out, and then only 25% of the genes with the highest
mutation frequency were included in the high mutation group (i.e., the unstable group of
genomes), while 25% of the genes with the lowest mutation frequency were included in the
low mutation group (i.e., the stable group of genomes). RBP genes were extracted from
the downloaded data and analyzed at the same time to obtain the prognostic RBP-related
genes of lung adenocarcinoma. In addition, we also downloaded the subcomponent data
of immune cells from ImmPort and corrected the data.

2.3. Matrix Deconvolution Analysis of Targeted Drug Sensitivity

CIBERSORT is an R or web version tool for deconvolving the expression matrix of
human immune cell subtypes based on the principle of linear support vector regression.
For more chip expression matrices, to determine an unknown mixture containing similar
cell types to the expression of the matrix, deconvolution analysis is superior to other
methods (LLSR LLSR, PERT, RLR, MMAD, and DSA). This method is based on a known
reference set and provides a gene expression signature set for 22 immune cell subtypes. We
used CIBERSORT (https://cibersortx.stanford.edu/, accessed on 1 January 2022) to screen
the samples by transforming the gene expression matrix into the matrix of immune cells,
that is, the composition of the various subtypes of immune cells in the tumor tissue. For
genomics data based on the largest drug database (GDSC—Genomics of Drug Sensitivity in
Cancer) (https://www.cancerrxgene.org/, accessed on 1 January 2022), we used R software
package “pRRophetic” to predict each tumor sample for targeted drug sensitivity. The IC50
estimate for each specific targeted therapy was obtained through regression analysis.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/home
https://www.cancerrxgene.org/
https://www.perl.org/
https://cibersortx.stanford.edu/
https://www.cancerrxgene.org/
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2.4. Grouping Analysis of Genomic Instability

The mutation data obtained and sorted were statistically divided into high-frequency
mutation genomes (the gene instability group) and low-frequency mutation genomes (the
gene stability group). In this study, TCGA data and GEO data were used for double
validation. At the same time as constructing and verifying the prognostic model of the
unstable genome, experimental group A, validation group B, and group C were used as the
statistically comprehensive results of the two groups.

A Kaplan–Meier curve was used to evaluate the survival time of unstable genomes,
and p < 0.05 indicated that the difference between the two groups was statistically signifi-
cant. An AUC curve was frequently used to evaluate the feasibility and accuracy of the
model, which was constructed with big data, and AUC > 0.6 indicated that the model had
a good ability for prediction and evaluation.

2.5. Prognostic Model Construction and Survival Analysis of Prognostic RBP

The core module can be determined by calculating the correlation coefficient between
the feature vector gene of each module and the sample feature information. Genomically
unstable genes are a series of genes with high connectivity and modular connectivity. One
of the goals of WGCNA is to find the key genes of the target modules. In general, the
key genes in this submodule are biologically more important than in the global network.
Module identity can be used to measure the importance of genes in a module, and it has
been shown that M is positively related to module connectivity. Therefore, the major genes
of a specific module are selected based on the M value. If the value of M in a specific
module is the largest, the gene is considered to be a key gene.

2.6. GO and KEGG Pathway Enrichment Analysis

We used the application DAVID (https://david.ncifcrf.gov/summary.jsp, accessed on
1 January 2022), an online database, to carry out gene ontology for target mRNA genes in
the ceRNA network. We also used GO annotation and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis, with p < 0.05 as the screening condition.
GO analysis included biological process (BP), cell component (CC), and molecular function
(MF) analysis.

2.7. Construction of Protein–Protein Interaction (PPI) and Screening of Key Genes

Target mRNA genes in the chromosome instability group gene network were uploaded
to the STRING online database (https://string-db.org/, accessed on 1 January 2022), a
PPI network was constructed, medium confidence was taken as the truncation standard,
and the nodes without mutual relationships in the network were hidden. The PPI network
information obtained from the STRING database was imported into Cytoscape software
(V3.8.2). The MCODE plug-in Cytoscape was used to screen the key modules and identify
the seed factors at the same time, and the MCC algorithm in the CytoHubba plug-in was
used to screen the hub genes.

2.8. PCR Assay Analysis

The expression of RBM10 in lung adenocarcinoma tissues and adjacent tissues was
also verified by PCR assays. The real-time PCR results are generally presented in the form
of the mean ± standard deviation. The results are usually analyzed by the method of
relative halo analysis; that is, the 2−∆∆ct method is used to obtain the expression level of
the target gene, β-actin is the reference gene, and RBM10 is the target gene. The expression
level of each gene is measured twice, so the average of the two groups of results is taken in
the final Ct value. For the calculation of the ∆∆Ct value, the final obtained samples and the
normal control group 2−∆∆ct were the differential expression multiples of the two groups.

https://david.ncifcrf.gov/summary.jsp
https://string-db.org/
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2.9. Analysis of the Pathological Characteristics of Lung Adenocarcinoma

H&E staining is one of the common staining methods used in paraffin sectioning.
Dehydration was carried out, and the transparency of the sections was determined. After
H&E staining, the sections should be thoroughly dehydrated and transparent before they
can be capped with neutral gum. If the dehydration process is not thorough, the film
shows a white mist after sealing, is blurred under the microscope, and can easily fade. The
sections were dehydrated with grade 1–2 absolute ethanol or xylene carbolic acid.

After staining with hematoxylin, the nucleus and calcium salt mucus were blue,
and then eosin, a cytoplasmic dye, was used to stain the cytoplasm so that the different
components of the cytoplasm appeared as different shades of pink. Through this, various
tissue or cellular components and the general morphological and structural characteristics
of the lesions can be shown.

2.10. Immunohistochemical and Cell Immunofluorescence Analysis

Paraffin sections (5 µm thick) extracted from the tissue were dewaxed in xylene
and rehydrated in graded alcohol, and endogenous peroxidase activity was blocked by
infiltration into 0.3% hydrogen peroxide. Next, the sections were rinsed with phosphate-
buffered saline (PBS) (PH 7.2), and all of the sections were treated with immunoglobulin
IgG as a secondary antibody. After being washed with PBS, the sections were incubated
with DAB (0.02% diaminobenzidine tetrahydrochloric acid, 0.1% phosphate buffer, and
3% H) to observe the peroxidase reaction. The final sections were stained with hematoxylin,
dehydrated with graded alcohol, and mounted on resin supports. The stained sections
were examined with a microscope.

Isolated and cultured cells were fixed with 4% paraformaldehyde for 15 min. Next,
the cells were blocked with 2% BSA in PBS and then treated with 0.2% triton for 15 min.
The diluted primary antibodies were added as follows: anti-RBM10 (Abcam, 1:200, Boston,
MA, USA) and then the secondary antibody (1:500, Invitrogen, Los Angeles, CA, USA).
In addition, the cells were stained with DAPI (Sigma, St. Louis, MO, USA) and observed
under a fluorescence microscope.

3. Results
3.1. Project Research and Analysis Process

The data in this study were obtained from the TCGA and GEO databases. After
screening and identifying the intersection of the lung adenocarcinoma gene set and the
chromosome gene instability group gene set, a separate network was constructed to analyze
the prognosis model of the lung adenocarcinoma chromosome instability gene set, and
an ROC curve was used to evaluate the prediction accuracy of the prognosis model. In
addition, univariate and multivariate analyses of gene clinical risk and functional enrich-
ment analysis of related signaling pathways were further analyzed. In this study, another
risk model of lung-adenocarcinoma-associated RNA-binding protein was constructed to
analyze the distribution of upregulation and downregulation of differential genes and
the interaction analysis of the PPI network. The second model was also evaluated by an
ROC curve and a survival curve. In the later stage of this study, qRT-PCR assays, immuno-
histochemistry analysis, cell immunofluorescence assays, and pathological characteristics
analysis were performed to investigate the mechanism of drug sensitivity and the immune
microenvironment (Figure 1).
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Figure 1. (A) Flow chart of the research project. (B) Flow chart of the in vitro experiment.

3.2. Identification of RNAs Associated with Genomic Instability in Patients with Lung Adenocarcinoma

Based on the number of mutations carried by lung adenocarcinoma patients, the 25%
of patients with the most and fewest mutations were defined as the GU group and the GS
group, respectively, and the differentially expressed RNAs in the two types of samples
were identified (Figure 2a,b). There was a statistically significant difference in the number
of somatic mutations between the GU group and the GS group, and the GU-like group
tended to carry more mutant genes (p < 0.001) (Figure 2c).

The data of lung adenocarcinoma patients from the TCGA were divided into a training
group, a testing group, and the whole group. The prognostic genes in patients with lung
adenocarcinoma were identified based on univariate Cox proportional hazards regression.
The patients were divided into high- and low-risk groups, and the candidate genes were
analyzed by multivariate Cox proportional hazards regression analysis. The Kaplan–Meier
curves showed that there were statistically significant differences between the high-risk
group and the low-risk group (p < 0.05) (Figure 2d–f). In addition, an ROC curve was used
to analyze the prediction and accuracy of the three survival prognostic models constructed
in this study. The ROC curve results showed that all three datasets had good predictive
ability for the survival time of lung adenocarcinoma patients (AUC1 = 0.723; AUC2 = 0.677;
AUC3 = 0.750) (Figure 2g–i).
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(a,b) Heat map analysis of the number of unstable gene mutations (GS: genomic stability; GU:
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Kaplan–Meier curves analysis. (g–i) ROC curve analysis.

3.3. Validation of the Prognostic Model with an Internal Dataset

The validation of the prognosis model of lung adenocarcinoma is mainly divided into
two parts: One is the validation of the training group, and the other is the validation of the
test group. The “Pheatmap” package in R software was used to organize the downloaded
TCGA data and GEO data, calculate the risk coefficient of lung adenocarcinoma patients,
calculate the distribution matrix of surviving and dead patients, analyze the differential
expression of mutant genes in the prognostic heatmap related to immune infiltration, and
successfully construct the prognosis model of lung adenocarcinoma. From left to right,
we found that, with an increase in the mutation rate of mutated genes, the prognostic risk
coefficient of lung adenocarcinoma patients also increased, and deaths were concentrated
in the high-risk population area on the right, suggesting that the high mutation rate of
prognosis-associated unstable genes may be associated with the high prognostic risk and
mortality of lung cancer (Figure 3).
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3.4. Analysis of RBM10 in Lung Adenocarcinoma Independent of Other Clinical Features

The clinical data of 572 patients included in the TCGA database (including gender, age,
the clinical stage of the tumor, and whether there was distant metastasis) were divided into
high- and low-risk groups according to the expression level of RBM10, and the independent
predictive efficacy was evaluated. The survival curve results showed that there were
statistically significant differences in the risk of some clinical factors in patients with
RBM10 (+) lung adenocarcinoma, including age (p < 0.001), gender (female, p < 0.001; male,
p = 0.042), M0 (p < 0.001), N1–3 (p = 0.001), stage I–II (p = 0.050), stage III–IV (p < 0.001), T1–2
(p = 0.002), and T3–4(p = 0.020) (Figure 4I–VI).

Survival curve analysis was performed on the clinical group data of lung adenocar-
cinoma patients with GS and GU classification of RBM10 and wild-type mutations. The
results showed that there were still statistically significant differences among the four
types of mutations (p = 0.044). A nomogram model of related RBM10 was constructed
and showed that it can inhibit the occurrence and development of lung adenocarcinoma
(Figure 4a,b).

3.5. PPI Network Analysis of Differential Genes

In this study, the expression of differential genes in lung adenocarcinoma tissues and
adjacent tissues was analyzed by using a cluster heat map, and a volcano map was con-
structed according to the numbers of upregulated and downregulated genes (Figure 5a,b).
Cytoscape software (V3.8.2) was used to construct the PPI network of deg, the Cytoscape
plugin MCODE was used to obtain the most important module (Figure 5c), and several
major hub genes (Including SMAD9, SIDT2, KHDRBS2, and RBM10) were further screened.
At the same time, single factor independent analysis correction was applied (Figure 5d).
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3.6. Functional Enrichment Analysis of the Algorithm Model

DAVID was used to further enrich the hub gene function and pathway. The GO
analysis showed that the hub gene biological process (BP) item in ncRNA processing,
rRNA metabolic processes, rRNA processing, the regulation of cellular amide metabolic
processes, RNA catabolic processes, and RNA changes such as modification and RNA
splicing increased significantly. CC: preribosome, nucleolar part, Cajal body, ribosome,
P granule, etc. MF: catalytic activity, acting on RNA, mRNA3′-UTR binding, translation
regulator activity, ribonuclease activity, single-stranded RNA binding, ribonucleoprotein
complex binding, etc. (Figure 6).

3.7. Comparison of Survival Curves between the Test Group and the Control Group

In this study, the high expression of RBM10 was classified into a low-risk group,
and the low expression of RBM10 was classified into a high-risk group. Univariate and
multivariate independent analyses of survival and prognosis of lung adenocarcinoma were
conducted using the data of the test group and the control group, respectively, and the
results of both groups of data included RBM10 (Figure 7a,b).

Analysis of the survival curve results showed that there were significant differences
between the test group and the control group in the high- and low-risk groups, which was
of research value (p < 0.05) (Figure 7c,d), and an ROC curve was adopted to further verify
our survival analysis results (AUCtest group = 0.635; AUCcontrol group = 0.705) (Figure 7e,f).
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3.8. Risk Curve Analysis

The “Pheatmap” package in R software was used to organize the downloaded TCGA
data, calculate the risk coefficient of lung adenocarcinoma patients, calculate the distribu-
tion matrix of surviving and dead patients, analyze the differential expression of RBM10 in
the immune-infiltration-related prognostic heatmap, and successfully construct the prog-
nosis model of lung adenocarcinoma. From left to right, we found that, with the decrease
in RBM10 expression, the prognostic risk coefficient of lung adenocarcinoma patients also
increased, and deaths were concentrated in the high-risk population area on the right,
which also proved that its prognostic correlation with low expression of RBM10 may be
associated with the prognostic risk and high mortality of lung adenocarcinoma (Figure 8).
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3.9. Analysis of Clinically Independent Prognostic Factors and Nomogram Analysis

Factors related to the clinical prognosis of RBM10-positive patients were independently
analyzed, and the forest map results showed that the prognostic factors of these patients
were mainly related to their risk scores (p < 0.05) (Figure 9a,b).

Nomogram analysis was also used in this study, and the results also showed that
SMAD9, KHDRBS2, and RBM10 had a certain risk correlation with the survival rate of
lung adenocarcinoma patients (Figure 9c). Finally, the PCR results of RBM10 in cancer
tissues and adjacent tissues of 20 clinical patients with lung adenocarcinoma were further
compared for verification, supporting the conclusion that RBM10 has a negative regulatory
effect on the survival and prognosis of lung adenocarcinoma (Figure 9d,e).

3.10. RBM10 Is Involved in the Immune Regulation of Lung Adenocarcinoma

The immunohistochemistry analysis showed that the cell nuclei of the carcinoma
tissues were significantly enlarged and deeply stained, and RBM10 was expressed in the
nucleus and cytoplasm (Figure 10a–f). The results suggest that the expression of the RBM10
protein in lung adenocarcinoma tissue decreased, which may be related to the negative
regulation of the occurrence and development of lung adenocarcinoma.
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Microscopically, adenocarcinoma is composed of new cubic and columnar cells, tend-
ing to form an adenoid structure supported by a fibrous matrix, with large or irregular
nuclei, distinct nucleoli and mucin in the cytoplasm (Figure 10g–i).

3.11. Immune Cell Subcomponent Analysis and Drug Sensitivity Analysis

We identified RBM10 as a tumor suppressor gene through database screening and
PCR assays, and it plays a negative regulatory role in the occurrence and development
of lung adenocarcinoma. In this study, RBM10 inactivation was classified as indicating
high risk, and high expression of RBM10 was classified as indicating low risk. Based on
this feature, we performed a subgroup analysis of clinically relevant factors (such as age,
gender, and tumor stage grade) for lung adenocarcinoma. The results indicated that male
patients with RBM10 inactivation aged over 65 years with G3 tumor stage were at higher
risk (Figure 11I). Some studies [22–25] demonstrate that this “CMap” resource can be used
to find connections among small molecules sharing a mechanism of action, chemical and
physiological processes, and diseases and drugs.
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The results showed B cell memory, B cell memory-CIBERSORT-ABS, B cell-TIMER,
cancer-associated fibroblast-EPIC, etc. (Figure 11a–e). The drug-sensitive cardiac analysis
also found that RBM10 had a certain risk correlation with drug resistance to lapatinib,
nilotinib, pazopanib, sorafenib, and other drugs (p < 0.05) (Figure 11f–i).
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3.12. In Vitro Experimental Verification Analysis

Further verification in the A549 lung adenocarcinoma cell line showed that the mRNA
expression level of RBM10 was lower than that of the control group (Figure 12a). According
to CCK8 detection, after 24 h, the proliferation ability of A549 cells in the si-RBM10-915
and si-RBM10-2365 groups significantly decreased compared with that in the si-NC group
(Figure 12b). After transfection of si-RBM10-915 and si-RBM10-2365, the migration and
invasion ability of the A549 cells significantly decreased (Figure 12c–f). Compared with the
control si-NC cells, the cloning rate of the A549 cells after transfection with si-RBM10-915
and si-RBM10-2365 decreased significantly (Figure 12g). DNA methylation is a biological
process and an important epigenetic modification. The algorithm was used to predict
miRNA target genes, and at the same time, it was combined with the miRNA expression
profile, the mRNA expression profile, and the DNA methylation expression profile to find
the methylation levels of key miRNAs and their corresponding target genes as well as their
corresponding promoter regions [26,27].

Biomedicines 2023, 11, x FOR PEER REVIEW 18 of 22 
 

  
(a) (b) 

  

(c) (d) 

 
(e) 

Figure 12. Cont.



Biomedicines 2023, 11, 1861 17 of 20
Biomedicines 2023, 11, x FOR PEER REVIEW 19 of 22 
 

 
(f) 

 
(g) 

Figure 12. In vitro experimental verification analysis. (a): Q-PCR results; (b): Cell proliferation was 
detected by CCK8 for 24h; (c): Cell scratch test results; (d): Cell migration ability test results; (e,f): 
Results of Transwell cell invasion experiment; (g): Results of A54 cell cloning experiment (** p < 0.05; 
*** p < 0.01). 

4. Discussion 
Lung adenocarcinoma (LUAD) is the most common histological subtype of non-

small-cell lung cancer (NSCLC), accounting for approximately 40% of lung cancers. 
RBM10 belongs to the RNA-binding motif protein family, which plays an important role 
in a variety of biological processes [28]. More truncated and missense somatic mutations 
of RBM10 have been detected in lung adenocarcinoma in recent studies, but the role of 
RBM10 in lung adenocarcinoma is unclear [29]. Since the occurrence and development of 
lung adenocarcinoma often involve multiple gene mutations and the activation of and 
changes in signaling pathways, the specificity of biomarkers is low, and resistance to tar-
geted drug therapy is very relevant for the early diagnosis, treatment, and prognosis of 
lung cancer; it is important to find new markers for the early diagnosis of lung cancer and 
analyze their correlation with clinical features [30]. 

In this study, we collected the expected lung cancer tissues and normal paracancer-
ous tissues of 20 patients who had not received any treatment before surgery, as well as 
relevant clinical data such as the age, gender, and smoking history of these patients, and 
further analyzed the risk correlation of independent clinical factors. The results showed 
that the age of the patients in the high-risk group with RBM10 deletion, their gender, and 
their tumor stage and grade have certain risk correlations. In the in vitro experiments con-
ducted in this study, we first verified that RBM10 was expressed in the nucleus and cyto-

Figure 12. In vitro experimental verification analysis. (a): Q-PCR results; (b): Cell proliferation
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4. Discussion

Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small-
cell lung cancer (NSCLC), accounting for approximately 40% of lung cancers. RBM10
belongs to the RNA-binding motif protein family, which plays an important role in a
variety of biological processes [28]. More truncated and missense somatic mutations of
RBM10 have been detected in lung adenocarcinoma in recent studies, but the role of RBM10
in lung adenocarcinoma is unclear [29]. Since the occurrence and development of lung
adenocarcinoma often involve multiple gene mutations and the activation of and changes
in signaling pathways, the specificity of biomarkers is low, and resistance to targeted drug
therapy is very relevant for the early diagnosis, treatment, and prognosis of lung cancer; it
is important to find new markers for the early diagnosis of lung cancer and analyze their
correlation with clinical features [30].

In this study, we collected the expected lung cancer tissues and normal paracancerous
tissues of 20 patients who had not received any treatment before surgery, as well as relevant
clinical data such as the age, gender, and smoking history of these patients, and further
analyzed the risk correlation of independent clinical factors. The results showed that the
age of the patients in the high-risk group with RBM10 deletion, their gender, and their
tumor stage and grade have certain risk correlations. In the in vitro experiments conducted
in this study, we first verified that RBM10 was expressed in the nucleus and cytoplasm
of lung adenocarcinoma A549 cells in equal amounts by using an immunofluorescence
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method, and qRT-PCR showed that the expression of RBM10 in the A549 cell line was
significantly lower than that in the control group. Studies [31–34] have shown that the
pathological type of lung cancer of 80% of patients is non-small-cell lung cancer, and lung
adenocarcinoma is one of the main tissue types of non-small-cell lung cancer. In the past,
platinum-based chemotherapy was used for the treatment of lung adenocarcinoma, but due
to the insensitivity of lung adenocarcinoma to chemotherapy and the generation of drug
resistance, the therapeutic effect was not sufficient [35]. With the exploration of genomics
and molecular biology, researchers have made new discoveries on the formation, invasion,
and migration mechanisms of lung adenocarcinoma and re-examined the treatment of non-
small-cell lung cancer [36]. In recent years, RNA-binding proteins (RBM) have gradually
come into the research field, among which RBM10 and RBM5 can regulate apoptosis-related
genes [37]. RBM10 mRNA levels were significantly decreased in lung adenocarcinoma
A549 cells. Is RBM10 a potential tumor suppressor gene? As a new potential tumor-related
biomarker, whether RBM10 can provide us with new means and strategies for the early
diagnosis, targeted drug therapy, and curative effect prediction of lung adenocarcinoma
remains to be studied [38–40].

The mutation of RBM10 co-exists with the known lung cancer target genes KRAS,
EGFR, and PIK3CA, among others [41]. Currently, only patients with an EGFR mutation
and ALK gene fusion have clear therapeutic targets clinically, and molecular targeted
drugs produced for the corresponding targets, such as imatinib and erlotinib, can be
applied in the treatment of these patients [42–44]. They can prolong the quality of life of
some patients; however, with the progress of treatment, drug resistance to molecularly
targeted drugs has also gradually emerged, which has inhibited its clinical therapeutic
effect in lung adenocarcinoma patients [45]. As a newly discovered gene related to the
progression of lung adenocarcinoma, the specific mechanism of the inactivation and low
expression of RBM10 leading to the growth, proliferation, invasion, and metastasis of lung
adenocarcinoma cells remains to be further studied and revealed, which can provide new
theoretical support for the treatment of lung adenocarcinoma with molecularly targeted
drugs. Meanwhile, the research and development of new targeted therapeutic drugs and
the discovery of new therapeutic targets for lung adenocarcinoma gene mutations will also
be a direction of future research efforts.
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