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Abstract: In recent years, enough evidence has accumulated to assert that cardiotonic steroids,
Na+,K+-ATPase ligands, play an integral role in the physiological and pathophysiological processes
in the body. However, little is known about the function of these compounds in the central nervous
system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders,
including depression and bipolar disorder, which are linked to dopaminergic system dysfunction.
Animal models have shown that the cardiotonic steroid ouabain induces mania-like behavior through
dopamine-dependent intracellular signaling pathways. In addition, mutations in the alpha subunit of
Na+,K+-ATPase lead to the development of neurological pathologies. Evidence from animal models
confirms the neurological consequences of mutations in the Na+,K+-ATPase alpha subunit. This
review is dedicated to discussing the role of cardiotonic steroids and Na+,K+-ATPase in dopaminergic
system pathologies—both the evidence supporting their involvement and potential pathways along
which they may exert their effects are evaluated. Since there is an association between affective disor-
ders accompanied by functional alterations in the dopaminergic system and neurological disorders
such as Parkinson’s disease, we extend our discussion to the role of Na+,K+-ATPase and cardiotonic
steroids in neurodegenerative diseases as well.

Keywords: Na+,K+-ATPase; cardiotonic steroids; dopamine; bipolar disorder; depression;
neurodegeneration

1. Introduction

It is known that both neurons and glial cells need to constantly restore their resting
membrane potentials. Maintenance and restoration of the resting potential is facilitated by
Na+,K+-ATPase (NKA), a cytoplasmic membrane protein complex that exports three Na+

ions out of the cell in exchange for two K+ ions. This pump action is facilitated by the α

subunit, part of a membrane protein complex that also includes the β and γ subunits [1]. In
neurons, aside from the ubiquitous α1 isoform, a neuron-specific isoform is present—the
α3, while glial cells express the α2 isoform in addition to α1 [2]. Na+ export is necessary for
neurons to restore the resting potential after the propagation of an action potential, and it
facilitates Na+-conjugated transport processes [3]. Glial cells use the Na+ and K+ gradient
to transport various compounds across the membrane, including excess neurotransmitters
from the synaptic cleft and energy-intensive substrates transported into neurons [4].
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A large body of evidence hints at the association of NKA dysfunction with the devel-
opment of neurodegenerative and neuropsychiatric diseases. For example, mutations in
the ATP1A3 gene cause rapid-onset dystonia parkinsonism (RDP) and alternating hemiple-
gia of childhood (AHC) [5]. Neurotoxic α-synuclein aggregates, which are a hallmark of
Parkinson’s disease, bind to the neuronal α3-subunit of NKA, disrupting its function [6].
Oxidative stress (OS), which can be caused by toxic dopamine metabolites [7], as well as
protein kinase C (PKC) activation [8] also cause dysfunction of neuronal NKA. Thus, there
is reason to further study the role of NKA dysfunction in pathophysiological processes in
the central nervous system (CNS).

In addition to its role in maintaining resting membrane potential, NKA is also involved
in a number of intracellular signaling pathways and is a receptor for cardiotonic steroids
(CTS), which can induce changes in intracellular signaling when binding to the enzyme. To
date, thanks to the use of mass spectrometric analysis, enough data have been accumulated
that allow us to consider CTS as endogenous hormone-like compounds in mammals,
including humans. Endogenous ouabain was identified in human blood plasma [8,9],
and its role in the development of various diseases, including arterial hypertension, was
shown [8–10]. The presence of marinobufagenin in human blood was identified [11].
Additionally, endogenous CTS were isolated from the bovine adrenal glands [12]. From
the bovine hypothalamus, a compound with an integer mass measured by HPLC-mass
spectrometry equal to ouabain was isolated by affinity chromatography [13]. Thus, it
is assumed that endogenous ouabain can be produced in the brain and adrenal glands
of mammals. It has been shown that its amount can increase in response to an increase
in tissue NaCl concentration. Increased content of endogenous ouabain in the brain is
associated with epilepsy and motor neuron dysfunction [14]. However, there is currently no
complete understanding of the physiological role of CTS in the CNS. There is also virtually
no knowledge about the pathways of their biosynthesis in the brain and their regulation.

In addition to endogenous CTS, the CNS can also be affected by exogenous factors:
the use of the CTS digoxin to treat patients with heart failure can lead to a wide range of
neuropsychiatric side effects, such as fatigue, depression, psychosis, and delirium [14,15].
In various experimental models, it was shown that CTS can affect the efficiency of Na+

and K+-dependent processes by inhibiting NKA [16]. Thus, inhibition of the α3 subunit
in neurons leads to the inability to quickly restore the Na+ gradient and enable action
potential generation [17]. It is also known that ouabain causes increased release of GABA
and decreased rate of GABA reuptake [18]. In addition, the NKA in the CNS has a number
of functions specific to each isoform that are not directly related to pump activity, including
the regulation of other membrane proteins and the activity of intracellular signaling cas-
cades [8]. Via binding to NKA, CTS can influence the work of membrane and cytoplasmic
proteins with which they interact [19–21]. Experimental data obtained in an amphetamine-
induced model of mania in mice indicated the possible involvement of endogenous CTS
in the development of bipolar disorder [22]. When entering the bloodstream, endogenous
CTS affect the excretory and cardiovascular systems [14]. However, there is currently
no complete picture of the involvement of CTS in physiological and pathophysiological
processes in the CNS.

In this review, we summarize the data obtained in various models on the role of NKAs
and CTS in CNS pathologies related to dopaminergic system dysfunction.

2. Neurological Disorders in Animals with NKA Mutations

The α3 subunit of NKA is encoded by the ATP1A3 gene. To date, four mouse mod-
els used to study the in vivo consequences of mutations in the ATP1A3 gene have been
described. The creation of model animals—mice in which the α3 subunit gene promoter
(Atp1a3) is used to control the expression of the fluorescent protein ZsGreen1 (a3NKA-
ZsGreen1 mouse model) [23]—made it possible to determine the localization of the α3
subunit in brain tissue. It was shown that the signal intensity was highest in the neu-
ronal bodies located in the stem structures, including the substantia nigra, some nuclei
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of the thalamus and cerebellum. No fluorescence was detected in astrocytes and brain
white matter.

Mutations in the ATP1A3 gene have an autosomal dominant inheritance pattern. Ho-
mozygous mutants die shortly after birth. Therefore, viable and fertile heterozygotes are
used to study all four in vivo models. These models display symptoms and endophe-
notypes similar to those seen in the manic and depressive phases of bipolar disorder,
rapid-onset dystonia parkinsonism, epilepsy, alternating hemiplegia of childhood, and
CAPOS syndrome to varying degrees (Table 1) [3].

Table 1. ATP1A3 genetically modified models.

Model Symptoms of Affective
Disorders

Symptoms of
Neurological

Disorders

In Vivo
Electrophysiology

Data

Changes in
Dopamine Levels References

1.1
Myk/+–

Mania:
Hyperactivity

Sleep disturbances
Dysregulated circadian

rhythm
Tendency to engage in

high-risk behavior
Increased sensitivity to

amphetamine
Decreased anxiety
High impulsivity

Lower spatial memory

Tremor
Impaired gait - - [24–26]

1.2
Mashl+/−

Mania:
Hyperactivity

Increased excitability
Decreased anxiety
High impulsivity

Lower spatial memory

Tremor
Impaired gait

High excitability,
prolonged arousal
after a threshold

stimulus

- [27]

1.3
NKA1A3tm1Ling

Mania:
Hyperactivity

Increased sensitivity to
amphetamine

Decreased anxiety
Impulsivity

Low habituation
Depression:
Anhedonia

Despair-like behavior
Increased anxiety

Impaired learning and
memory

Decreased socialization

- -

Mania:
Not different from

wild type
Depression:

Negative
correlation with
vertical activity

[25,28,29]

1.4
Atp1a3tm2Kwk/+

Mania:
Hyperactivity
Impulsivity

Lower spatial memory

Impaired gait
Symptoms similar

to RDP
- - [30]

[31]

Heterozygous Myshkin mutants (NKA13AMyk/+; Myk/+) (1.1 in Table 1) carry a
missense mutation with an amino acid substitution at position 810 (I810 N). Such NKA α3
subunits are expressed normally but are not functionally active. Myshkin mutants were
originally developed as a preclinical model of epilepsy because heterozygotes exhibited
spontaneous seizures [24]. By crossing with seizure-resistant C57BL/6NCr mice, mutants
that did not exhibit seizures were obtained [32]. So far, Myk/+ mutants have been shown
to be valid models of mania [33]. In behavioral tests, Myk/+ mutants demonstrated
hyperactivity, circadian rhythm and sleep disturbances [34], risk-taking tendencies, and
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increased sensitivity to D-amphetamine [25,35]—these symptoms are seen in patients in
the manic stage of bipolar disorder. Additionally, administration of lithium and valproic
acid, effective in mania therapy, has been shown to normalize behavior in heterozygous
mice. However, it is not known at this time whether an endophenotype of depression is
possible in this model in response to stressors. Myk/+ mice were also shown to exhibit a
number of disturbances in circadian behavioral rhythms related to the processing of sensory
visual information but without disturbances in the function of clock genes [36]. The authors
suggested a link between the identified circadian rhythm abnormalities in this mouse model
and the sleep disorders observed in parkinsonism. Some reviews on rush-induced dystonia-
parkinsonism suggested the use of Myshkin heterozygotes as models of this disease [37].
The 4-week-old Myk/+ displays a different gait than the wild type, unstable with a shorter
stride and accompanied by tremor. Tremor and gait problems are symptoms characteristic
of parkinsonism. Changes in glucose metabolism and functional brain connectivity have
also been shown in mice of this line. However, Myk/+ heterozygotes are not adequate
models of RDP and parkinsonism; their endophenotype is more similar to that of alternating
hemiplegia of childhood [26].

Heterozygous mutants of Mashlool (α+/D801N; Mashl+/−) (1.2 In Table 1) also
carry a missense mutation with an amino acid substitution at position 810. A similar
amino acid substitution at the same position is found in AHC patients [38]. Hyperactivity,
reduced learning ability, memory problems, tremor, and shorter stride length have been
shown for this line of mice compared to wild-type mice. Dystonia, hemiplegia, and
hyperexcitability were found in Mashl+/−. In vivo electrophysiology data show that
heterozygotes require fewer electrical stimulations for full excitation than wild-type animals;
in addition, registration of electrical activity of the amygdala and hippocampus shows that
the duration of full excitation of these structures after stimulation is significantly longer in
heterozygotes than in wild-type mice. Mashl+/− mutants show spontaneous seizures and
have an increased mortality [27]. Mashlool mutant data show that this lineage can serve
as an AHC model with some reservations, but it is difficult to judge whether it can be an
adequate model for studying bipolar disorder.

Heterozygous mutants with a point mutation in the fourth intron (NKA1A3tm1Ling,
NKA1A3+/−, α+/KOI4) (1.3 in Table 1) show an approximately 60% reduction in α3-
subunit expression in the hippocampus [28] because of aberrant splicing. At the same time,
total NKA activity is reduced by 15% compared to the wild type. Behavioral features of
intact (unstressed) heterozygotes are hyperactivity, decreased anxiety, and sensitivity to
methamphetamine. No behavioral manifestations of neurological disorders were found in
intact heterozygotes [29]. High-performance liquid chromatography showed no change in
the levels of serotonin, dopamine, and their metabolites in the striatum in heterozygotes
compared to wild-type animals. However, heterozygotes showed increased locomotor
activity when presented with methamphetamine, which may be related to disturbances
in the dopaminergic system [28]. α+/KOI4 mice exposed to chronic variable stress (CVS)
exhibit behaviors similar to those observed in the depressive phase of bipolar disorder:
anhedonia, despair-like behavior, weight changes, increased anxiety, and impaired memory
and socialization. At the same time, NKA1A3 activity was reduced by 33% compared
to the stressed wild type, consistent with the endophenotype of depression [26]. Thus,
CVS-treated α+/KOI4 mutants can serve as a model for the depressive phase of bipolar
disorder. In males with this mutation, however, no overt symptoms of parkinsonism or
dystonia were found before or after stressors. However, for females, chronic stress was
shown to induce coordination problems. In addition, rearing in stressed heterozygotes
of both sexes was shown to have a negative correlation with levels of dopamine and its
metabolites, which was not observed in wild-type mice [29].

Heterozygous Atp1a3tm2Kwk/+ mutants (1.4 in Table 1) have directional deletion of
exons 2–6. Hyperactivity in both cell and open field tests was shown for them, but their
anxiety level is not significantly different from that of wild-type animals. Heterozygotes
have a higher level of coordination and motor balance compared to the wild type. Stressors
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do not cause dystonia-like symptoms, but microinjections of kainate into the cerebellar
vermis induced a similar state. Electrophysiological studies on slides showed a connec-
tion of the mutation to the GABAergic system but not to the dopaminergic system [30].
Heterozygotes at 4 weeks of age show a shorter stride length compared to the wild type.
Older heterozygotes (6–12 weeks old) do not show gait abnormality in the absence of stres-
sors. However, when exposed to stressors, they begin to take shorter steps when moving,
compared to controls. This is very similar to the manifestation of RDP, the symptoms of
which in humans can be triggered by stress. It has been suggested that Atp1a3tm2Kwk/+
mutants may be a good model for RDP, although researchers have not reported dystonia or
other symptoms of parkinsonism (postural instability, bradykinesia) [31].

For all four genetic models, increased impulsivity, a propensity for risk-taking behavior,
and decreased habituation have been shown to varying degrees. All of these behavioral
traits are symptoms of mania. The most striking symptoms of a mania-like state are noted
in Myshkin mutants. However, there is currently insufficient information about dopamine
levels in this line of mice. The depressive phase of bipolar disorder is best reproduced in
CVS-exposed NKA1A3tm1Ling mutants. A correlation was found between the activity of
stressed mice of this lineage and dopamine levels, but the relationship between dopamine
levels and the mania-like state of unstressed heterozygotes carrying this mutation is not
well understood.

Gait impairment is one of the symptoms of parkinsonism, including RDP. Gait abnor-
malities in mice were shown for three of the four models. The Atp1a3tm2Kwk/+ model
is the closest to RDP, but it does not demonstrate the full range of classic parkinsonism
symptoms. Thus, no genetic model associated with a mutation in the ATP1A3 gene can
be called sufficiently reliable to study parkinsonism, at least for the time being. Neverthe-
less, the manifestation of both manic behavior and motor disorders simultaneously in the
models may indicate that mutations in the α3-subunit of NKA can phenotypically manifest
these two pathologies. Further research is needed to understand the mechanisms of the
relationship between these pathologies.

Mutations that disrupt the α2-subunit of NKA, which is expressed in the brain in
glial cells, can also lead to the development of various neurological and neuropsychiatric
disorders. Variants in the ATP1A2 gene, which encodes the α2-subunit of NKA, are
associated with familial hemiplegic migraine. For example, patients with the G301R
mutation are affected by a complex syndrome characterized by migraine comorbidity with
epilepsy, motor symptoms, and depression or obsessive–compulsive disorder [39,40]. This
mutation was successfully replicated in mice, which displayed impaired glutamate uptake
and altered inflammatory cytokine signaling [39,40].

3. Using Cardiotonic Steroids to Model Dopaminergic System Dysfunction

In addition to using animal lines with mutations in the NKA genes, studies of the effect
of NKA dysfunction on the dopaminergic system have been conducted using intracere-
broventricular (ICV) administration of ouabain to laboratory animals. The first indication
of CTS involvement in affective disorder pathogenesis was seen in patients with heart
failure, who developed mania-like symptoms in response to treatment with digoxin [15].
After this discovery, a series of attempts was made to model BD using ouabain, which,
like digoxin, is a cardenolide. The first report of mania-like behavior after ICV injection of
ouabain in rats was published in 1995 [41]. Since then, two approaches to modeling BD
using ICV ouabain injection have emerged.

The first category of models includes administration of highly concentrated ouabain
during a stereotaxic operation into the lateral ventricle of an anesthetized animal, with a
subsequent behavioral evaluation 7–10 days post injection. This approach showed that
a single ICV injection of 5 µL of 1 mM ouabain causes increased locomotion and groom-
ing frequency in rats 11 days post injection, accompanied by decreased phosphorylation
of PI3K, Akt, and GSK3β, and unchanged ERK1/2 phosphorylation. Seven days post
ouabain injection, oxidative changes were observed in brain tissue [42]. Both the manic and
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depressive phases of BD were present in this model [43]. Chronic administration of val-
proate, lithium, or AR-A014418 (an inhibitor of GSK3β) prevented all of the above [44,45].
Haloperidol, a D2 receptor antagonist, also prevented ouabain-induced hyperlocomotion
in rats in concentrations that decrease locomotor activity in intact animals [46]. It was also
shown that the mania-like behavior observed in this model was accompanied by PKC acti-
vation [47]. Fourteen days post ouabain injection, animals displayed locomotor depression
and impaired memory. Levels of pro-BDNF and BDNF in the frontal cortex were found to
be decreased on the 7th day post injection, while its receptor (TRKB) and CREB decreased
on the 7th and 14th day post injection [48]. On the 14th day post ouabain administration,
the observed depressive symptoms were accompanied by increased levels of interleukin
IL-1β, IL-6, IL-10, TNF-α, and CINC-1 in the frontal cortex and hippocampus [49], which
may indicate the development of neuroinflammatory processes. A similar model was
developed in mice, where anesthetized animals were given ICV injections of 0.625 pmol
ouabain. After 8 days, the animals developed signs of mania-like behavior accompanied by
c-fos activation. Administration of lithium chloride and haloperidol also neutralized the
effects of ouabain in this model [50].

The second category includes models where ouabain is administered to unanesthetized
animals using a surgically implanted cannula, and the effects are observed immediately
post injection and/or several days later. Thus, an increase in motor activity within 30 min
after ICV injection of ouabain (5 µL 0.5–1 mM) was described. At the same time in the
striatum, there was an increase in the phosphorylation of ERK1/2 and tyrosine hydroxylase
(TH). Administration of the MEK1/2 inhibitor (ERK1/2 MAP kinase kinase) U0126 leveled
the effect of ouabain on the motor activity of the animals [51]. In another study of this
model, animals injected with ouabain were shown to have increased phosphorylation of
Akt, GSK3β, FOXO1, and eNOS amid increased motor activity 1–8 h after ICV injection [52].
At the same time, chronic administration of lithium chloride (for 7 days before ICV injection
of 5 µL of 1 mM ouabain) was shown to prevent an increase in motor activity in rats [53].
The mechanism of the effect of ouabain in this model was attributed to mTOR activation
mediated by Akt and ERK1/2 activation, with a subsequent effect on the expression of a
number of proteins [54]. In a recently published paper, we described a model of ouabain-
induced mania in mice. ICV injection of 0.5 µL of 50 µM ouabain into the lateral ventricles
of the brain caused an increase in motor activity and stereotypic movements, as well
as a decrease in anxiety in the animals within 1 h after the injection. At the same time,
ouabain was shown to cause a decrease in the rate of dopamine reuptake. Inhibitor analysis
with haloperidol showed that the effects of ouabain were mediated by the activation of
D2 dopamine receptors and were associated with Akt activation, GSK3β deactivation,
and ERK1/2 kinase activation, but not with neurodegenerative changes, which were not
detected in animals 24 h after ouabain administration [55].

It would seem that the models described above are associated with the administration
of CTS in doses that significantly exceed physiological ones. However, there is evidence
that in other models of mania in laboratory animals endogenous CTS play a role in the
development of the pathophysiological process. Thus, the administration of anti-ouabain
antibodies, which reduced amphetamine-induced hyperactivity, protected against OS in
the brain [56]. Moreover, administration of the ouabain antagonist rostafuroxin amelio-
rated behavioral and brain biochemical changes in the dextromethorphan-induced mania
model [57].

Based on the data obtained in these models, we can conclude that NKA dysfunction
induced by the administration of both exogenous CTS and endogenous CTS may be as-
sociated with dopaminergic system dysfunction, causing symptoms of neuropsychiatric
diseases. However, these studies have not shown neurological abnormalities and degen-
eration of dopaminergic neurons. The only study on modeling Parkinson’s disease (PD)
with CTS was conducted on Danio Rerio, where the CTS neriifolin [58] was used as a
parkinsonism inducer.



Biomedicines 2023, 11, 1820 7 of 16

4. Evidence for NKA Dysfunction in Experimental PD Models

At the same time, there is ample evidence of NKA impairment in classical models of
parkinsonism. The most widespread method for modeling PD in laboratory rodents uti-
lizes mitochondrial toxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),
rotenone, and 6-hydroxydopamine (6-OHDA). Mitochondrial dysfunction accompanied by
OS are both involved in DAergic neuron degeneration. Because of the high energy demands
of NKA—its activity can account for over 50% of neuronal ATP consumption [59]—it is
extremely sensitive to mitochondrial dysfunction. Because of its large number of modifiable
sites, it is also sensitive to reactive oxygen species (ROS) [60].

In mouse MPTP-induced parkinsonism, an approximately 40% decrease in total
NKA activity in the striatum occurs, accompanied by a 60% decrease in dopamine lev-
els [61]. A 60% decrease in NKA activity was also observed in conditions of 1-methyl-4-
phenylpyridinium (MPP+)-induced OS in NGF-differentiated pheochromocytoma of the
rat adrenal medulla (PC12) cells [62]. NKA activity also decreases in rotenone-induced
parkinsonism models—total brain activity by approximately 25–40% [63,64] and the mid-
brain and striatum by 22% and 28%, respectively [65]. One of the first effects of exposure
to rotenone is intracellular accumulation of sodium, which causes early hyperpolariza-
tion and a build-up of intracellular calcium following depolarization [66]. This coincides
with changes in ion traffic that occur post NKA inhibition with ouabain [67], suggesting
that these changes in rotenone-induced parkinsonism are a direct consequence of NKA
dysfunction due to impaired ATP synthesis. Exposure to 6-OHDA, which inhibits all
four mitochondrial electron transport chain complexes, causes a 28–43% decrease in NKA
activity accompanied by a significant decrease in DA and its metabolites [68,69].

5. Mechanisms and Positive Feedback Loops: NKA and DAergic System Dysfunction

Factors affecting NKA function can be divided into two broad categories, the first
including non-specific factors such as ATP concentration; Na+, K+, Mg2+ concentrations;
OS; phosphorylation by various intracellular kinases; misfolded protein aggregates (α-
synuclein, β-amyloid, superoxide dismutase); and various modifications (including glu-
tathionylation), and the second including specific ligands—CTS. Non-specific factors can
be divided into factors that increase NKA activity and those that decrease it. For example,
phosphorylation by PKC, OS, low ATP, and interaction with misfolded protein aggregates
cause a decrease in NKA activity. Factors such as glutathionylation and increased intra-
cellular Na+ or extracellular K+ concentrations cause an increase in NKA activity. In turn,
CTS exert different effects depending on the CTS and the concentration—concentrations
below 10 nM can induce an increase in NKA activity, while concentrations exceeding 10 nM
inhibit it [70,71]. Via binding to E2P conformation of NKA [72], different CTS can lead to
the activation of various intracellular signaling pathways, which was discussed previously
by other authors [73,74]. As such, in this review, we will focus specifically on the effects
that altered NKA function may have on dopamine signaling and metabolism.

As one of the main functions of NKA is the maintenance of the electrochemical gra-
dient, alterations in its function inevitably affect Ca2+ signaling. Since the pacemaking
activity of dopaminergic neurons, specifically those in the substantia nigra, is dependent
on intracellular Ca2+ oscillations and continuous Ca2+ influx [75,76], dysregulation of Ca2+

oscillations via NKA inhibition may synergize with exposure to other risk factors, caus-
ing mitochondrial damage via oxidative stress [75,77]. Indeed, it was shown previously
that Ca2+ influx in dopaminergic neurons is a feed-forward mechanism that stimulates
mitochondrial oxidative phosphorylation [78], thus increasing metabolic load. Consider-
ing that dopaminergic neurons experience high basal metabolic load compared to other
neuron types, NKA dysfunction-induced Ca2+ homeostasis alterations could contribute to
dopaminergic neuron degeneration.

Ca2+ and NKA signaling in neurons was extensively discussed in a recent review by
Kinoshita et al. [67], and as such we will not go into detail on the subject. In brief, CTS are
known to influence Ca2+ homeostasis in different ways depending on the CTS and con-
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centration. In low, nanomolar concentrations, CTS can cause Ca2+ oscillations in neurons,
mediated by the direct protein interaction of NKA with the inositol 1,4,5-trisphosphate re-
ceptor (IP3R). Low concentration ouabain-induced Ca2+ oscillations were shown to promote
dendritic growth in an embryonic culture of primary cortical neurons [79] and improve
long-term spatial reference memory in rats when administered into the hippocampus [80].
As such, at low concentrations ouabain is considered to have a neuroprotective effect on
some neurons through its activation of CREB, the Wnt/β-catenin pathway, and NF-κB [81].
In subnanomolar concentrations, ouabain also protects against NMDA-induced cytotoxicity
via direct protein-to-protein interactions between NKA and the Na+/Ca2+ exchanger [20].
In concentrations that inhibit NKA, CTS binding slows down or reverses the action of the
Na+/Ca2+ exchanger, which co-localizes with NKA, thus increasing local cytoplasmic Ca2+

and leading to glutamate-mediated excitotoxicity [82] (Figure 1).
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Figure 1. Potential consequences that NKA dysfunction, whether from high CTS or other pathological
conditions, may have on dopaminergic signaling. Green arrows represent downstream activation,
while red arrows represent inhibitory processes. Short black arrows to the right of a given element
denote increased activation or increase in concentration (pointing up), or decreased activation or
decrease in concentration (pointing down).

On the basis of the available data, it is possible to suggest several hypotheses of how
changes in NKA functioning, due to both fluctuating CTS levels and other factors, can lead
to dopaminergic neuron death. In the above-described models, CTS cause an increase in
dopamine receptor activation. This may be a consequence of impaired dopamine reuptake,
increased dopamine release, or increased dopamine synthesis, as has been demonstrated in
various studies [51,55]. For different tissue types and cell cultures, it was shown that CTS
in non-inhibitory concentrations can cause OS via activation of the Src-ERK1/2 signaling
pathway [83,84] (Figure 2A). In turn, we propose a pathway that can lead to non-inhibitory
CTS concentrations causing OS specifically in dopaminergic neurons (Figure 2B).

Inhibition of NKA activity by 40–50 µM ouabain in mouse striatum slices was shown
to induce a decrease in the rate of DA reuptake by the dopamine active transporter (DAT)
and an increase in its duration in the synaptic cleft. Reduced DAT activity normally causes
activation of D2 dopamine autoreceptors on the presynaptic membrane, increasing the
rate of dopamine transport from the cytoplasm to vesicles via the vesicular monoamine
transporter-2 (VMAT2) [85–87]. Long-term dysfunction of DAT leads to increased duration
of DA circulation in the synaptic cleft [55]. In DAT gene knockout mice, it was shown that
DAT dysfunction leads to a decrease in presynaptic D2 autoreceptors [88]. Thus, long-term
DAT dysfunction can lead to both an increase in DA synthesis [89] and a decrease in its
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uptake into vesicles by VMAT2. VMAT2 dysfunction is known to be associated with the
development of PD owing to the accumulation of toxic products of DA metabolism [90].
Moreover, people with DAT dysfunction develop juvenile parkinsonism (with complete
loss of function in the first months of life, with partial loss of function in adolescence),
whereas partial loss of function leads to the development of bipolar disorder [91] (Figure 1).
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Figure 2. OS caused by non-inhibitory concentrations of CTS, mediated via the Src-ERK1/2 pathway
(A); possible consequences of chronic elevation of endogenous (non-inhibiting NKA) CTS concentra-
tions in dopaminergic system neurons (B). Green arrows represent downstream activation, while
red arrows represent inhibitory processes. Short black arrows to the right of a given element denote
increased activation or increase in concentration (pointing up), or decreased activation or decrease in
concentration (pointing down).

Previously it was shown that ICV ouabain administration causes an increase in TH
phosphorylation via ERK1/2 activation, indicating that DA synthesis increases as well [51].
ERK1/2 activation post ouabain injection was demonstrated several times, both in vivo in
rodents [51,55,92] and in vitro on neuron cultures [93]. Although it is known that ouabain
can activate PKA and PKC in rat cortex neuron cultures [94], to our knowledge there
have been no studies showing that ouabain-induced TH activation is mediated by these
kinases. In various cell cultures, however, it has been shown that PKA activates TH
via Ser40 phosphorylation [95,96]. Furthermore, PKA activation leads to an increase in
TH expression [97]. It was also shown that phorscoline-induced PKA activation causes
an increase in DA release in rat striatum slices [98] and increased D2R expression in the
striatum post ICV administration in rats [99]. PKA activation also causes an increase in DAT
activity in rat striatum-derived synaptosomes [100]. On the other hand, PKA inhibition in
PC12 cell culture causes an increase in VMAT2 amounts in “synaptic” vesicles [101].

It is likely that post a single injection of ouabain, TH activity eventually returns to nor-
mal. However, if endogenous CTS levels in the brain remain elevated chronically, similar
to blood plasma levels of CTS in hypertension [14], it is possible that the observed neuronal
TH hyperactivity is sustained chronically as well. It is known that TH hyperactivation in
neurons leads to the accumulation of toxic dopamine oxidation products, OS, and even-
tually neuron death [102]. In addition, it was shown that hyperstimulation of dopamine
receptors can lead to neuronal death [103]. Prolonged D2R activation is known to trigger
a β-arrestin-dependent signaling pathway, leading to increased GSK3β activity [104,105].
Pathological GSK3β activity is known to be associated with DA neuronal degeneration
and PD [106]. Activation of GSK3β also causes NURR1 degradation [107], which is vital to
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VMAT2 expression [108]. One of the mechanisms responsible for neuronal death during
GSK3β hyperactivation is an increase in NR2B-containing NMDAR activity followed by
Ca2+ overload [109]. Thus, we can assume that NKA dysfunction is associated with OS and
other stressors (including products of DA metabolism [7]).

As mentioned above, ERK1/2 activation and increased TH phosphorylation in the
striatum is characteristic of CTS-induced mania-like behavior models [51]. It is known
that activation of ERK1/2 in primary culture neurons can be induced by various CTS
and is associated with the neurotoxic effect of ouabain [91,110]. In the described models,
activation of ERK1/2 also occurs upon administration of ouabain. ERK1/2 is known
to play an ambiguous role in the pathogenesis of PD. ERK1/2 activation is necessary
for the implementation of protective mechanisms in neurons when exposed to stress
factors that lead to the initiation of neurodegeneration. PI3K/Akt and ERK1/2 signaling
pathways are known to be involved in protecting dopaminergic neurons from MPTP/MPP+-
induced neurotoxicity [111]. Previously, it was shown that ERK1/2 is involved in neuronal
antioxidant defense and translocating to the nucleus via binding to the DJ-1 protein [112].
Increased amounts of p-ERK1/2 were found in the mitochondria of degenerating neurons
from PD patients and patients with dementia with Levi’s corpuscles [113]. Other studies
supported the idea that ERK1/2 inhibition causes activation of both apoptotic and necrotic
pathways, leading to neuronal death [114]. On the other hand, activation of ERK1/2
and JNK is known to be associated with L-DOPA-induced neurotoxicity to dopaminergic
neurons in a cellular model of PD [115]. In PD models, ERK1/2 activation mediates the
occurrence of OS in pro-inflammatory factor-activated microglia. ERK1/2 is also involved
in the development of L-DOPA-induced dyskinesia by affecting synaptic plasticity in the
striatum [116,117]. Using the CG4 oligodendroglial cell line, it was shown that H2O2-
induced cell death is prevented by the ERK1/2 pathway inhibitor PD98059 [118]. PD98059
can also prevent neuronal degeneration caused by nitric oxide released by glial cells
through ERK1/2 activation [119]. The use of another inhibitor, U0126, also demonstrated
that dopamine-induced striatal neuronal death is associated with ERK1/2 activation [120].

Dopamine binding to dopamine receptors can decrease NKA activity through PKC and
PKA activation [70]. Dopamine binding to the D1 dopamine receptor in striatum neurons
leads to a decrease in NKA activity. Binding of dopamine to the D2 dopamine receptor
induces sodium channels to open, causing a spike in intracellular Na+ concentration and
activating NKA [121]. Using co-immunoprecipitation and mass spectrometry, it was shown
that D1 and D2 dopamine receptors form a protein complex with NKA. Transfection of the
D1 or D2 dopamine receptor into HEK293T cells without dopamine addition resulted in
a marked decrease in α1-containing NKA activity but had no effect on its amount [122].
Furthermore, as mentioned earlier, OS and PKC activation also cause a decrease in NKA
activity, closing the positive feedback loop.

Thus, there are many ways in which chronic NKA dysfunction due to a chronic
increase in endogenous CTS in the brain or due to other factors affecting NKA may lead to
the degeneration of dopaminergic neurons.

6. Conclusions

Although there is currently no clear picture of the role of CTS and NKA abnormalities
in the development of neurodegenerative diseases of the dopaminergic system, there is an
understanding of their role in the development of affective disorders associated with func-
tional dopaminergic pathologies. That being said, there is a significant amount of evidence
suggesting that CTS and NKA abnormalities may be key players in the development of
neurodegenerative disorders of the DA system such as PD. Further study of changes in
both NKA functioning and the amount of endogenous CTS in neurodegenerative disorders
of the DA system, and mechanisms of CTS influence on the dopaminergic system in various
models at the physiological, neurochemical, and biochemical levels could open up potential
new pharmacological targets and biomarkers for both PD and affective disorders.
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