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Abstract: Cocaine, one of the most abused drugs worldwide, is capable of activating microglia in vitro
and in vivo. Several neuroimmune pathways have been suggested to play roles in cocaine-mediated
microglial activation. Previous work showed that cocaine activates microglia in a region-specific
manner in the brains of self-administered mice. To further characterize the effects of cocaine on
microglia and neuroimmune signaling in vivo, we utilized the brains from both sexes of outbred rats
with cocaine self-administration to explore the activation status of microglia, NOD-, LRR-, and pyrin
domain-containing protein 3 (NLRP3) inflammasome activity, corticotropin-releasing factor (CRF)
signaling, and NF-κB levels in the striatum and hippocampus (HP). Age-matched rats of the same
sex (drug naïve) served as controls. Our results showed that cocaine increased neuroinflammation in
the striatum and HP of both sexes with a relatively higher increases in male brains. In the striatum,
cocaine upregulated NLRP3 inflammasome activity and CRF levels in males but not in females. In
contrast, cocaine increased NLRP3 inflammasome activity in the HP of females but not in males, and
no effects on CRF signaling were observed in this region of either sex. Interestingly, cocaine increased
NF-κB levels in the striatum and HP with no sex difference. Taken together, our results provide
evidence that cocaine can exert region- and sex-specific differences in neuroimmune signaling in the
brain. Targeting neuroimmune signaling has been suggested as possible treatment for cocaine use
disorders (CUDs). Our current results indicate that sex should be taken into consideration when
determining the efficacy of these new therapeutic approaches.

Keywords: self-administration; cocaine; neuroinflammation; cocaine use disorders; CRF signaling;
NLRP3 inflammasome

1. Introduction

Substance use disorders (SUDs) remain a major public health concern around the
world. For example, the psychostimulant cocaine is among the top abused drugs, and
deaths from cocaine overdoses doubled between 2011 and 2016 [1]. Epidemiological
studies show that SUDs, including cocaine use disorders (CUDs), are prevalent in both
males and females [2], with sex-dependent progression and relapse patterns. During the
last decade, the rate of increase in SUDs was significantly greater in females when compared
to males [3], and females escalate their psychostimulant use faster than males [4]. Females
are more likely to self-report intense highs and develop faster escalation in cocaine use [5,6].
Females also report more intense cravings and a higher likelihood of relapse with more
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severe mood abnormalities than males [6–8]. The neurobiological mechanisms underlying
sex-differences in the disease course of CUDs remain unclear.

Accumulating evidence suggests that CUDs are neuroinflammation-related diseases
and that neuroimmune dysregulation is inherent in their pathogenesis. Microglia, the
resident brain macrophage, account for 10–15% of all brain cells and constitute the first de-
fense against various immune insults. Increased microglial activation has been consistently
found in CUDs [9,10]. Cocaine can activate microglia both in vitro and in vivo [11,12]. Co-
caine and methamphetamine increase the expression of pro-inflammatory factors such as
interleukin-1 beta (IL1β), interleukin 6 (IL6), tumor necrosis factor alpha (TNFα), and
C-C motif chemokine ligand 2 (CCL2) in the prefrontal cortex (PFc) and nucleus ac-
cumbens (NAc) [13,14]. Enhanced IL1β levels in the ventral tegmental area (VTA) are
involved in cocaine-mediated behavioral changes such as conditional place preference
(CPP) and self-administration [15]. Minocycline, an inhibitor of microglial activation, miti-
gates/blocks reward-related behavioral changes induced by abused drugs [16,17]. Cocaine
self-administering macaques showed a strong inflammatory response in the NAc [18]. In
addition to animal work, the brains of addicts have revealed a close association between neu-
roinflammation and stimulant addiction, with a significant increase in activated microglia
in chronic drug abusers [19,20]. Targeting neuroimmune signaling has been suggested as a
potential treatment for preventing or ameliorating CUDs [21,22]. Whether neuroimmune
dysregulation equally contributes to CUDs in males and females remains unexplored.

Several neuroimmune pathways have been shown to be involved in cocaine-mediated
microglial activation. The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)
inflammasome belongs to the superfamily of pattern recognition receptors [23], is abun-
dantly expressed in microglia [24], and plays critical roles in microglia activation under
various stimuli. NLRP3 activation needs two sequential signals: signal 1 for priming
through increasing the mRNA and protein levels of NLRP3 as well as mRNA levels of
IL1β; and signal 2 for assembling the NLRP3 inflammasome by promoting the binding of
NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and pro-caspase
1, which, in turn, cleaves pro-IL1β into mature (m) IL1β [25]. The toll-like receptor/nuclear
factor kappa B (TLR/NF-κB) axis is well-known as signal 1, and ATP, reactive oxygen
species (ROS), and Ca2+ may each directly serve as signal 2 [26,27]. Abnormal NLRP3
activity has been identified in multiple neuroinflammatory diseases including Alzheimer’s
disease, stroke, and viral infections [28–31]. Additionally, the NLRP3 inflammasome can
be upregulated by abused drugs including cocaine and is involved in cocaine-mediated
microglia activation and behavioral changes [32,33]. Whether the regulation of NLRP3 by
cocaine has sex-specific effects has not previously been investigated.

CRF is a neuronal hormone regulated by a variety of stressors [34,35] and has also
been implicated in CUDs. CRF and its cognate receptors 1 and 2 (CRHR1/2) are expressed
in both hypothalamus and extra-hypothalamic regions, such as the striatum, HP, cortex,
and amygdala [36–38]. Extra-hypothalamic CRF, especially in the amygdala, is sensitive
to cocaine regulation [39], whereas striatal CRF signaling has been extensively investi-
gated with respect to potential cocaine-mediated reward effects [40]. However, potential
sex-differences in cocaine-regulated CRF signaling in brain reward circuitry have been
seldom explored.

To explore possible regional and sex differences in cocaine-mediated neuroimmune
dysregulation, we examined neuroinflammation levels, NLRP3 inflammasome activity,
NF-κB levels, and CRF signaling in the brains of male and female cocaine self-administered
rats. Our results demonstrate that cocaine can induce microglial activation in the striatum
and HP of both sexes. However, cocaine exerts region- and possible sex-specific effects on
microglial activation markers, NLRP3 activity, and CRF signaling. Such differential effects
induced by cocaine might underly the sex-dependent progression and relapse pattern
of CUDs. Our results thus indicate that sex should be taken into consideration when
developing therapeutic agents for CUDs that target neuroimmune molecules.
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2. Materials and Methods
2.1. Rat Brain Tissues

Brains from male and female rats with a history of cocaine addiction-like behaviors
and aged-matched naive controls were obtained from the cocaine biobank (https://www.
cocainebiobank.org/home; accessed on 2 May 2021). Details on all surgical and behavioral
procedures can be found in the original manuscript [41]. Briefly, the brains came from
heterogeneous stock rats with a history of cocaine self-administration (n = 5) and age-
matched controls. They received intrajugular catheterization and after recovery were
allowed to self-administer cocaine (0.5 mg/kg/inj, FR1) for over 1 month, including
10 short access (2 h) sessions and 14 long access (6 h) sessions. Addiction-like behaviors
were evaluated by measuring cocaine intake under a fixed ratio 1, the breaking point using
a progressive ratio schedule of reinforcement, and continued responses despite a contingent
mild foot shock. Animals for the current report were selected in such a way that they are
representative of the original population of heterogeneous rats that are self-administering
cocaine in the Biobank. In other words, the animals selected represent the spectrum of low,
moderate, and severe addiction-like behaviors, with the majority of the subjects exhibiting
moderate addiction-like behaviors. Animals were euthanized during the last session of
self-administration after ~3 h of self-administration to capture the state of intoxication. The
frozen brains were shipped on dry ice and immediately stored at −80 ◦C when received
at EVMS. Each brain was cut equally into two halves (left and right hemispheres) and
further dissected into the striatum and hippocampus (HP). Tissue from one side was used
for protein extraction and the other side for total RNA extraction.

2.2. RNA Extraction, Reverse Transcription, and Quantitative Polymerase Chain Reaction (qPCR)

To extract RNA, approximately 100–200 microglia of brain tissue was directly added
to 1 mL Trizol (Invitrogen, Waltham, MA, USA). Brain lysates were briefly sonicated (3–5 s)
and incubated for 10 min on ice and then aspirated into new 1.5 mL microcentrifuge tubes
with 0.2 mL of chloroform added. After vigorous vortexing, the samples were centrifuged
at 10,000× g for 15 min at 4 ◦C. The upper aqueous phase was transferred to a new tube
and 500 µL isopropyl alcohol was added. Samples were then incubated for 10 min and
centrifuged again to precipitate total RNA. The total RNA was dissolved in DEPC-treated
H2O and quantified. Reverse transcription reactions were performed using a Verso cDNA
kit (Invitrogen). The reaction system (20 µL) included 4 µL 5× cDNA synthesis buffer, 2 µL
dNTP mix, 1 µL RNA primer, 1 µL RT enhancer, 1 µL Verso enzyme Mix (Invitrogen), total
RNA template 1.0 µg, and a variable volume of water. Reaction conditions were set at
42 ◦C for 45 min. qPCRs were performed by using SuperScript™ III Platinum™ One-Step
qRT-PCR Kit (Invitrogen). Reaction systems were set up as follows: 10 µL Master mix,
1.0 µL primers and probes, and 1 µL cDNA and 8 µL distilled H2O. The 96-well plates
were placed into a QS3 qPCR machine (Invitrogen) for program running. Rat primers for
IL1β, IL6, CCL2, and TNFα were purchased from Invitrogen (Rn00580432, Rn01410330,
Rn00580555, Rn99999017). Rat GADPH (Invitrogen, Rn01775763) served as internal control
for quantification.

2.3. Western Blots

Brain tissues (100 microglia) were dissolved in RIPA buffers with proteinase and
phosphatase inhibitors (Thermo Scientific, Waltham, MA, USA) and sonicated for 10 s on
ice at 70% amplitude (Thermo Scientific). The brain homogenates were then incubated
at 4 ◦C for 30 min, followed by 12,000 rpm centrifugation for 10 min. The supernatants
were taken out and the protein concentrations were calculated through the BCA method.
Equal amounts of the proteins (35 µg) were electrophoresed in a sodium dodecyl sulfate-
polyacrylamide gel (160 V, 60 min) under reducing conditions followed by transfer to
PVDF membranes (180 mA, 90 min). The blots were blocked with 3% nonfat dry milk
in Tris-buffered saline (TBST). The Western blots were then incubated with indicated
antibodies overnight at 4 ◦C. The next day, the membranes were washed and incubated
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with appropriate IRDye fluorescent mouse or rabbit second antibody for one hour at room
temperature. After three washes with TBST, the membranes were put into the Odyssey®

Imaging System (LI-COR, Lincoln, NE, USA). for image development and the intensity of
the fluorescent band was quantified using Image Studio™ Software (version 5.2). After
imaging, the membranes were re-probed by β-actin for normalization. The following
antibodies were used at the indicated concentration in our studies: microglial activation
marker CD11b (1:2000, NBP2-19019), astrocyte activation marker GFAP (1:5000; Abcam
(Cambridge, United Kingdom), ab7260); NLRP3 (1:2000, AdipoGen (San Diego, CA, USA),
AG-20B-0014-C100); Caspase 1 (1:1000, Proteintech (Rosemont, IL, USA), 22915-1-AP); IL1β
(1:1000, Proteintech, 26048-1-AP); CRF (1:1000, Proteintech, 10944-1-AP); CRFR1 (1:1000;
Sigma (St. Louis, MO, USA), SAB4500465); CRFR2 (1:1000, Sigma, SAB4500467); NF-κB
(1:2000, Proteintech, 10745-1-AP); ASC (1:1000, Santa Cruz Biotech (Dallas, TX, USA),
sc-514414); β-actin (Santa Cruz; 1:2000, sc-8432 or Sigma; 1:10,000, A2066). Secondary
antibodies were purchased from Li-COR company, including IRDye® 680RD Donkey anti-
Mouse (1:5000) or rabbit IgG and IRDye® 800CW Donkey anti-Mouse or rabbit IgG (1:5000).

2.4. Statistical Analysis

All data are expressed as means ± the standard error of the mean (SEM). Data were
statistically evaluated by unpaired two-tailed student t-tests using GraphPad Prism 9
(La Jolla, CA, USA). Each group includes at least four brain samples. Tests with probability
levels of <0.05 were considered statistically significant.

3. Results
3.1. Cocaine Upregulates Neuroinflammation in the Striatum and HP of Male and Female Rats

We monitored neuroinflammation levels in the striatum and HP dissected from the
brains of male and female self-administrated rats. In male striatum, cocaine significantly
increased the levels of IL1β (15.88 ± 3.88 fold, * p < 0.05), TNFα (2.10 ± 0.47 fold, * p < 0.05),
and CCL2 (2.50 ± 0.67 fold, * p < 0.05) but not IL6 (1.26 ± 0.27 fold, p > 0.05) (Figure 1A). In
female striatum, cocaine increased the levels of IL1β (10.38 ± 1.76 fold, * p < 0.05) while the
other three pro-inflammatory mediators did not show significant changes: IL6 (1.19 ± 0.41
fold, p > 0.05), TNFα (1.47 ± 0.90 fold, p > 0.05), and CCL2 (1.20 ± 0.61 fold, p > 0.05)
(Figure 1B). These results suggested that cocaine upregulated striatal neuroinflammation
levels more strongly in males than in females. In male HP, cocaine increased the levels of
IL1β (12.55 ± 5.01 fold, * p < 0.05), TNFα (3.54 ± 0.92 fold, * p < 0.05), and CCL2 (2.21 ± 0.41
fold, * p < 0.05) but not for IL6 (1.08 ± 0.24 fold, p > 0.05) (Figure 1C). In females, cocaine
increased the levels of IL1β (9.7 ± 0.98 fold, * p < 0.05), IL6 (1.57 ± 0.19, * p < 0.05); TNFα
(1.80 ± 0.27 fold, * p < 0.05), and CCL2 (2.32 ± 0.58 fold, * p < 0.05) (Figure 1D). Similar
to the striatum, cocaine increased neuroinflammation levels in the HP with higher fold
expression in males than in females. We also compared neuroinflammation levels in the
striatum and HP in control rats. Interestingly, striatal pro-inflammatory mediators showed
significant higher levels in males than in females: IL1β (2.08 ± 0.38 fold, * p < 0.05); IL6
(2.74 ± 0.37 fold, * p < 0.05); TNFα (2.05 ± 0.39 fold, * p < 0.05) but not for CCL2 (1.47 ± 0.39
fold, p > 0.05) (Figure 1E). However, in the HP, there were no differences in the levels of
these four pro-inflammatory mediators between males and females (p > 0.05) (Figure 1F).
Thus, the higher increase on striatal IL1β in male rats might come from its higher basal
levels. Taken together, these findings indicated that cocaine increases neuroinflammation
levels in a region- and sex-dependent (at least in the hippocampus) manner in rat brain.
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5, * p < 0.05 vs. controls). (B) Cocaine signficantly increased neuroinflammation in female striatum 
(n = 5, * p < 0.05 vs. controls). (C) Cocaine signficantly increased neuroinflammation in male HP (n 
= 5, * p < 0.05 vs. controls). (D) Cocaine signficantly increased neuroinflammation in female HP (n = 
5, * p < 0.05 vs. controls). (E) In basal conditions, neuroinflammation levels in male striatum was 
signficantly higher than in female striatum (n = 5, * p < 0.05). (F) In basal conditions, there was no 
signfificant sex differences in neuroinflammatoin in the HP (n = 5). 
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Increased neuroinflammation levels imply glial activation. Previous studies showed 
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brain levels of the microglia activation marker, CD11b, and the astrocytes marker, GFAP. 
In the striatum, cocaine significantly increased CD11b levels in male (1.98 ± 0.23 fold, * p 
< 0.05) but not in female rats (1.06 ± 0.06 fold, p > 0.05) (Figure 2A). Cocaine had no obvious 
effects on GFAP levels in either males (1.05 ± 0.02 fold, p > 0.05) or females (1.05 ± 0.04 fold, 
p > 0.05) (Figure 2B). In the HP, we did not observe significant changes on CD11b or GFAP 
levels in either sex (p > 0.05) (Figure 2C,D). These results showed that cocaine could 
increase CD11b levels in a region- and sex-dependent manner but produced no significant 
effects on GFAP levels in the regions we examined. 

Figure 1. Cocaine self-administration upregulates neuroinflammation in both striatum and HP in
male and female rats. (A) Cocaine signficantly increased neuroinflammation in male striatum (n = 5,
* p < 0.05 vs. controls). (B) Cocaine signficantly increased neuroinflammation in female striatum
(n = 5, * p < 0.05 vs. controls). (C) Cocaine signficantly increased neuroinflammation in male HP
(n = 5, * p < 0.05 vs. controls). (D) Cocaine signficantly increased neuroinflammation in female HP
(n = 5, * p < 0.05 vs. controls). (E) In basal conditions, neuroinflammation levels in male striatum was
signficantly higher than in female striatum (n = 5, * p < 0.05). (F) In basal conditions, there was no
signfificant sex differences in neuroinflammatoin in the HP (n = 5).

3.2. Cocaine Increases Microglial Markers in the Male Striatum

Increased neuroinflammation levels imply glial activation. Previous studies showed
that cocaine could activate both microglia and astrocytes in vitro; therefore, we assessed
brain levels of the microglia activation marker, CD11b, and the astrocytes marker, GFAP.
In the striatum, cocaine significantly increased CD11b levels in male (1.98 ± 0.23 fold,
* p < 0.05) but not in female rats (1.06 ± 0.06 fold, p > 0.05) (Figure 2A). Cocaine had
no obvious effects on GFAP levels in either males (1.05 ± 0.02 fold, p > 0.05) or females
(1.05 ± 0.04 fold, p > 0.05) (Figure 2B). In the HP, we did not observe significant changes
on CD11b or GFAP levels in either sex (p > 0.05) (Figure 2C,D). These results showed that
cocaine could increase CD11b levels in a region- and sex-dependent manner but produced
no significant effects on GFAP levels in the regions we examined.
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but there were significant upregulations in mCasp1 (1.84 ± 0.19 fold, * p < 0.05) (Figure 4B) 
and mIL1β (1.56 ± 0.08 fold, * p < 0.05) (Figure 4C). ASC dimer and oligomerization is 
critical for NLRP3 inflammasome activation. We thus monitored ASC level in the striatum 
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* p < 0.05 and 1.57 ± 0.09 fold, * p < 0.05, respectively) (Figure 5A,B). However, we did not 
observe significant changes on ASC monomer, dimer, and oligomer in the HP of male and 
female rats with cocaine exposure (Figure 5C,D). These results indicate that other 

Figure 2. Cocaine self-administration upregulates microglial activation markers in male striatum.
(A) Cocaine increases CD11b levels in male but not in female striatum (n = 5, * p < 0.05 vs. controls).
(B) Cocaine has no significant effects on GFAP levels in striatum of either sex (n = 5). (C) Cocaine
has no significant effects on CD11b levels in HP of either sex (n = 5). (D) Cocaine has no significant
effects on GFAP levels in HP of either sex (n = 5).

3.3. Cocaine Differentially Upregulates NLPR3 Inflammasome Activity in Rat Brain

NLRP3 inflammasome is involved in cocaine-mediated behavioral changes [33]. Here,
we assessed the activity of the NLPR3 inflammasome by determining the protein levels
of NLRP3, pro- and mature caspase 1, and pro- and mature IL1β in cocaine-exposed rat
brains of both sexes. NLRP3 was significantly increased in male but not female striatum
(1.42 ± 0.09 fold, * p < 0.05; 0.99 ± 0.07 fold, ns) (Figure 3A). Similarly, cocaine significantly
increased the levels of mature caspase 1 and mature IL1β in male striatum (1.76 ± 0.11
fold, * p < 0.05; 2.24 ± 0.25 fold, * p < 0.05, respectively) (Figure 3B,C). We did not observe
upregulation of NLRP3, mature caspase 1, and mature IL1β in the striatum of females
(p > 0.05) (Figure 3B,C). In male HP, we observed significant upregulation of NLRP3 levels
(1.96 ± 0.08 fold * p < 0.05) (Figure 4A) but there were no significant changes in the levels
of mCasp1 and mIL1β, indicating that the NLPR3 inflammasome was primed but not fully
activated. In contrast, we did not find significant changes in female NLRP3, but there were
significant upregulations in mCasp1 (1.84 ± 0.19 fold, * p < 0.05) (Figure 4B) and mIL1β
(1.56 ± 0.08 fold, * p < 0.05) (Figure 4C). ASC dimer and oligomerization is critical for
NLRP3 inflammasome activation. We thus monitored ASC level in the striatum and HP
of male and female rats with cocaine self-administration. Cocaine significantly increased
ASC dimer levels in the striatum of male and female striatum (1.84 ± 0.14 fold, * p < 0.05
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and 1.57 ± 0.09 fold, * p < 0.05, respectively) (Figure 5A,B). However, we did not observe
significant changes on ASC monomer, dimer, and oligomer in the HP of male and female
rats with cocaine exposure (Figure 5C,D). These results indicate that other inflammasomes
might be involved in IL1β cleavage and mIL1β production. Taken together, our results
indicated that cocaine primes and activates the NLRP3 inflammasome in a region- and
sex-dependent manner.

3.4. The Effects of Cocaine on CRF Signaling and NF-κB Levels in Rat Brain

CRF and its cognate receptors, CRFR1 and CRFR2, are expressed in the striatum and
HP. CRF signaling has been shown to promote cocaine-mediated reward effects [40] and
CRF has the ability to activate microglia in vitro [42]. Here, we determined the effects
of cocaine on CRF signaling in vivo. In the striatum, cocaine significantly increased CRF
levels in males (1.42 ± 0.07 fold, * p < 0.05) but not in females (0.96 ± 0.05 fold, p > 0.05)
(Figure 6A). We did not detect significant changes in CRFR1 and CRFR2 in the striatum
of either sex (Figure 6B,C) (p > 0.05). In the HP, there were no significant changes in
levels of CRF, CRFR1, CRFR2 in either sex (Figure 7A–C) (p > 0.05). Taken together, our
results revealed that CRF signaling was probably upregulated only in the striatum of
cocaine-treated males.
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Figure 3. Cocaine increases the NLRP3 inflammasome in male striatum. (A) Cocaine significantly
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increases mIL1β levels in male but not female striatum (n = 5, * p < 0.05).
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NF-κB is a master regulator for the transcription of pro-inflammatory mediates and
has been implicated in cocaine-mediated microglia activation. NF-κB-mediated signaling
could serve as signal 1 for NLRP3 priming. We thus determined the levels of NF-κB in
the striatum and HP of both sexes. Cocaine increased striatal NF-κB levels in both male
and females (1.52 ± 0.11 fold, * p < 0.05 and 1.79 ± 0.14 fold, * p < 0.05, respectively)
(Figure 8A). In the HP, cocaine also increased NF-κB levels in males (1.42 ± 0.05 fold,
* p < 0.05) and females (1.68 ± 0.12 fold, * p < 0.05) (Figure 8B). Our findings suggest that
cocaine upregulated NF-κB signaling in a ubiquitous manner.
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4. Discussion

Epidemiological studies show that CUDs exhibit sex-dependent differences in pro-
gression and relapse; however, the mechanisms driving these differences are unknown.
Accumulating evidence suggests that CUDs are neuroinflammation-related brain diseases
and that targeting neuroimmune signaling may provide an alternative therapeutic ap-
proach for treating SUDs [21,22]. Cocaine-mediated immune responses may be sexually
dimorphic [43]. To further characterize the effects of cocaine on microglia and neuroim-
mune signaling, we used a well-established rodent model of outbred rats (both sexes)
with cocaine self-administration to investigate the activation status of microglia and three
neuroimmune pathways that have been shown to be regulated by cocaine: NLRP3 inflam-
masome, CRF signaling, and NF-κB signaling. Our results showed that cocaine increased
neuroinflammation levels in the striatum and HP in both sexes with evidence of generally
greater levels in males. Thus, cocaine exerts differential sex- and region-specific effects
on different neuroimmune signaling. Our results provide additional evidence supporting
roles for neuroinflammation and neuroimmune signaling in the pathogenesis of SUDs of
both sexes and also underlines the importance of including both sexes in future studies.

In experimental animal models, cocaine can be administered passively (via I.P. injec-
tions) or actively through self-administration. In self-administration, rodents are given the
opportunity to “choose” to take the drugs of interest by engaging in a learned behavior
(lever pressing or nose-poking) rather than passively receiving experimenter-administered
drug. This rodent model thus better recapitulates human addictive behavior that occurs
in the natural environment and remains the “gold standard” for behavioral experiments
in the field of CUDs [44,45]. It has been shown that different administration routes could
strikingly alter the effects of cocaine on gene expression [46]. Of note, the brains utilized
here were from outbred rats, meaning their genetic background is heterogeneous, which is
more analogous to humans than inbred strains. Therefore, our results may be more transla-
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tionally significant with respect to genetic variability and provide additional evidence that
neuroinflammation is involved in the pathogenesis of CUDs.

The activation of microglia in vivo in our study showed varying results depending on
the different approaches employed. Through qRT-PCR, we monitored neuroinflammation
upregulation (i.e., microglia activation) in the striatum and HP of both sexes. However,
we observed microglia activation only in male striatum when we monitored the levels of
CD11b, a commonly used microglia marker [47]. Such discrepancy may be derived from
the different sensitivity of these two approaches. The QRT-PCR approach is to detect the
mRNA levels of cytokines and chemokines, which are very sensitive to mRNA levels, while
CD11b was monitored by western blot for its protein expression. The highly basal levels of
CD11b might be the factor masking the changes on CD11b. Increased neuroinflammation
can also be attributed to astrocyte activation. We checked GFAP levels but did not observe
significant differences between any groups. Thus, our results favor the interpretation
that microglia were activated and contributed to the increased neuroinflammation in
cocaine self-administered rats. Previous results showed that there was actually a reduction
in astrocyte GFAP levels in the striatum of rats with cocaine self-administration and
extinction [48], which also suggests that astrocytes do not contribute to the increased
neuroinflammation produced by cocaine self-administration. In future studies, we could
purify adult microglia and astrocytes and directly monitor their inflammatory status to
further test this hypothesis.

Brain-resident macrophages determine the intensity of immune responses and inflam-
mation levels in the brain and can be influenced by various stimuli. Microglia characteristics
differ across the brain and vary in the density, morphology, and functional status depend-
ing on region [49,50]. Single-cell (sc) RNA sequencing has also revealed that microglia
are heterogeneous in both physiological and pathological conditions based on their gene
expression profiles [51]. Microglia also are sexually dimorphic throughout the life span
under unstimulated conditions. In the early postnatal stage, gene ontology analysis at
postnatal (P) day 20 revealed that inflammatory response genes were upregulated in female
microglia compared with males indicating that microglia are in a more primed state in
females at this age [52]. In adults (3-month-old), RNA sequencing suggests that more
inflammatory-related genes are expressed in male brains than in females [53,54]. Further-
more, immune responses of microglia are sex dependent. LPS could trigger a greater
release of inflammatory cytokines from microglia isolated in the male rat brain (P0/P1)
than from females [55]. In adulthood, LPS induces more microglia activation in males than
in females [56]. Similarly, LPS increased Iba1+ cell number and area in 3-month-old male,
but not female mice [57]. In contrast, LPS increased the levels of inflammatory cytokines
to a greater extent in aged female compared with male mice [58]. Overall, these findings
show that microglia and their immune responses are age- and sex-dependent and suggest
that sex is a biological factor regulating the status of microglia and immune responses.

Although there is ample preclinical and clinical evidence showing a sex-dependent
pattern on SUDs, the mechanisms underlying this phenomenon remain much elusive.
Microglia are sexually dimorphic in response to inflammatory stimulus; thus, it is possi-
ble that abused drugs can also induce differential immune responses of microglia which
underlies the sex dimorphic pathogenesis of SUDs. Indeed, several abused drugs have
been shown to induce microglial activation in a sex-dependent manner. Alcohol has been
well-known to sex-dependently induce brain transcriptomic changes related to alcohol
use disorder [59]. For example, binge ethanol drinking can induce greater changes to
the inflammatory cytokines profile in adolescent females than in adolescent males [60].
However, another investigation showed binge-level alcohol drinking inhibited TNF recep-
tor 2 signaling in adult female mice but activated this pathway in adult male mice [61].
The discrepancy between these two studies may be due to mouse age (adolescence vs.
adult) or alcohol regimen they selected. Opioid-like drugs have the ability of inducing
sexually dimorphic neuroimmune responses in mice. Chronic oxycodone and withdrawal-
treated male mice had higher protein levels of pro-inflammatory cytokines/chemokines
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and growth factors including IL1β, IL2, and IL7 in the PFC as compared to their female
counterparts. In contrast, reduced levels of pro-inflammatory cytokines/chemokines IL1β,
IL6, and CCL11 were observed in the NAc of oxycodone and withdrawal-treated males as
compared to female mice [62]. One caveat of previous studies is that they did not compare
the basal levels of pro-inflammatory cytokine between sexes. Thus, the sex-dependent
difference on abused-drug-mediated inflammatory responses might be partly induced by
the difference in their basal levels. Direct comparisons on the effects of psychostimulants
such as cocaine on neuroimmune signaling between sexes remain scarce. However, a
relevant study showed that higher neuroimmune response can be positively related to
cocaine-mediated reward effects between sexes in the context of traumatic brain injury
(TBI) model. Adolescent TBI increased susceptibility to the rewarding effects of cocaine in
male adult mice in parallel with augmented inflammatory profiles, increased microglial
phagocytosis of neuronal proteins, and decreased neuronal spine density in the NAc. On
the contrary, female adult mice with higher levels of female sex hormones in the time of TBI
showed reduced sensitivity to the rewarding effects of cocaine, with significantly reduced
microglial activation and phagocytosis of neuronal proteins within the NAc [63]. Accord-
ing to the statistics of drug consumption by sex, men are more prone to psychostimulant
use than women (United Nation Office on Drugs and Crime. World Drug Report 2018).
However, once women begin to consume drugs, they tend to progress faster from use to
abuse, a phenomenon known as telescoping [64]. It will be interesting to directly compare
the neuroimmune responses between sexes in the different stages of cocaine use.

Among the four pro-inflammatory mediators we examined, IL1β was the most sensi-
tive to cocaine exposure, supporting its critical roles in cocaine-mediated reward effects
in a manner consistent with previous findings [15]. The mechanisms underlying cocaine-
mediated sex differences in neuroinflammation upregulation are unclear. Based on previous
studies [53,54], it is possible that the pro-immune state of microglia in male striatum could
make microglia more sensitive in response to an incoming stimulus. Therefore, we directly
compared neuroinflammation levels in the striatum and HP between sexes. The results
showed that higher neuroinflammation levels can be observed in male striatum than in
females, which is consistent with our hypothesis. However, we did not see sex differences
in neuroinflammation levels in HP. Sex hormones have been extensively investigated for
regulating microglia activation in various conditions. For example, progesterone attenuates
brain inflammatory responses in rodent models [65]. Gonadal hormones differentially
regulate sex-specific stress effects on glia in the medial prefrontal cortex [66]. It is thus
possible that sex hormones are responsible for the difference in cocaine-mediated immune
responses in the HP. This hypothesis needs further investigation.

A novelty for our finding is that cocaine could exert differential region- and sex-
dependent patterns for the three neuroimmune signaling pathways we examined: NLRP3
inflammasome activation in male striatum and female HP; CRF signaling activation in male
striatum; and NF-κB activation in both regions for both sexes. The reasons underlying the
differential effects on NLRP3 and CRF signaling remain unknown and should be further
explored in future studies. Interestingly, we observed NF-κB activation in both regions of
both sexes; however, the neuroinflammation levels were sex- and region- dependent. This
phenomenon implies that multiple factors and signaling coordinately decided the final
results of neuroimmune response, which may include basal microglia activation status,
age, sex, and local microenvironment. Our results also indicate that microglia activation
across brain regions could have different sex-dependent neuroimmune mechanisms. The
striatum and HP play critical roles in various stages of CUDs: the striatum is more involved
in the initiation stage of CUDs and HP is more relevant to the withdrawal and relapse
stages [67]. For example, upregulation of the NLRP3 inflammasome in male striatum and
in female HP induced by cocaine indicate that NLRP3 could have sex-dependent roles in
contributing to the pathogenesis of CUDs. Such results indicate that the addiction stage of
CUDs and sex should be considered in assessing the potential of neuroimmune targeting
for CUDs treatment.
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5. Conclusions

Cocaine increases neuroinflammation in both sexes of rats, and cocaine regulates neu-
roimmune signaling in both a region- and a sex-specific manner. Sex should be considered
as a relevant factor in testing therapies for CUDs.
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