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Abstract: Conventional therapy options for chronic pain are still insufficient and patients most
frequently request alternative medical treatments, such as medical cannabis. Although clinical
evidence supports the use of cannabis for pain, very little is known about the efficacy, dosage,
administration methods, or side effects of widely used and accessible cannabis products. A possible
solution could be given by pharmacogenetics, with the identification of several polymorphic genes
that may play a role in the pharmacodynamics and pharmacokinetics of cannabis. Based on these
findings, data from patients treated with cannabis and genotyped for several candidate polymorphic
genes (single-nucleotide polymorphism: SNP) were collected, integrated, and analyzed through a
machine learning (ML) model to demonstrate that the reduction in pain intensity is closely related to
gene polymorphisms. Starting from the patient’s data collected, the method supports the therapeutic
process, avoiding ineffective results or the occurrence of side effects. Our findings suggest that ML
prediction has the potential to positively influence clinical pharmacogenomics and facilitate the
translation of a patient’s genomic profile into useful therapeutic knowledge.
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1. Introduction

Chronic pain is a public health concern affecting approximately 20% of the population
in North America [1], Australia [2], and Europe [3]. It is more common among women [4],
elderly people [5], and the socioeconomically disadvantaged [6]. Moreover, chronic pain
may have a significant impact on quality of life [7], resulting in restrictions on mobility and
daily activities. Many people experience depression, anxiety and sleep disorders [8], as
well as opioid dependence [9] and feelings of isolation [10]. Current therapy options have
a heterogeneous approach by combining pharmacological, physical, and psychological
components. However, patients do not always have a good experience with conventional
treatments and most frequently mention chronic pain as their primary motivation for using
and requesting alternative medical treatments, such as medical cannabis. The cannabis
plant has been used for its medical and mind-altering effects for millennia. Cannabis
interacts with the endocannabinoid system, a network of receptors, signaling molecules,
and synthetic and degrading enzymes. The type 1 cannabinoid receptor (CB1) is mostly
expressed in the central nervous system on neurons concentrated in the prefrontal cortex,
hypothalamus, hippocampus, amygdala basal ganglia, and cerebellum. Cannabis’ neu-
ropsychiatric effects are caused by heterosynaptic g-aminobutyric acid signaling [11,12].
The type 2 cannabinoid receptor (CB2) is mostly found on macrophages, B cells, and
natural killer cells [13]. According to the increased knowledge of the endocannabinoid
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system, clinical and preclinical research efforts throughout recent decades have defined
many impacts of cannabis on physiology and behavior, and a more recent study focused
on its efficacy for various medical objectives [14]. Cannabis has proven to be efficient for
neurological diseases, such as multiple sclerosis, Parkinson’s disease, Alzheimer’s dis-
ease, and drug-resistant epilepsy [15]; Tourette’s syndrome symptoms and spasticity [16];
rheumatoid arthritis and other rheumatic diseases [17]; fibromyalgia [18]; traditional drug-
resistant glaucoma [19]; and inflammatory bowel disease [20]. Therapeutic approaches
with cannabis have been attempted in the treatment of insomnia, post-traumatic stress
disorder, and primary or secondary anorexia due to oncological or anti-HIV therapies.
Furthermore, several studies recently showed that there is evidence to support the use of
cannabinoids for the treatment of chronic or oncologic pain [21] and neuropathic pain [22].
The therapeutic effects of cannabis are a result of the presence of terpenophenolic substances
known as cannabinoids. There are more than 100 cannabinoids isolated from cannabis,
including cannabidiol (CBD), tetrahydrocannabinol (THC), cannabichromene (CBC), and
cannabigerol (CBG) [23]. THC is the primary psychoactive constituent of cannabis, which
includes feeling ‘high’, anxiety, paranoia, and cognitive deficits. THC stimulates both
the CB1 and CB2 receptors, decreasing cyclic adenosine monophosphate synthesis and
resulting in reduced neurotransmission [24]. Effects are observed clinically as deficits in
a person’s memory, pleasure, movements, thinking, and concentration. Moreover, THC
exhibits both analgesic and anti-inflammatory properties. On the contrary, CBD should
not have any intoxicating or psychoactive effects, but it is important to highlight that
multiple possible pharmacological targets exist for CBD, such as anticonvulsant, anxiolytic,
anti-inflammatory, and neuroprotective effects [25]. Although clinical evidence supports
the use of cannabis for pain, very little is known about the efficacy, dosage, administration
methods, or side effects of widely used and accessible cannabis products. Additionally,
there is still a lack of knowledge on the medicinal benefits of cannabinoids. A possible
solution could be given by pharmacogenetics, supposing that the patient’s response to
cannabinoid treatment may have a genetic background and is dependent on gene poly-
morphisms involved in the action, metabolism, and transport of these substances in the
organism [26]. This information leads us to select potential genes whose variants may
affect both the therapeutic effect and the occurrence of possible side effects and adverse
reactions [27]. So far, scientists have identified numerous gene variants that determine a
different cannabis therapeutic effect, affecting proteins involved in the transport, action,
and metabolism of these substances. Additionally, machine learning (ML) approaches
show satisfactory performance in a variety of tasks in biomedicine, including knowledge
improvement in pharmacogenetics [28]. ML approaches can help aid clinical decision
making by predicting treatment outcomes, guiding drug selection to avoid negative effects,
and helping the identification of more effective drugs for treating differently responding
subpopulations. Based on this knowledge, data from patients treated with cannabis and
genotyped for several candidate polymorphic genes were analyzed using an ML method
that, starting from the patient’s data collected, supports the therapeutic process, avoiding
ineffective results or the occurrence of side effects.

2. Materials and Methods
2.1. Data Collection

Between November 2018 and September 2020, a cohort of 565 Caucasian patients
was recruited by Azienda USL Toscana Sud-Est, San Donato Hospital (Arezzo, Italy),
Department of Pain Medicine and Palliative Care [29]. The study was approved by the
Tuscan Regional Ethical Committee (n. 1287) on 15 May 2018. Patients provided written
consent to participate in the study and allow their genotyping after being informed of
the initiative. Patients suffered from a disease defined as chronic pain for at least three
months, with the presence of side effects or an inadequate response to conventional ther-
apies. The protocols followed the Responsible Committee on Human Experimentation’s
ethical requirements, as well as the 2008 revision of the Helsinki Declaration. The study’s
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design allowed for 4 follow-up visits every 3 months after an initial appointment, at which
they were diagnosed and given a prescription for medical cannabis. At these visits, the
therapy was changed according to the therapy response in the previous period. There are
several medicinal cannabis varieties on the market, each characterized by a specific ratio
of the amount of THC and CBD. In this study, the administered cannabis preparations
were Cannabis FlosBedrocan® (THC < 19%, CBD < 1%—Ministry of Health, The Nether-
lands), which is the most widely used cannabis, frequently used in research; Cannabis
FM1® (THC 13–20%, CBD < 1%—Military Pharmaceutical Chemical Institute Florence,
Italy), which is one of the two varieties produced directly in Italy; Cannabis FlosBediol®

(THC < 6.5%, CBD < 8%—Ministry of Health, The Netherlands) and Cannabis FM2® (THC
5–8%, CBD 7.5–12%—Military Pharmaceutical Chemical Institute Florence, Italy), which
have a low-to-medium THC level; and FlosBedrolite® (THC < 1%, CBD < 9%—Ministry of
Health, The Netherlands),which is a non-psychoactive variety of cannabis. The different
preparations of cannabis inflorescence were extracted under the SIFAP (Italian Association
of Compound Pharmacists) method and following the Legislative Decree 9 November 2015
of the Italian Ministry of Health, which prescribes preparing cannabis extracts according to
the Good Compounding Practices FU. The initial THC dosage prescribed was 5 mg per
day, independent of the medicinal cannabis variety used. At the first visit, the patients
were asked to sign an informed consent form, wherein they were provided information
related to the therapeutic cannabis administered. Furthermore, questionnaires were offered
to patients to monitor symptomatic improvement in pain and quality of life during the
treatment period. One of the pain-rating scales used in epidemiologic and clinical research
to measure the severity or frequency of different symptoms is the Visual Analogue Scale
(VAS) [30]. The pain VAS, which ranges from “no pain” (0 value) to “worst pain” (10 value),
is a unidimensional measure of pain intensity that is used to track patients’ pain progression
or compare the level of pain in patients with similar diseases. A self-assessment tool called
the “Hospital Anxiety and Depression Scale” (HADS) [31] was instead created to help
people determine their level of anxiety and depression. There are fourteen parts to it, seven
of which deal with anxiety and seven with depression.

2.2. Gene Analysis

Patients were genetically typed for various polymorphisms involved in drug metabolism,
opioids, and pain perception. Genetic variants (single-nucleotide polymorphism: SNP) in
defined genes were selected from previous publications [29] with at least one positive associ-
ation with proven biological activity in individuals using cannabis for recreational purposes,
given the lack of suitable indications in patients using cannabis for medical purposes. The
8 selected SNPs were as follows: MDR1/ABCB1 rs1045642; TRPV1 rs8065080; 5-UGT2B7
rs7438135; CYP3A4 rs2242480; CNR17B rs1049353; COMT rs4680; FAAH rs2295632; and
CYP3A4 rs35599367. DNA was collected from a buccal swab and extracted using DNA
Extract All Lysis Reagent (Applied Biosystems, Waltham, MA, USA) and SNP detection
was performed by TaqMan Assay (Applied Biosystem) in an RT-PCR One-Step-Plus system
(Applied Biosystem by Thermo Fisher).

2.3. Clinical Dataset

To generate a comprehensive patient profile, clinical, genetic, and pharmacological
information was collected and integrated into a multi-purpose dataset, populated by
565 subjects, uniquely identified based on an anonymous key. Each patient in the dataset
was defined by two different types of features: the ones that changed over the treatment
period (dynamic) and the ones that remained constant (static). Static features include
age (from 2 to 94 years old); sex (male/female); pathology (CNS pathologies, rheumatoid
arthritis, inflammatory diseases, neuropathic pain, others); and patient polymorphisms.
Dynamic features include, for each treatment subperiod, total daily CBD and THC dose
expressed in milligrams; painkillers assumption (yes/no); other drugs taken (yes/no); VAS
(from 0 to 10); HADS results, benefits (yes/no); and collateral effects (yes/no). A column
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named “Drop” was also added, which includes patients who decided to drop out of the
treatment early for various reasons, such as a lack of pain reduction or the occurrence of
side effects (Figure 1).
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Figure 1. Features related to each patient, including static features in light yellow and dynamic
features over the follow-up (F/U) periods in light green. In dark green, a focus on the dynamic
features of each subperiod is shown.

2.4. Machine Learning Method

Regression analysis was performed in this study, which examined the relationship
between the dependent variables (target), which belong to a continuous domain, and
the independent variables in a dataset. The job of the modeling algorithm is to find the
best mapping function from input variables to the continuous output variable. EXtreme
Gradient Boosting (XGBoost 1.7.6) [32] was selected as the best model, a machine learning
technique that produces a predictive learner in the form of a set of weak predictive models,
allowing the optimization of an arbitrary differentiable cost function. The method employs
the gradient-descent algorithm to minimize errors in sequential models. Decision trees were
selected as weak predictors, which tend to outperform all other algorithms in manipulating
small and structured data. Regularization parameters can be added and tuned with
XGBoost and are highly effective in reducing computing time providing optimal use of
memory resources. To evaluate and report the performance of the XGBoost model, the
mean absolute error (MAE) was calculated. The MAE is a metric commonly used because
the units of the error score correspond to the units of the predicted target value. The MAE
does not give different weight to different types of errors and the scores increase linearly
as the error increases. It is determined by averaging the absolute error value, which is the
difference between an expected and predicted value. Standard deviation (SD) was also
calculated, a statistic that measures the dispersion of a dataset relative to its mean. The
bigger the deviation within the data collection, the further the data points deviate from the
mean; thus, the higher the standard deviation, the more spread out the data.

3. Results

The use of computational tools has gained increasing importance, thanks to their ability
to process biological data at an unprecedented speed, revealing information and patterns
hidden within. Machine learning models represent a crucial component in the development
of algorithms and come with great opportunities to reduce cost, increase reproducibility,
and save time. Because of that, in this study, we implemented an XGBoost prediction of the
optimal combination of THC and CBD doses to be prescribed to each patient, based on the
genetic, pharmacological, and clinical data information described above.

3.1. Data Pre-Processing

ML algorithms are sensitive to the range and distribution of attribute values. Data
extreme values can mislead the training process, resulting in less accurate models and
poorer results. To remove these possible outliers, we first represented (Figure 2) and
analyzed the distribution of THC and DBC doses/day in the dataset. All the subjects
were under treatment with medical cannabis, a combination of CBD and THC from 0.01 to
15 and 20 mg, respectively, with a mean of 2.7 mg for THC and 1.6 mg for CBD. A dose
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greater than 10 mg was rarely prescribed. Therefore, we did not consider THC daily dose
prescriptions over 9 mg or CBD doses over 8 mg.
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Figure 2. Medical cannabis dose distribution range. Boxplot of CBD and THC mg/day distribution.
Lower and upper box boundaries represent the 25th and 75th percentiles, respectively; the red line
inside the box shows the median; and the lower and upper error lines highlight the 10th and 90th
percentiles, respectively. Outliers’ data falling outside the 10th and 90th percentiles were not reported.

Additionally, the “Drop” column, which includes patients who decided to drop out
of the study, caused the dataset to contain many empty cells. To solve this problem, we
decided to split the dataset by considering each patient as many times as the number of
follow-up periods, as shown in Figure 3.
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Figure 3. Patients who decided to attend all the follow-up visits were completely described by
four rows. Drop-out case examples include a patient who dropped the treatment after the second
follow-up visit, represented therefore by only two rows.

Moreover, to maintain the temporal aspect and avoid the problem of identical rows
with different cannabinoid doses, a “Class” column was added to distinguish each follow-
up period, incrementing the dataset to 1823 rows. The dataset was then pre-processed
to make it suitable for further computational analysis. Each categorical value was en-
coded with values between 0 and n classes-1, while numerical columns were scaled to the
[0, 1] range.
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3.2. XGBoost Prediction

Pre-processed data were then divided into the training set and the test set. The training
set consisted of 80% of the dataset and was used to make the model learn the hidden
features. The remaining 20% belonged to the test set to test the model after completing
the training. The XGBoost hyperparameters were selected after a grid, which consisted of
trying every possible configuration to find the parameter set that guarantees the highest
accuracy. We implemented a model with 1300 trees with a maximum depth of 12, while
we used the default values for the minimum sum of instance weight needed in a child. A
feature selection step was not necessary as the model was already able to prioritize the
most important features and filter out irrelevant ones. The network was trained and tested
on 20 runs, each using a different dataset split. Moreover, the MAE and SD were calculated
to evaluate the performance of the model, resulting in a MAE value equal to 1.01 mg with a
SD of 0.04 mg. Figure 4 reported the distance between a subset of predicted and real values
both for THC and CBD doses, including error bars of each prediction.
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Figure 4. Real observations are shown as single red points within the plot, while predicted values
are represented as single blue points. THC and CBD mg/day predicted vs. real values are plotted
on the left and the right side of the plot, respectively. In the X-axis, 20 values for each cannabinoid
are reported. The Y-axis represents daily dose values. The lower graph includes error bars for each
prediction, which represents the variation of the corresponding coordinate of the point.

From the graphs in Figure 4 emerges an extraordinary ability of the model to accurately
predict most of the values, while still showing an increase in error for the prediction of the
extreme values caused by the unbalanced data distribution. Because our aim remains the
possibility to understand the importance given by the genetic features in the prediction, a
feature importance bar graph is also reported (see Figure 5).
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Figure 5. Feature importance bar graph for THC and CBD daily dose prediction on the left and on
the right, respectively. All the features are listed and sorted by their importance. The X-axis displays
feature names used as the input of the ML model, while the Y-axis show which features attribute the
most predictive power to the model.

4. Discussion

In this study, we developed a powerful XGBoost algorithm to predict the appropriate
cannabis therapeutic dose. In addition, we showed those that are the main predictors in
our model through bar graphs of feature importance. Despite the difficulties in properly
quantifying the effects of cannabis treatment and the intricacy of cannabis pharmacology,
both bar graphs highlight the importance of age as the first factor in determining the correct
dose of cannabinoids. Indeed, the influence of age on the effect of cannabis on the brain
has been extensively studied, although the results do not offer a conclusive answer on
the type of role age has. The VAS parameter shows high importance for delineating the
right treatment. This outcome was very encouraging and in line with previous studies
that state that medical cannabis could be a viable alternative to traditional treatments for
chronic pain [33,34]. On the contrary, no gender differences are observed in the effects of
cannabinoids on chronic pain. Research on gender differences is a growing field of interest
as cannabinoid-based therapies are being evaluated for various pain disorders. However,
no definitive conclusions can be made about sex differences regarding efficacy or the mech-
anisms mediating these possible differences [35]. Surely, there is a need for more studies
investigating gender variations in the regulation of endocannabinoid signaling to create
medications that target the endocannabinoid system [36]. Furthermore, high impact in the
prediction is given to the pathology suffered. In this study, patients were grouped into five
different pathology classes: central nervous system disorders, inflammatory rheumatic
diseases, migraine headaches, spinal disorders, and other pathologies. Although there is
strong evidence that cannabinoids are effective in treating rheumatic disease and central
nervous system disorders, the clinical evidence remains lacking and has not progressed
significantly over the last few years. Clinical trials that provide positive endpoints and evi-
dence that medicinal cannabis should be considered a frontline therapeutic remain largely
elusive [37,38]. Similarly, the long-term effects of cannabis in treating spinal disorders
are poorly understood. Other active cannabinoids besides THC are potential therapeutic
agents for treating symptoms of spinal disorders [39], yet evidence regarding effectiveness
is limited due to low-quality studies with small sample sizes, leaving a sizable knowledge
gap in this area. Differently, according to recent studies, the endocannabinoid system is
involved in migraine mitigation through several central and peripheral pathways [40].
Cannabinoids have a specific prophylactic effect in migraines thanks to their ability to
inhibit platelet serotonin release and their peripheral vasoconstrictor effect [41].
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Additionally, it is possible to evaluate the impact of specific genetic variants in patients
and explain part of the great inter-individual variability observed in pain reduction. Part of
this is significantly correlated with four polymorphic candidate genes which have been
studied to be involved in the therapeutic activity of cannabis [26]: ABCB1 rs1045642, TRPV1
rs8065080, UGTB7 rs7438135, and COMT rs4680.

The rs1045642 polymorphism in the ABCB1 gene (ATP-binding cassette subfamily
B member 1, OMIM: 171050) has been linked to changes in drug response and disease
susceptibility. This SNP has been extensively studied in relation to cannabis dependence,
but the findings from these investigations have been contradictory [42,43]. It was suggested
that the ABCB1 rs1045642 polymorphism might influence THC psychoactive effects and an
individual’s vulnerability to dependence [44]. Recently, a study also revealed a significant
association with steroid-resistant nephrotic syndrome [45]. Another relevant genetic vari-
ant is the rs8065080 polymorphism of the TRPV1 gene (transient receptor potential cation
channel subfamily V member 1, OMIM: 602076). This SNP has been associated with an
increased risk of hypertension [46] and is believed to influence an individual’s perception
of salt at levels above the threshold [47]. Moreover, the TRPV1 rs8065080 polymorphism
has been found to significantly affect heat pain thresholds in patients with neuropathic pain
and they have also been linked to changes in mechanical pain sensitivity and mechanical
hypesthesia [48]. The rs7438135 variant of the UGT2B7 gene (UDP glucuronosyltransferase
family 2 member B7, OMIM: 600068) has been proven to play a role in opioid withdrawal
symptoms [49]. Additionally, this SNP is involved in the glucuronidation process of mor-
phine. The rs4680 polymorphism of the COMT gene (catechol-O-methyltransferase, OMIM:
116790) has been extensively studied in relation to THC’s impact on memory, attention,
and in the reduction in decision-making abilities [50]. The COMT rs4680 variant appears to
modulate the association between cannabis use and psychotic disorders, particularly in
individuals who were exposed to cannabis at an early age [51]. Furthermore, COMT rs4680
has been suggested to increase the risk of cannabis-use disorders [52].

On the contrary, the four other gene variants analyzed (CYP3A4 rs2242480, CYP3A4
rs35599367, CNR17B rs1049353, and FAAH rs2295632) as other variables (other drugs
and painkillers taken, depression, and anxiety conditions) remained very far from being
significant. The rs2242480 variant of the CYP3A4 gene (cytochrome P450 family 3 subfamily
A Member 4, OMIM: 124010) has been suggested to be associated with an increased risk of
drug addiction among the Chinese Han population [53]. Additionally, this SNP has been
found to elevate the risk of severe withdrawal symptoms in patients undergoing methadone
maintenance treatment [54]. Another genetic variant is the rs35599367 polymorphism
of the CYP3A4 gene, which has been shown to reduce CYP3A4 mRNA expression in
the liver [55]; it has also been associated with plasma simvastatin concentrations [56].
The rs1049353 polymorphism in the CNR1 gene (cannabinoid receptor type 1, OMIM:
114610) has been extensively studied, but the previous literature has provided conflicting
results regarding its association with cannabis use and subjective effects. While some
studies emphasize a strong link with cannabis-dependence symptoms [57], others have not
found a significant association between CNR1 rs1049353 and substance abuse or cannabis
dependence [58]. Moreover, this polymorphism has been implicated in the abuse of other
substances, such as alcohol-use disorder and heroin dependence [59]. The rs2295632 variant
in the AAH gene (fatty acid amide hydrolase gene, OMIM: 602935) leads to the inhibition
of the resulting enzyme, resulting in reduced degradation of endocannabinoids [60]. Recent
studies have also indicated that this SNP can influence susceptibility to certain multifactorial
disorders [61]. Furthermore, the homozygous T/T genotype of FAAH rs2295632 has been
statistically associated with type 2 diabetes mellitus [62].

This initial study is limited by its small sample size, heterogeneous variables, which
can introduce confounding bias, and lack of specific quantified risks associated with the
different genetic variants. As a result, there is a lack of evidence on the potential adverse
effects of the chronic medical use of cannabis and a lack of focus on patients who dropped
out of treatment with cannabis mainly because of the lack of pain reduction and side
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effects. Moreover, cannabis products are commercially available with multiple routes of
administration with different durations of effects and relative safety. These characteristics
need to be considered as the pharmacokinetics and side effects are strongly dependent on
both routes of administration and compound formulation [63]. In this study, we instead
decided to exclude this information and included the daily dose in mg regardless of the
route of administration. Therefore, accurate research must assess functional outcomes in
addition to reduced pain scores and evaluate long-term tolerability and alternate routes
of administration. Other limitations of the study include a lack of placebo control, which
makes it harder to be certain that the outcome was caused by the experimental treatment
and not by other variables. Future studies will aim to address these limitations.

5. Conclusions

Pain relief or the occurrence of side effects from taking cannabis is difficult to estimate,
and the clinical management of cannabis treatments is left to the experience of clinicians
who need to tailor therapy individually according to the patient’s general condition. In this
study, we demonstrated the ability of ML methods to evaluate the role of specific genetic
polymorphisms in patients suggesting that genetic inheritance is a significant descriptive
factor of response variability to cannabis. The model was based on data collected in a
heterogeneous, standardized database developed and implemented to collect information
on patients treated with medical cannabis. This approach will possibly contribute to clar-
ifying the pharmacokinetics and pharmacodynamics of cannabis, increasing the clinical
community’s trust in its therapeutic application, and supporting their choices with a tool
that can provide the importance of each component. Our findings suggest that ML predic-
tion has the potential to positively influence clinical pharmacogenomics and facilitate the
translation of a patient’s genomic profile into useful therapeutic knowledge. We are aware
that predicting a more individualized treatment with the help of the knowledge of patients’
genetic traits will only be achievable by substantially extending the polymorphic gene
panel and the number of their polymorphisms. Many challenges remain open, requiring
the development of alternative strategies to complement/improve existing techniques.
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