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Abstract: Segmentation of skin lesion images facilitates the early diagnosis of melanoma. However,
this remains a challenging task due to the diversity of target scales, irregular segmentation shapes,
low contrast, and blurred boundaries of dermatological graphics. This paper proposes a multi-
scale feature fusion network (MSF-Net) based on comprehensive attention convolutional neural
network (CA-Net). We introduce the spatial attention mechanism in the convolution block through
the residual connection to focus on the key regions. Meanwhile, Multi-scale Dilated Convolution
Modules (MDC) and Multi-scale Feature Fusion Modules (MFF) are introduced to extract context
information across scales and adaptively adjust the receptive field size of the feature map. We
conducted many experiments on the public data set ISIC2018 to verify the validity of MSF-Net. The
ablation experiment demonstrated the effectiveness of our three modules. The comparison experiment
with the existing advanced network confirms that MSF-Net can achieve better segmentation under
fewer parameters.

Keywords: skin lesion segmentation; attentional mechanism; dilated convolution; multi-scale feature
fusion

1. Introduction

Skin cancer is a common type of malignancy of which melanoma is one of the deadliest
skin lesions [1]. According to the American Skin Cancer Society report, melanoma has
become one of the most common problems worldwide. In terms of pricing, it is estimated
that $3.3 billion a year is spent on treating skin cancer. In addition, melanoma has attracted
increasing attention from clinicians and researchers, who emphasize that early detection of
melanoma can significantly reduce mortality [2].

Skin diseases are mainly detected by dermoscopy technology [3]. Since the diag-
nostic process of dermatology is tedious and partly subjective to the physician’s opinion,
computer-aided diagnosis (CAD) has its value [4], and image segmentation of dermatology
is an integral part. However, this remains challenging due to the diversity of target scales
in dermatological images and the problems of irregular segmentation shapes, low contrast,
and blurred boundaries. The specific example is shown in Figure 1. The ground truth
in the figure is a professional physician’s manual annotation of the lesioned region. Our
research task belongs to the binary segmentation task, where annotates the lesioned region
as one and the non-lesioned region as zero. These pathological images lack global semantic
and context information guidance, which can easily lead to wrong segmentation results.
To further address these challenges, we propose the MSF-Net based on comprehensive
attention convolutional neural network (CA-Net) [5] while combining multi-scale feature
fusion methods. There are differences in the scale of the lesion area. Large object detection is
better at low resolution with a global field of perception. Small objects are better predicted
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at high resolution, which preserves some details such as edge information. Therefore,
Multi-scale feature fusion remarkably affects medical skin lesion image segmentation.
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Figure 1. Some examples of challenging skin lesions in the public dataset ISIC 2018 include small-
scale lesions (P1), large-scale lesions (P2), irregularly shaped lesions (P3), lesions with low contrast to
the background (P4), and lesions with blurred boundaries (P5). The top is the lesion picture, and the
bottom is the corresponding ground truth.

This paper proposes three modules, the S-conv Blocks, the Multi-scale Dilated Convo-
lution Modules (MDC), and the Multi-scale Feature Fusion Modules (MFF). These modules
are plug-and-play, and many ablation results show that each module improves the seg-
mentation accuracy of the network compared to CA-Net, which is of great significance
for the practical clinical application of melanoma segmentation. To sum up, our research
achievements mainly include the following aspects:

• The spatial attention mechanism is introduced into the convolution modules to adjust
the weight of the image pixel, focus on crucial information, and suppress irrelevant
information.

• Relevant information of different scales can be obtained through the parallel branch of
four dilated convolutions, and the receptive field size of the feature map of different
scales can be adjusted adaptively according to the input information of different scales.

• The MFF modules are proposed to fuse relevant information of multiple scales.

2. Related Works
2.1. Image Segmentation

According to different methods, traditional image segmentation [6] can be roughly
divided into two directions: edge detection and region growth. The former performs
segmentation based on the discontinuity between the area of interest and its adjacent
areas. The latter realizes image segmentation by local similarity. However, these methods
have many shortcomings such as low segmentation accuracy, poor anti-noise ability and
robustness, and manual feature extraction.

Several achievements have been made in applying convolutional neural networks
(CNNs) to image segmentation in recent years. Long et al., 2015 [7] have proposed a
fully convolutional neural network (FCN) to solve the problem of semantic segmentation,
which abandons the entire connection layer in CNN and chooses to use the convolutional
layer instead and upsamples the final output to the size of the original image so that the
production is no longer a possible value. However, FCN has an obvious shortcoming,
which needs to consider the spatial position and context information of pixels, causing
damage to local and global information.

With the development of image segmentation, more and more researchers are commit-
ted to using image segmentation in the field of medical images to assist in the diagnosis
of some critical diseases including liver cancer [8], lung cancer [9], prostate cancer [10],
and some kidney diseases [11]. Ronneberger et al., 2015 [12] borrowed the ideas of FCN
and then proposed an end-to-end “U-shaped” network, U-Net, for medical image segmen-
tation. U-Net fuses different levels of information through remote hopping connections
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to compensate for some feature loss caused by FCN. Many excellent networks have sub-
sequently emerged based on this network, including AttU-Net [13], Unet++ [14], Unet
3+ [15], R2U-Net [16], Dense U-Net [17], etc. On this basis, Ran Gu et al., 2021 proposed a
comprehensive attention convolutional neural network, CA-Net [5].

2.2. Attention Mechanism

Oktay et al. [13] recently added a spatial attention mechanism to the jump-connected
part of U-Net for segmenting the pancreas from abdominal CT images. Roy et al. [18]
proposed a “Squeeze and Excite” (scSE) framework of parallel spaces and channels for the
segmentation of multiple organs in the whole brain and abdomen. Kaul et al., 2019 [19]
combined the SE module with ResNet to propose Focusnet to segment melanoma and
lung lesions. Xiang Li et al., 2019 [20] fused channel attention and dilated convolution to
propose SK-Net, which can adaptively select a suitable convolution kernel size.

2.3. Multi-Scale Feature Fusion

Low-resolution features have sufficient semantic information, while high-resolution
parts contain rich spatial information and little global semantic contextual information.
Therefore, the segmentation accuracy can be significantly improved by fully integrating
low-resolution and high-resolution features.

To improve the adaptability of the network, Szegedy et al., 2014 [21] proposed the
Inception v1 module, which uses convolutional kernels of different scale sizes at the channel
level to extract information. Subsequently, Inception v2 and v3 modules [22] (2015) were
proposed to reduce network parameters and enhance the non-linear expression ability of
the network. To reduce the extraction of relevant repetitive features, He et al., 2015 [23] use
pooling layers with different window sizes to extract features at different scales. The feature
pyramid uses shallow features to separate simple objects and deep features to separate
complex things. Chen et al., 2017 [24], inspired by the SPP block, proposed the atrous
spatial pyramid pooling module (ASPP) in combination with the idea of atrous convolution.
At the same level, the network uses the convolution kernel of multiple scales generated by
the atrous convolution to extract information. It integrates the extracted features to form
the input of the next layer.

3. Methods

The model framework of MSF-Net is shown in Figure 2, which consists of the following
components: The S-conv blocks, the MFF modules, and the MDC modules.

Firstly, the segmented image is sent to the encoding network. S-conv blocks are used
to replace the convolution blocks in the traditional U-Net.

Secondly, the MDC modules are added after the convolution modules and pooling,
which can use appropriate background information to segment the diseased areas in the
image. In contrast to the constant receptive field of ordinary CNNs, the MDC module
mimics the neurons in the human visual cortex. It continuously adjusts the receptive field
size of its neurons according to the external stimuli.

Thirdly, this paper uses MFF modules in both the encoder and decoder to extract and
fuse multi-scale relevant information. Convolution kernels at different scales are used to
process input information so that features of different scales can be combined to locate
the lesion area more accurately. At the same time, this paper connects the encoder and
decoder in the MFF modules, integrates high- and low-level semantic information, and
further enhances the segmentation effect.
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Figure 2. The general framework of MSF-Net.

3.1. S-Conv Block

The traditional convolution module of U net is two 3 × 3 convolutions, and successive
convolutions will miss a lot of detailed information. Therefore, the S-conv module replaces
the convolution module of the encoder part. The frame diagram of S-conv is shown in
Figure 3.
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Figure 3. The general framework of the S-conv Block.

Our convolution module consists of 1 × 1 convolution, 3 × 3 convolution, Batch
Normalization (Bn), and Relu layer. The S-conv module has two branches, one of which is
two consecutive 3 × 3 convolution blocks to extract features, and the output feature map
is Yr1 ∈ RH×W×Cin . The other branch takes a 1 × 1 convolution to reduce the number of
channels to 1, and then the input feature graph is Yr2 ∈ RH×W . Afterwards, a sigmoid
function scales the values of the trait map to between [0, 1], which results in an attention
coefficient map. Finally, the obtained attention coefficient graph is multiplied by the
output feature graph of the convolution layer to calibrate the input and locate the critical
information. Then, the final output Yrout of the S-conv module can be written as

Yrout = Yr1 ∗ S(Yr2) (1)



Biomedicines 2023, 11, 1733 5 of 15

where Yr1 is the output of the two 3 × 3 convolution layers, Yr2 is the output of the 1 × 1
convolution layer, and S is the sigmoid function activation.

3.2. Multi-Scale Dilated Convolution Module

The traditional U-net framework contains a lot of convolutions and four pooling
operations, so a lot of detailed information will be lost in the convolution and pooling
process, especially the pooling operation. To compensate for this loss, we introduce the
MDC module. It comprises two parts. The first one is the dilated convolution module.
It can expand the receptive field without losing the resolution, which is superior to the
traditional pooling operation. At the same time, weights are shared among our dilated
convolution branches, which is a larger receptive field that can be obtained without in-
troducing additional parameter numbers. It should be noted that the same parameter
number can be trained on inputs of different scales. The second part is the fusion module (F
module), which can automatically adjust the receptive field of the feature map of different
scales to highlight some critical areas of other scales. The MDC module is inspired by the
SK net [20] and ASPP [24] modules. The module uses a spatial attention mechanism on
the fused information to generate two different attention maps applied to two branches.
Additional focal points of these branches can generate various receptive fields of different
sizes so that the receptive fields can be adjusted adaptively according to the input. The
framework of MDC is shown in Figure 4.
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First, the module enlarges the perceptual field of the input image by four dilated
convolutions with different dilation rates. Here, the expansion rate r is set as 1, 2, 4, and 10
so that the receptive field (Rf) of the 3 × 3 convolution lernel can be expanded to

R f 3×3 (x) = 2 × (r − 1) + 3 (2)

Therefore, when r = 2, 4, and 10, the receptive fields at this time are 5 × 5, 9 × 9, and
21 × 21, respectively. MDC is only used four times. The reason why this module is not
adopted after the last max pooling is that after four times of maximum pooling, the feature
map of the input is too small, only 14 × 18, which is less than the sensitivity field of the
convolution kernel when r = 10. Taking the first MDC module as an example, the input
feature map is Yin ∈ RH×W×Cin . After four dilated convolutions, we obtain four feature
maps (Y1, Y2, Y3, Y4)∈RH×W×Cin respectively. We set the padding to 1, 2, 4, and 10 to keep
the size of the output feature map the same as the input. The MDC module uses global
high-level semantic information to quickly locate segmentation targets and local low-level
spatial information to refine edge details.

After that, we fuse these different scales of feature information with the F module.
Module F has two branches, taking Y1 and Y2 as example. First, the obtained feature maps Y1
and Y2 are joined together at the channel level to obtain feature map Y′12∈RH×W×2Cin . Where
H, W and C are the feature graph’s height, width and number of channels, respectively. The
first branch passes through a 1 × 1 convolutional layer to reduce the dimensionality and
change the number of channels to C. Then, it passes through a 3 × 3 convolutional layers
with an output channel number of 2. At this point, we obtain the feature map Y′′12∈RH×W×2.
We add batch normalization layers (BN) and ReLU activation layers to all convolutional
layers. Then, after a SoftMax function, two different spatial attention coefficient maps
Ma1 and Ma2 are obtained, and Ma1 and Ma2 are multiplied with Y1 and Y2 respectively to
obtain YM1.

YM1= Y1 ∗Ma1+Y2 ∗Ma2 (3)

The other branch passes through a 1 × 1 convolutional layer with the output channel
number of 1 to obtain the feature map Y12′′′ . Then after a sigmoid function for activation,
the activation value is mapped to the range [0, 1]. At this time, a spatial attention weight
map Ma3 is obtained. Ma3 is multiplied with Y12 to obtain YM2, which is used to recalibrate
the spatial information, and finally, a 1 × 1 convolutional layer is passed to recover the
number of channels.

YM2 = H
[

S
(
Y′′′12 ) ∗Y′12

]
(4)

where ∗ denotes the multiplication of elements, H is the number of channels halved, and S
is the Sigmoid function activation.

Then, the final output of this layer can be written as

Y12 = YM1 + YM2 (5)

The calculation process of other branches is similar to the one above, and the final
output can be written as

Yout = Y1234+Yin (6)

where Y1234 is the output feature map of the fused four layers, and here the residual
connection is used to sum up with the input Yin.

After the operation above, we can effectively fuse multi-scale features and adaptively
adjust the perceptual field size of different scale feature maps.

3.3. Multi-Scale Feature Fusion Module

MFF modules are used in encoders and decoders to mine relevant information across
scales. The module was inspired by Inception v2 [22]. In many cases, the features difficult
to extract at the first scale are easy to capture at the other scale. Therefore, by combining
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the features of different scales, a lot of missing or hidden details can be obtained. The frame
of the MFF module is shown in Figure 5.
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Figure 5. The framework of Multi-scale Feature Fusion Modules (MFF).

The MFF module has three branches and outputs three feature maps F1, F2, F3
(F1 ∈ RH×W×Cin/4, F2 ∈ RH×W×Cin/2, F3 ∈ RH×W×Cin/4). All three branches are convolved
by 1 × 1 to vary the number of channels and capture the lower-level features. The number
of output channels of each branch from top to bottom successively decreases to 1/4, 1/2,
and 1/4 of the input. Taking the number of input channels 16 as an example, the output
channels of the three branches are 4, 8, and 4, in turn. Afterwards, smoothing is performed
by a 1 × 1 convolution, and the output is added to the original input by a residual join.
We replace one 5 × 5 convolution with two successive 3 × 3 convolutions, drastically
reducing the number of parameters, and enhancing its linear expression. The formula for
the parameter number M of the convolution layer can be written as

M = K × K × C1 × C2, (7)

where K is the size of the convolution kernel, C1 and C2 are the number of input and output
channels. For example, the number of both input and output channels is C. The number of
parameters for a convolution kernel of 5 × 5 can be written as

M1 = 5 × 5 × C × C = 25C2

In addition, the parameters with two convolution kernels of 3 × 3 can be written as

M2 = 3 × 3 × C × C + 3 × 3 × C × C = 18C2

Then, the final output Fout of the MFF module can be written as

Fout= Conv1×1 [ C (F1, F2, F3 )] + Fin (8)

where Conv1×1 is 1 × 1 convolution, C is the splicing of channel numbers, and Fin is the
input feature map.
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3.4. Loss Function

This paper selects Soft Dice loss as the loss function. Soft Dice loss is a measure of
overlap between two samples, which is suitable for binary image segmentation and can
somewhat alleviate the quantity imbalance between positive and negative samples.

Dice =

2
n
∑

i=1
xi · yi + ε

n
∑

i=1
xi +

n
∑

i=1
yi + ε

, (9)

LDice = −Ln(Dice) (10)

xi∈{0,1}, yi∈{0,1} denote the region and ground truth of the model segmentation,
respectively. ε is a minimal value, taken as 10−5, to avoid a denominator of 0; n = H ×W
denotes the number of pixels.

3.5. Experimental Settings and Evaluation Criteria

Our model is implemented on the Pytorch framework. Adaptive moment estimation
(Adam) was selected for the optimizer, and Soft Dice loss was selected for the loss function.
We set the initial learning rate as 0.0001, weight decay as 10−8, batch size as 16, and
iteration epochs as 300. After 256 iterations, the learning rate decreases by 0.5. After the
first convolution block, the number of input channels becomes 16. All of our training
was implemented on an NVIDIA GeForce GTX 3090 GPU. We perform validation for each
completed training round and use the model parameters that perform best on the validation
set for the test set for one round.

Four metrics are used to estimate the performance of the models: Dice score, Average
symmetric surface distance (ASSD), IoU, and Precision.

Dice Score =

2
n
∑

i=1
xi · yi

n
∑

i=1
xi +

n
∑

i=1
yi

, (11)

IoU =

n
∑

i=1
xi · yi

n
∑

i=1
xi +

n
∑

i=1
yi −

n
∑

i=1
xi · yi

. (12)

xi∈{0,1}, yi∈{0,1} denote the region and ground truth of the model segmentation,
respectively. n = H ×W denotes the number of pixels.

ASSD =
1∣∣Sx
∣∣+∣∣Sy

∣∣ ×
 ∑

x∈Sx

d(x, Sx) + ∑
y∈Sy

d
(
y, Sy

). (13)

Sx and Sy, respectively, represent the boundary point set of model segmentation
and the boundary point set of ground d(n, Sx) = minm∈Sx (||n − m||)
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Among them, TP (true positive) and FP (false positive) represent correctly segmented
skin lesion pixels and background pixels incorrectly labelled as skin lesion pixels, respectively.
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3.6. Data Pre-Processing

The dataset for this paper is taken from a public challenge: Lesion Boundary Segmenta-
tion in ISIC-2018 [25]. The challenge dataset comes from the ISIC-2017 dataset [26] and the
HAM10000 dataset [27]. It can be found at the following website: https://challenge2018.
isic-archive.com/task1. This dataset provides 2594 dermoscopic images with ground truth
segmentation masks for training. At the same time, provide 100 and 1000 images without
ground truth masks for validation and test set, respectively. In this paper, 2594 images with
ground truth masks are used as a dataset because our study belongs to a fully annotated
task. These images are randomly divided into 1816, 260, and 518 images in the ratio of 7:1:2
as the training set, validation set, and test set, respectively. All the images are adjusted to
256 × 342 because input image sizes vary from 771 × 750 to 9748 × 4499. The image size
was randomly cropped to 224 × 300, and then the cropped image was randomly rotated in
the horizontal or vertical direction at an angle of (−30◦, 30◦).

4. Experiments

This paper validates the effectiveness of MSF-Net by segmenting binary skin le-
sions from dermoscopic images, and the specific experimental results will be provided in
this section.

4.1. Ablation Study

To demonstrate the validity of each module in MSF-Net, a series of ablation experi-
ments were conducted to compare the performance of different modules. CA-Net is used
as the baseline, a traditional five-tier structure. In order to prevent overfitting, we use
Dropout on the last two layers of the network to provide a better generalization ability of the
model. In our ablation experiment, all subjects were run in the same network environment,
parameters, and data set.

We obtained eight comparison methods by separately adding and free-combining
S-conv, MFF, and MDC modules. Eight methods with different module configurations
were used to segment the ISIC2018 dataset, and the visual comparison of five represen-
tative methods is shown in Figure 6. It can be seen from Figure 6, when dealing with
segmentation tasks with distracts (as shown in lines 1 and 2), compared with the Baseline
method (P3), Baseline+S-conv (P4), Baseline+MFF (P5), and Baseline+MDC (P6) were
more accurate in locating the lesion area. In contrast, the Baseline method incorrectly
segmented some disturbance areas. When dealing with small-scale tasks (as shown in row
5), Baseline+S-conv adds a spatial attention mechanism that captures the target region more
effectively. However, the Baseline+MFF could be more robust in segmentation because it
aggregates large-scale spatial information and is more suitable for processing large-scale
target tasks. However, all of them are better than the Baseline method. By integrating
these methods, MSF-Net (P7) achieves the optimal segmentation effect. When dealing with
tasks with complex boundary information (such as the picture in line 6), Baseline+MFF
and Baseline+MDC fuse relevant information of multiple scales while adaptively selecting
the perceptual field size of feature maps at different scales, making the segmentation much
more effective.

MSF-Net achieved the best performance on the ISIC2018 dataset compared to adding
a single module on the baseline (CA-Net). The performance indexes of several models
are shown in Table 1. It can be seen from Table 1 that compared with baseline, the Dice
indicators of the baseline+S-conv method, baseline+MFF method, and baseline+MDC
method in the ISIC 2018 dataset increased by 0.45, 0.46, and 0.53%, the IoU indicators
increased by 0.74, 0.79, and 0.9%, the Precision indicators increased by 2.62, 2.03, and
2.42%, and the ASSD indicators decreased by 0.0775, 0.0479, and 0.0855, respectively. MSF-
Net achieves optimal performance on the ISIC2018 dataset by integrating three modules
simultaneously. Dice, IoU, and Precision are 0.87, 1.45, and 3.89% higher than baseline,
respectively, and ASSD indicators are 0.1157 lower, which proves the effectiveness of
MSF-Net and each module.

https://challenge2018.isic-archive.com/task1
https://challenge2018.isic-archive.com/task1
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Figure 6. The segmentation results of our ablation experiments were visually compared on the
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Table 1. Statistical comparison of ablation experiments for three modules in MSF-Net. Among
evaluation indexes, the lower ASSD indicator proves that the network is better, while the other
indicators are the opposite.

Method Dice (%) IoU (%) Precision (%) ASSD (pix)

Baseline 93.02 ± 0.50 87.30 ± 0.88 88.28 ± 0.32 0.4645 ± 0.0163
Baseline+S-conv 93.47 ± 0.57 88.04 ± 0.96 90.90 ± 0.86 0.3870 ± 0.0216
Baseline+MFF 93.48 ± 0.44 88.09 ± 0.71 90.31 ± 1.06 0.4166 ± 0.0560
Baseline+MDC 93.55 ± 0.39 88.20 ± 0.63 90.70 ± 0.71 0.3760 ± 0.0091
Baseline+S-conv+MFF 93.44 ± 0.29 88.00 ± 0.48 90.38 ± 0.20 0.3966 ± 0.0140
Baseline+S-conv+MDC 93.91 ± 0.28 88.77 ± 0.46 90.85 ± 0.31 0.3635 ± 0.0046
Baseline+MFF+MDC 93.60 ± 0.37 88.27 ± 0.62 90.65 ± 0.49 0.3767 ± 0.0234
Baseline+S-conv+MFF+MDC 93.89 ± 0.47 88.75 ± 0.77 92.17 ± 0.07 0.3488 ± 0.0172

To select a suitable combination of dilated convolution, we also conduct further abla-
tion experiments. Five methods were obtained based on combining dilated convolutions
with different expansion rates (r). The evaluation indexes of several methods are shown in
Table 2. As can be seen from it, most of our evaluation indexes (Dice, et al. [5,28].) achieved
the best results with the dilation rate (r = 1, 2, 4, 10), while ASSD indexes achieved the best
results with the dilation rate (r = 1, 2, 4, 8). We choose the dilation rate (r = 1, 2, 4, 10) as the
final dilated convolution combination.
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Table 2. Statistical comparison of ablation experiments of MDC modules with different cavity rate
combinations.

Method Dice IoU Precision ASSD

Baseline+MDC (r = 1, 2, 4) 0.9378 0.8857 0.8887 0.3847
Baseline+MDC (r = 1, 2, 6) 0.9358 0.8824 0.8962 0.3937
Baseline+MDC (r = 1, 2, 4, 8) 0.9384 0.8866 0.8978 0.3638
Baseline+MDC (r = 1, 2, 4, 10) 0.9393 0.8882 0.8999 0.3669
Baseline+MDC (r = 1, 2, 6, 10) 0.9367 0.8838 0.8807 0.3741

In addition, the number of parameters increased by each module compared with the
baseline, and the final model parameters are shown in Table 3. The parameter quantity of
the S-conv module is similar to the baseline. The MFF module and MDC module have only
4% and 20% more parameters, respectively, than the baseline.

Table 3. The increase in the number of participants per module in our network is compared to the
baseline and the final number of participants for our approach.

Modules Baseline S-conv MFF MDC Ours

Params(M) 2.7884 0.0002 0.1191 0.5519 3.4596

4.2. Results

The performance indicators of MSF-Net and 11 comparison methods on the ISIC2018
Dataset are quantitatively presented in Table 4, including six general segmentation net-
works and five networks dedicated to medical image segmentation, especially skin disease
segmentation. In our comparison experiment, all competitors were run under the same
computing environment, data set, and data enhancement to ensure a fair comparison. It can
be seen from Table 4 that MSF-Net is the par excellence network in terms of all indicators
and parameters. In addition, among all networks, denseASPP is the par excellence model
in the universal segmentation model, while CPF-Net is the par excellence model for skin
lesions segmentation. Among them, CPF-Net is the best performer in the Dice and IoU
indices and is not far behind our network. MSF-Net showed the best results for Precision
and ASSD. Meanwhile, the parameter of CA-Net is only 2.7M, which is the minimum
network among all networks. In comparison, MSF-Net only has 0.67M more parameters
than CA-Net, which is equivalent to 1/10 and 1/8 of denseASPP and CE-Net parameters.
These indicators show that MSF-Net can acquire better segmentation results with fewer
parameters. Therefore, MSF-Net is an excellent network.

Table 4. Skin lesion segmentation performance of different networks on ISIC2018. The backbones of
Deeplabv3+ and DenseASPP are ResNet50 and DenseNet161, respectively.

Networks Parameters (M) Dice (%) IoU (%) Precision (%) ASSD (pix)

CA-Net [5] 2.79 93.02 ± 0.50 87.30 ± 0.88 88.28 ± 0.32 0.4645 ± 0.0163
U-Net [12] 34.53 93.12 ± 0.30 87.45 ± 0.52 88.79 ± 0.14 0.4439 ± 0.0261
AttU-Net [13] 34.88 93.05 ± 0.11 87.34 ± 0.17 88.75 ± 0.70 0.4203 ± 0.0199
Unet++ [14] 36.63 93.08 ± 0.50 87.43 ± 0.79 89.60 ± 1.11 0.5100 ± 0.0783
R2UNet [16] 39.09 88.81 ± 1.23 80.61 ± 1.90 80.02 ± 1.74 0.8013 ± 0.0837
Deeplabv3+ [24] 39.76 93.60 ± 0.37 88.29 ± 0.60 90.09 ± 0.26 0.3905 ± 0.0185
denseASPP [29] 35.37 93.76 ± 0.39 88.53 ± 0.63 89.84 ± 1.16 0.3778 ± 0.0232
BCDU-Net [30] 28.80 92.96 ± 0.38 87.19 ± 0.60 90.19 ± 0.16 0.4566 ± 0.0132
CE-Net [31] 28.98 93.93 ± 0.68 88.84 ± 1.13 90.11 ± 0.89 0.3850 ± 0.0428
CPF-Net [32] 43.25 93.95 ± 0.44 88.86 ± 0.72 90.30 ± 0.56 0.3720 ± 0.0227
Ms RED [28] 4.02 93.59 ± 0.28 88.27 ± 0.44 90.66 ± 0.68 0.4093 ± 0.0002
MSF-Net (Ours) 3.46 93.89 ± 0.47 88.75 ± 0.77 92.17 ± 0.07 0.3488 ± 0.0172
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Figure 7 visualizes the segmentation result of eight representative networks on the
ISIC2018 dataset for visual comparison. These samples in Figure 7 contain a variety of
complex segmentation tasks, some with excessive scale disparity, some with complex
segmentation boundaries, some with low contrast, and some with blurred segmentation
boundaries. As can be seen from Figure 7, MSF-Net outperforms other methods in general,
and the segmentation results are closest to the ground truth. Row 5 in Figure 7 displays
the segmentation results of these models for lesion images with small scales, blurred seg-
mentation boundaries, and low contrast. The sixth row in Figure 7 shows the segmentation
results of large-scale lesion images by different networks. Due to the lack of guidance on
global context information, U-Net(p4) and AttU-Net(p5) have poor segmentation effects
when segmenting these types of images. In contrast, MSF-Net extracts feature with crucial
information by adding spatial attention to the convolution and capture local features and
global context information through MDC and MFF, achieving a better segmentation effect.
Rows 1, 2, and 3 in Figure 7 display the segmentation results for lesion images with blurred
boundaries. CPFNet (p9) extracts information at different scales using a pyramid structure,
which improves segmentation for low-contrast tasks but may still produce erroneous seg-
mentation for complex samples with complex boundaries. On the contrary, thanks to MDC
and MFF, MSF-Net (p11) has an advantage in processing samples with complex boundaries,
and the segmented boundary information is relatively straightforward. The sixth row in
Figure 7 shows the segmentation results of large-scale lesion images by different networks.
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5. Discussion

In the comparison method shown in Table 4, DeeplabV3+ [24] introduces a large
number of parallel expansion convolutions in the encoder part to extract features of different
scales by setting different expansion rates. DenseASPP [29] combines ASPP in the DeepLab
series with dense connections in denseNet. It uses dense connections to combine the output
of each dilated convolution, so it has a larger receptive field and more dense sampling
points. CE-Net [31] combined the idea of Inception-ResNet-V2 and dilated convolution
and proposed a dilated convolution block (DAC) with four parallel branches to encode
high-level semantic feature mapping. The fields of the four branches are 3, 7, 9, and
19, respectively. Compared with the three multi-scale methods above, MSF-Net has two
significant advantages: First, the MDC module can adaptively adjust its receptive field size
and extract multi-scale context information effectively. In the MDC module (as shown in
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Figure 4), considering the feature correlation between adjacent scales, we fuse the feature
graphs output by two neighboring dilated convolution branches. The spatial attention
mechanism generates two attention coefficient maps and then acts on different feature
maps, respectively, so that the two feature maps are combined with different weight
coefficients, and it is possible to generate different sizes of perceptual fields for different
attention points of these branches, thus realizing adaptive adjustment of their perceptual
field sizes according to the input. Then, the parameters in MDC and MFF modules are
relatively small because they use a large number of 1 × 1 convolutions in both modules to
reduce the number of channels. In addition, MSF-Net only needs to down the number of
image channels to 256 to achieve a good segmentation effect. At the same time, weights
are shared among our dilated convolution branches, where a larger receptive field is
obtained without adding additional parameters. However, the parameters of these three
multi-scale methods approaches or exceed the traditional convolution, and the number of
down-sampled channels is much larger than that of MSF-Net.

Compared with some of the best current networks in the field of dermatological
segmentation, such as CPF-Net [32], MSF-Net has Dice, and IoU metrics similar to it, but
Precision and ASSD metrics are better than CPF-Net, and the number of parameters in MSF-
Net is less than one-tenth of CPF-Net. The parameter quantity of Ms-Red [28] is similar to
MSF-Net, but all four evaluation indicators are inferior to MSF-Net. However, compared
to some networks with simple structures, such as U-net [12], our model is more complex,
which slightly affects the processing speed of the network. Further optimization of the
model is needed in the following work to improve the processing speed of the network. In
addition, our network belongs to a fully annotated segmentation task, where the dataset
must carry a ground truth mask and is insufficient to identify the type of lesion for the
segmented lesion region. Our subsequent research can be divided into two directions.
The first is to handle weak and semi annotation tasks, and the second is to recognize and
classify segmentation results.

Image segmentation belongs to an important branch in computer-aided diagnosis,
and our network has certain advantages in terms of parameters and segmentation results
compared with some excellent networks in the current field of dermatology segmentation.
In the future, it can be combined with image classification to achieve a computer-aided
diagnosis of skin diseases without human intervention.

6. Conclusions

This paper proposes a deep neural network (MSF-Net) for skin lesion segmentation
based on CA-Net, for some problematic segmentation tasks, especially lesion images
with excessive scale disparity, irregular shape of the lesion area, low contrast with the
background, and blurred borders. We propose three core modules such as S-Conv, MDC,
and MFF. Specifically, MSF-Net introduces a spatial attention mechanism in ordinary
convolutional blocks to focus on crucial locations, suppress irrelevant information, and
localize lesion regions. Meanwhile, MDC and MFF modules are introduced after the
convolutional layer to extract contextual information at different scales and adaptively
adjust the perceptual field size of the feature map. We conducted many experiments on the
publicly available dataset ISIC2018 to evaluate the performance of MSF-Net. In the ablation
experiments, all three of our modules outperformed CA-Net regarding performance metrics.
In the comparison experiments, we compared eleven existing state-of-the-art models. The
experimental results show that MSF-Net can obtain relatively good segmentation result
with smaller parameters. In addition, the shape of the output feature map of each module
is the same as the input, which is highly flexible and can be applied well in other areas of
medical images.
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