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Abstract: Chemotherapy resistance is still a serious problem in the treatment of most cancers. Many
cellular and molecular mechanisms contribute to both inherent and acquired drug resistance. They
include the use of unaffected growth-signaling pathways, changes in the tumor microenvironment,
and the active transport of medicines out of the cell. The antioxidant capacity of polyphenols and
their potential to inhibit the activation of procarcinogens, cancer cell proliferation, metastasis, and
angiogenesis, as well as to promote the inhibition or downregulation of active drug efflux transporters,
have been linked to a reduced risk of cancer in epidemiological studies. Polyphenols also have the
ability to alter immunological responses and inflammatory cascades, as well as trigger apoptosis in
cancer cells. The discovery of the relationship between abnormal growth signaling and metabolic
dysfunction in cancer cells highlights the importance of further investigating the effects of dietary
polyphenols, including their ability to boost the efficacy of chemotherapy and avoid multidrug
resistance (MDR). Here, it is summarized what is known regarding the effectiveness of natural
polyphenolic compounds in counteracting the resistance that might develop to cancer drugs as a
result of a variety of different mechanisms.
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1. Introduction

The World Health Organization estimates that in 2020, around 10 million individuals
lost their lives to cancer [1]. Cancers of the breast (2.26 million cases), lungs (2.21 million
cases), colon/rectum (1.93 million cases), prostate (1.4 million cases), skin (non-melanoma)
(1.2 million cases), and stomach (1.2 million cases) were the most prevalent types of cancer
(1.09 million cases) [1]. It is worth noting that the cancer rate in the countries of the Middle
East is rising at an alarming rate. It has been predicted that by the year 2030, the cancer rate
will double [2,3]. Nonetheless, the rate of occurrence is significantly lower than in Western
nations including the United States [3,4].

According to an age-standardized rate, Australia has the highest cancer rate in the
world, with 452 new cases reported for every 100,000 people. Next comes New Zealand,
with a rate of 422 per 100,000. The U.S.A. occupies a middle position in this list [4]. Yet,
Middle Eastern countries report far lower numbers of cancer incidence. Egypt and Lebanon
reported the highest rates, with 159 and 165 cases per 100,000 people, respectively [4];
Saudi Arabia and Sudan reported the lowest rates, with 96 and 95 cases per 100,000 people,
respectively [3,4]

The prevalence of sedentary lifestyles (correlated with obesity, diabetes, and reduced
physical activity) in Arab countries is considerable and is associated with an increased risk
of cancer. The lack of exercise is likely due to a combination of factors, including cultural
norms in some areas and the excessively hot weather that persists for many months of the
year [5–7]. Having plenty of domestic help around the house can also play a role. Obese
women, particularly post-menopausal women, have a relative risk of developing breast
cancer that is more than twice as high as that of normal-weight women [8–10]. With the
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adoption of a Westernized lifestyle, smoking status and exposure to stress are projected to
increase among Arabs. From 1990 to 2012, the estimated incidence of smoking was 12.5%
higher than it had been in any GCC country, and this trend is projected to continue [11]. In
addition, shisha is far worse than cigarettes since it contains significantly more nicotine [12].
For women who have smoked for more than ten years, the chance of developing breast
cancer is roughly 10% higher than in never-smokers [7,13,14].

While cancer rates in Arab countries have risen somewhat in recent years, they are
still significantly lower than those in the West. Fasting [15,16], food prepared according to
specific recipes and rich with spices, vegetables, fruits, seeds, herbs, and olive oil; signifi-
cantly lower rates of smoking and alcohol use, and genetic predisposition are all proposed
explanations for the significantly reduced incidence of cancer in Arab countries [4,17–25].

Surgery is frequently used for the initial treatment of localized solid tumors. Neverthe-
less, targeted treatments, radiation, immunotherapy, and chemotherapy are used at later
stages and/or after surgery [26]. Improvements in anticancer drugs have greatly enhanced
patients’ quality of life and the length of time without relapse [27]. There are substantial
limitations to the use of chemotherapeutic medicines in cancer treatment, including the
medications’ solubility and instability, nonspecific drug distribution, and adverse effects
related to systemic toxicity [28]. Although the initial therapy may be successful, some pa-
tients will experience a recurrence or relapse of their cancer. The failure of cancer treatment
is now mostly attributable to acquired drug resistance [27]. Chemotherapy resistance in
cancer cells can arise from either innate or acquired mechanisms [29]. The term “acquired
drug resistance” describes a condition in which a patient develops immunity to a treatment
that was successful in the past. Intrinsic chemoresistance occurs when there is something
in the patient that makes the treatment ineffective from the start [30]. The heterogeneity of
tumor cells is an underlying cause of resistance to chemotherapy. Heterogeneity is caused
by self-renewing subpopulations of tumor cells, which have been identified as stem-like
cancer cells. Several clones can be found within a single tumor, and all of them respond
differently to chemotherapeutic drugs. Thus, a successful outcome may not be achieved
by using a single drug to target tumor cells [31–34]. Cancer cells can become resistant to
chemotherapeutic agents through a number of mechanisms, including upregulated drug
efflux, altered drug target, apoptosis, and repair signaling pathways [35,36].

2. Therapeutic Potential of Polyphenols in Cancer

Polyphenols are a huge family of over 8000 plant compounds that share structural char-
acteristics such as a three-membered flavan ring structure and numerous phenol units [36].
These natural substances (around 500 of them) can be found in a variety of foods, including
fruits, green and black tea, coffee, red wine, chocolate, and seeds. Polyphenols are a group
of organic compounds defined by the presence in them of numerous phenol structural
units and found primarily in nature [36]. Subgroups of polyphenols can be established
according to the number of phenol rings present and the structural factors that keep these
rings together [36]. Phenolic acids, flavonoids, stilbenes, and lignans are the primary types
of polyphenols. The concept of treating cancer patients with polyphenols is not novel. In
the late 20th century, preliminary research on the anticancer effects of various polyphenols
was conducted, and since then, our understanding of these advantageous agents has vastly
improved [36,37]. These agents are highly advantageous and intriguing because they attack
cancer cells in a variety of ways and target numerous cancer hallmarks. Initiation, promo-
tion, and progression are the three major phases of cancer development [36,37]. The rapid
and usual first stage in the development of cancer involves the ingestion of or exposure to
a carcinogenic substance, which then interacts with chromatin and causes a mutation or
epigenetic alteration [36,37].

The widespread severe side effects and subsequent toxicity generated by most conven-
tional medicines have prompted cancer patients to turn their attention to natural products
as a first line of defense [38–40]. Meanwhile, the pharmaceutical sector is researching and
evaluating novel natural compounds for use in cancer therapy [41,42].
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Despite attempts to promote cancer awareness, early detection, and new therapeutic
treatments, progress in cancer therapy has been slowed by the emergence of drug resis-
tance, the high costs of treatments, and the growing reports of secondary toxicity [43,44].
In addition, the expenses of treatment are inflated by the fact that most chemotherapeutic
medications are known to cause unpleasant side effects such as nausea, vomiting, headache,
musculoskeletal pain, anorexia, gastritis, oral ulcers, diarrhea, constipation, alopecia, neu-
ropathy, and so on [45,46].

Natural supplements from different plants have been studied for their potential to treat
cancer and its symptoms [47]. Here, natural products such as polyphenols may represent
appropriate alternatives, especially when combined with other cancer medications to
improve treatment efficacy and safety [48].

As stated earlier, resistance to chemotherapy in cancer cells can be intrinsic, resulting
from pre-existing genetic abnormalities; such resistance typically becomes evident after the
tumor has been exposed to anticancer medications (first leading to tumor regression) [49].
On the other hand, acquired resistance is created by the drug itself during treatment, leading
to disease recurrence after initially successful chemotherapy [50,51]. Cancer cells can
develop either intrinsic or acquired resistance when they undergo genomic or epigenomic
alterations that promote signaling pathways other than the one targeted by the treatment in
progress [52–54]. Hence, there are massive efforts to discover appropriate adjuvant drugs
that aid in reversing the mechanisms of resistance, thereby favorably improving the efficacy
of chemotherapies and, ultimately, disease remission in cancer patients.

3. Mechanisms of Cancer Chemoresistance

There are a number of hypotheses that have been put forward to describe the phe-
nomenon of cancer chemoresistance as a reaction to both host-related factors that inhibit
drug uptake across the plasma membrane and various genetic factors that lead to insen-
sitivity to anticancer drugs. These hypotheses have been developed in response to both
types of factors.

3.1. Cellular and Noncellular Mechanisms

Inherent or natural resistance to chemotherapy upon initial drug exposure is due
to noncellular mechanisms (such as low drug bioavailability and metabolic inactivation),
while cellular mechanisms involve a wide range of enzymatic, signal transduction, and
cellular transport systems [55]. The mechanism depicted in Figure 1 is just one way by
which cancer cells become resistant to chemotherapy. The oxygenation status and tumor
vascularization appear to play a significant role in the difficulty of successful therapy in
cancer patients, as tumor-associated vascular, structural, and functional abnormalities
create an acidic environment for cells that are located distal to the vasculature, resulting in
poor oxygenation and cell cycle arrest [56]. It has been found that noncycling cells are less
sensitive to most chemotherapies [57] and that many malignancies that have hypoxia as
an associated feature experience environmental insufficiencies that influence a variety of
cellular pathways in the emergence of resistance [58].

Enzymatic or non-transport-based mechanisms can also mediate cellular MDR phe-
notypic activity by altering the biotransformation of anticancer drugs, which is important
because metabolic activation is a preliminary step for many of these drugs to exert their
deadly effects. In the case of cytarabine [59], for instance, it is first phosphorylated by deoxy-
cytidine kinase to generate cytarabine monophosphate and then further phosphorylated to
become cytarabine triphosphate, its active form. Thus, cancer cells acquire resistance by
decreasing drug activation through the downregulation or mutation of enzymes implicated
in this metabolic pathway, thereby evading the effects of such medications [59]. By over-
expressing drug-metabolizing enzymes including CYP-4503A, glutathione-S-transferase
(GST), and aldehyde dehydrogenase, cancer cells can become resistant to chemotherapy
and other cytotoxic treatments [60].
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3.2. Active Membrane Transport (ATP-Dependent Multidrug Transporters)

One of the most common mechanisms of resistance to many standard antineoplastics
chemicals is the upregulation of membrane transporters, which are responsible for the efflux
of cytotoxic compounds and the maintenance of intracellular drug concentrations below
the threshold required for effective cytotoxicity [61]. These ATP-dependent multidrug
transporters are part of the ubiquitous ATP-binding cassette (ABC) protein family [62] and
help regulate the body’s uptake, distribution, and elimination of several pharmacologically
active substances.

There are more than 48 genes that code for ABC transporters, and they fall into seven
different gene families. P-glycoprotein (ABCB1, MDR1) is the most understood member
of the MDR/TAP family, which also includes the homologs ABCB1-11, while the breast
cancer resistance protein (BCRP, ABCG2) is the best-understood member of the ABCG
family of transporters [63–65]. Different in gene location, amino acid sequence, structure,
and substrate selectivity, these resistance-conferring proteins are all a part of the ABC su-
perfamily [66–68]. Many of these have been defined in humans and are naturally expressed
in a wide variety of healthy tissues as well as neoplasms [69]. P-gp is ubiquitous in tissues
involved in the absorption, secretion, and transport of substrates across cellular plasma
membranes, but its low expression makes it difficult to detect. MDR-ABC transporters are
found in a wide variety of tissues [70]. The epithelial lining of the gut, endothelial cells,
bone marrow progenitor xenocells, peripheral blood lymphocytes, and natural killer cells
all contain ABCB1 in mammals, while adrenal cortex cells include ABCB2.

The “multiple drug-resistant” “MDR” phenotype is characterized by the ability of
cancer cells to develop resistance to a wide variety of drugs, including those that share no
structural similarity [71]. Many studies suggest that kidney, colon, pancreatic, and liver
cancers, as well as malignancies originating from other tissues with naturally high levels of
P-gp expression, may be inherently drug-resistant [72].
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3.3. DNA Repair-Mediated Mechanisms of Resistance

Nucleotide excision repair, mismatch repair (MMR), double-strand break repair, base
excision repair, and direct repair are all important DNA damage repair processes involved
in conferring MDR to cancer cells. A better response of cancer cells to anticancer treatments
(e.g., cisplatin and methotrexate) that kill cells via DNA damage-induced apoptosis is
achieved through the downregulation of these mechanisms. For instance, in ovarian and
breast cancers, selective cancer cell toxicity can be achieved by targeting the DNA repair-
associated poly(ADP-ribose) polymerase (PARP) protein [73,74]. Despite the success of
PARP inhibitors (PARPi), research in animals and humans has shown that resistance can
develop to these drugs, even when they are given in combination [75,76]. The capacity of
cancer cells to restore the DNA repair function by reversing a mutation in the BRCA gene
is the primary mechanism of resistance to PARPi [77].

The ultimate aim of anticancer medications is to activate cell death or cell cycle arrest
pathways. Thus, alterations to these pathways play a significant role in the emergence of
MDR, perhaps through the avoidance of apoptotic pathways triggered by the acquisition
of inactivating mutations in genes encoding apoptotic proteins (such as p53) or activating
mutations in genes encoding antiapoptotic proteins [such as B-cell lymphoma 2 (Bcl-2)]. As
mutant p53-associated MDR has been documented in over 50% of all malignancies, p53
role in drug resistance has been studied extensively [78,79].

3.4. Other Facilitators of the MDR Phenotype

The ubiquitin–proteasome system, which helps break down damaged proteins and
controls development and the stress response, is another factor influencing the cancer MDR
phenotype. This system’s overactivity is linked to cancer cell resistance, whereas its sup-
pression leads to cell death and increases the sensitivity to chemotherapeutic drugs [80]. In
addition, recent research has demonstrated that autophagy (i.e., cell “self-digestion”) plays
a crucial role in chemoresistance by degrading chemotherapeutic drug molecules, which en-
ables cancer cells to avoid drug-induced apoptosis [81,82]. Hence, blocking autophagy has
been found to improve the effectiveness of chemotherapies [83,84]. Apoptosis-to-autophagy
conversion has also been identified as a key mechanism of resistance to paclitaxel-induced
cytotoxicity in breast cancer cells [85].

Cancer cell defense against oxidative stress and the generation of reactive oxygen
species (ROS) is another factor contributing to the MDR phenotype. This defense involves
the induction of the overexpression of various antioxidant enzymes by ROS-sensitive
transcription factors (e.g., Nrf2), which permits cancer cells to overcome apoptotic sig-
nals and, thus, results in chemoresistance and tumor progression [86,87]. Finally, “onco-
gene addiction” [88] describes how many cancer cells become over-reliant on an onco-
gene, providing a rationale for developing targeted therapies aimed at oncogene-encoded
proteins [89]. Nevertheless, medication resistance due to mutation of the targeted protein
may compromise the treatments’ long-term efficacy. Mutations at “gatekeeper” residues,
which prevent drugs from entering the kinase back pocket active site, are a common cause
of resistance to tyrosine kinase (BCR/ABL and EGFR) inhibitors [90–92]. Hence, under
therapeutic pressure, the most adaptive or resistant heterogeneous subpopulations of can-
cer cells will be selected. Following this, the tumor becomes dominated and repopulated
by these clones, which renders it extremely resistant to the treatment [93].

4. Approaches to Overcome Drug Resistance

Traditional cancer treatments typically provoke an unfriendly cellular environment,
which can result in organelle dysfunction and the development of drug resistance in the area
surrounding the tumor. Studies have begun to concentrate more on the use of bioactive
anticancer chemicals due to their multi-target specificity, selectivity, and cyto-friendly
nature [94,95]. This is done in an effort to mitigate the negative effects that are caused by
conventional cancer treatments. In this context, the mechanisms of action of polyphenols
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have been investigated, in particular with respect to overcoming the drug resistance of
certain cancers (see Figure 2).
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4.1. Combination Therapy

Disease progression is connected with a variety of processes, including inherent and
acquired medication resistance, both of which are heavily regulated by signal transduction
pathways. Over the years, numerous strategies have been documented that successfully
sidestep resistance pathways to cytotoxic, hormonal, and biologic drugs. As both genetic
and epigenetic alterations are dynamic, they cooperate to keep the malignant phenotype in
“homeostasis” in the face of a selection pressure [96]. Combination therapy, in which two or
more chemotherapeutic agents with different mechanisms of action and different pathways
to drug resistance are used, is widely accepted as a means of reducing the impact of drug
resistance by preventing the use of alternative intracellular escape pathways necessary for
tumor survival [97]. This strategy seeks to induce complementary/synergistic rather than
merely additive effects; however, it usually comes with a high price tag, which makes it
unattractive to many patients [98,99].

4.2. Pharmacological Inhibition of Membrane Efflux Transporters

The MDR phenotype has been studied extensively because it presents the greatest
barrier to successful chemotherapeutic intervention against cancer. Several medications
have been discovered to act as pharmacological antagonists of drug exporters, most notably
P-gp. Depending on their affinity for a specific transporter(s) and their relative toxicity
toward normal cells, MDR antagonists are categorized as either first-, second-, or third-
generation drugs. These compounds function as modulators, reversal agents, or inhibitors
of drug efflux [100].

Most modulators, however, have the issue of being carried by P-gp itself. Hence, their
inhibitory impact is through competition, necessitating extremely high concentrations to
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be effective in vivo, leading to intolerable side effects such as cardiotoxicity and immuno-
suppression for the P-gp inhibitors verapamil and cyclosporine A, respectively [101]. Yet,
there is another class of modulators that P-gp does not carry. To this end, vinblastine
efflux is severely inhibited by hydrophobic steroids such as progesterone, megestrol acetate,
and medroxyprogesterone, in contrast to what is observed for their more transportable
hydrophilic counterparts [102]. While RU486 (an antiprogestin) is a powerful modulator in
the lab, its hormone characteristics make it potentially dangerous in humans [103]. Clinical
trials have been conducted using hydrophobic antiestrogens such as tamoxifen and its
variants to treat breast cancer; however, because these compounds act as growth agonists
in some uterine cells, they may increase the risk of endometrial cancer [104,105]. Inhibitors
of growth factors and protein kinase C are two novel experimental techniques that have
the potential to prevent or postpone the development of membrane transport-associated
resistance [106].

4.3. Reversal of Drug Resistance by Naturally Occuring Polyphenolic Compounds

The systemic toxicity of chemotherapeutic drugs can now be minimized, while treat-
ment efficacy is maximized, thanks to the development of successful alternative techniques.
Dietary supplements and other phytotherapeutic substances are being studied for their
potential to enhance the effectiveness of anticancer medications. Polyphenolic compounds
with an extraordinary capacity to reverse drug resistance in vitro and in vivo may be discov-
ered with the help of recent investigations in various drug-resistant cancer cell lines [107],
and these compounds may be viable candidates for future clinical applications in cancer
treatment [107]. The most recently investigated polyphenols and the chemoresistance
mechanisms involved are summarized in Tables 1 and 2.
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Table 1. Summary of polyphenol and chemotherapeutic combination therapies in in vitro preclinical investigations.

Polyphenol Cancer Chemotherapy Drug Dosage Assay Molecular Effect Conclusion Reference

Curcumin Lung
cancer Cisplatin

2–32 µM curcumin +
0.5–8 µg/mL

cisplatin.

A549, H1299,
NCI-H460 cell lines

Upregulating the levels
of CTR1 and Sp1 to
increase more Pt2+

uptake.

Enhancing sensitivity
and antitumor effects of

CIS in NSCLC
[108]

Colorectal cancer Oxaliplatin

HCT116 and SW480
cells 0–8 µM
curcumin +
0.5–32 µM
oxaliplatin;

HCT116/oxaliplatin
cells 4 µM curcumin
+ 8 µM oxaliplatin

HCT116, SW480,
HCT116/Oxaliplatin

drug-resistant cell
lines

Inhibition of
TGF-β/Smad2/Smad3

signaling

Inhibition of cell
proliferation and

reduced tumor weight
and volume

[109]

Breast cancer Doxorubicin 25 µM curcumin +
5 µM doxorubicin

MCF-7/doxorubicin
drug-resistant cell

line

Reduced Aurora-A
expression. Triggered

p53 stabilization. Growth
arrest and apoptosis

induction

Reversed doxorubicin
insensitivity and

increased sensitivity in
doxorubicin-resistant

MCF-7 and MCF-7 cell
lines

[110]

Quercetin Liver cancer Doxorubicin;
5-fluorouracil (5-FU)

40–160 µM quercetin
+ 0.2–125 µg/mL
doxorubicin/5-FU

BEL-7402 and
BEL-7402/5-FU

drug-resistant cell
lines

Inhibition of
FZD7/β-catenin

pathway and ABCB1,
ABCC1, and ABCC2

efflux pump

Enhanced doxorubicin
and 5-FU sensitivity [111]

Colorectal cancer Doxorubicin 33 µM quercetin +
0.5 µM doxorubicin

SW620/ doxorubicin
drug-resistant cell

line and
SW620/Ad300 cell

line

Reversed P-gp-mediated
drug resistance,

increased intracellular
doxorubicin

accumulation;
modulated glutamine

metabolism in
doxorubicin-resistant
cells by inhibition of

SLC1A5

Reversed MDR,
enhanced sensitivity to

doxorubicin
[112]
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Table 1. Cont.

Polyphenol Cancer Chemotherapy Drug Dosage Assay Molecular Effect Conclusion Reference

Resveratrol Lung cancer Gemcitabine 10 µM RES + 1 µM
gemcitabine

HCC827 cell lines
and HCC827

Downregulation of
mRNA and protein

levels of ENG, activation
of ERK signaling

pathway

RES promoted tumor
microvessel growth,

increased blood
perfusion and drug

delivery into tumor that
resulted in enhanced

anticancer effect of GEM

[113]

Gastric cancer Cisplatin 20 µM RES +
1 µg/mL cisplatin AGS cell line

Upregulation of Bax and
the cleaved form of

PARP, downregulation of
Bcl-2, increased PERK,
p-eIF2α, and CHOP

protein levels. Activation
of

PERK/eIF2α/ATF4/CHOP
signaling pathway,

induction of G2/M cell
cycle arrest

Synergistically inhibited
cell growth of cancer cell

lines
[114]

EGCG Breast cancer Arsenic trioxide
and/or irradiation

10–100 µM EGCG + 2
Gy radiation;

10–100 µM EGCG
and 4 µM arsenic

trioxide. 10–100 µM
EGCG, 4 µM arsenic

trioxide and 2 Gy
radiation.

MCF-7 cell lines Bax upregulation and
Bcl-2 downregulation

Combination of EGCG
and Arsenic trioxide

with or without radiation
showed synergistic

effects in breast cancer
treatment visible in the

rise of cell death

[115]
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Table 1. Cont.

Polyphenol Cancer Chemotherapy Drug Dosage Assay Molecular Effect Conclusion Reference

Lung cancer Doxorubicin
0.5 µM EGCG +

0–100 µM
doxorubicin

Nonresponsive A549
cell line

Decreased drug efflux,
MDR signaling, and

invasiveness. Increased
drug internalization, cell

cycle arrest, stress
induced damage, and

cell death

EGCG reversed the
compromised

functionality of
doxorubicin in a

nonresponsive A549 cell
line and improved its

oxidative
damage-mediated
antitumor effect by
modulating redox

signaling

[116]

Apigenin Colorectal cancer 5-FU 20 µM apigenin +
20 µM 5-FU

HCT116 and HT29
cell lines

Inhibited the
upregulation of TS
induced by 5-FU.
Increased reactive

oxygen species
production, intracellular
and intramitochondrial

Ca2+ concentrations, and
mitochondrial

membrane potential

Apigenin enhanced the
efficacy of 5-FU by

potentiating HCT116 cell
apoptosis and enhancing

cell cycle disruption.
Acquired resistance to

5-FU was reduced

[117]

Breast cancer Cisplatin

5–100 µg/mL
apigenin +

5–100 µg/mL
cisplatin

MDA-MB-231 and
HCC1806 cell lines

Inhibition of telomerase
activity.

Down-regulation of
hTERT, Hsp90, and p23
at transcriptional and

translational levels

Apigenin and cisplatin
synergistically inhibited
telomerase activities by
reducing the catalytic
subunit of the enzyme

[118]
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Table 2. Summary of polyphenol and chemotherapeutic combination therapies in in vivo preclinical investigations.

Polyphenol Cancer Chemotherapy Drug Dosage Assay Molecular Effect Conclusion Reference

Apigenin Liver cancer Paclitaxel
1 mg/kg/day apigenin

+ 3.5 mg/kg/day
paclitaxel

Balb/c nude mice

Suppressing the
intratumoral expression of
HIF-1a via inhibiting the

AKT/p-AKT pathway and
the expression of HSP90

simultaneously

Apigenin reduced
hypoxia-induced

paclitaxel resistance in
hypoxic tumors

[119]

Lung cancer Navitoclax 25 mg/kg apigenin +
100 mg/kg ABT-263 BALB/c nude mice

Upregulated the expression
of Noxa by targeting the

AKT–FoxO3a pathway and
inhibited ERK

Apigenin synergized
with ABT-263 by

suppressing the growth
and proliferation of

tumor cells in vitro and
in vivo

[120]

EGCG Lung cancer Cisplatin

EGCG
(1.5 mg/mouse/day

IP) for 5 days and
cisplatin (2 or 4 mg/kg

IP) on day 5; EGCG
(1.5 mg/mouse/day)

and single-dose
cisplatin (2 mg/mouse)

on day 0 or 5

A549 cell xenograft
bearing BALB/c

nude mice

Increased cisplatin
concentration in tumor

tissue and tumor growth
delay due to EGCG-induced

vascular normalization

EGCG synergistically
potentiated cisplatin

antitumor efficacy
especially when cisplatin
was applied during the
vascular normalization

window

[121]

Liver cancer Sorafenib 100 mg/kg EGCG +
10 mg/kg sorafenib

Diethyl
nitrosamine-induced

hepatocellular
carcinoma in Wistar

albino rats

Histopathological
observations revealed a

satisfying decline in tissue
degeneration and
hyperchromatism.
Significantly lower

alpha-fetoprotein and liver
enzyme levels were detected,

as well as a greater
antioxidant capacity

EGCG and sorafenib
combination had a

comparable effect as that
of standard-dose

sorafenib. The
combination resulted in

enhanced
chemoprotection and is

considered effective
against hepatocellular

carcinoma

[122]
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Table 2. Cont.

Polyphenol Cancer Chemotherapy Drug Dosage Assay Molecular Effect Conclusion Reference

Resveratrol Colorectal cancer 5-FU

10 mg/kg b.w.
resveratrol p.o./day +
12.5 mg/kg b.w. 5-FU
i.p. injected on days 1,

3, and 5; repeated
every 4 weeks for

4 months

Methyl
nitrosourea-induced
colon cancer in male

albino rats

Decrease of NF-κB and
reduction of COX-2, induced

p53 gene expression

Resveratrol
biochemically

modulated and
enhanced the therapeutic

effects of 5-FU

[123]

Lung cancer Gemcitabine

25 mg/kg gemcitabine
i.p. 2×/week +

1 µmol/kg resveratrol
5×/week

HCC827 xenografts
in nude mice

Downregulation of mRNA
and protein levels of ENG,
activation of ERK signaling

pathway

Resveratrol promoted
tumor microvessel

growth, increased blood
perfusion and drug

delivery into tumor that
resulted in enhanced
anticancer effect of

gemcitabine

[124]

Quercetin Breast cancer Cisplatin 30 mg/kg quercetin +
7 mg/kg cisplatin

Breast tumor-bearing
mouse model

Inhibited tumor growth and
reduced renal toxicity

Synergistic effect;
inhibited renal toxicity

induced by cisplatin
[125]

Liver cancer Sorafenib

7.5 mg/kg/day
sorafenib, 2 h later

50 mg/kg/day
quercetin

Chemically induced
HCC rat model

Suppressed proliferation,
enhanced apoptosis and

necrosis

Synergistically increased
anticancer effect and

increased liver recovery
[126]

Curcumin Lung cancer Gefitinib 1 g/kg CUR +
100 mg/kg gefitinib BALBL/c mice

Inhibition of Sp1/EGFR
activity to induce

autophagy-mediated
apoptosis

Reduction in tumor
volume. Elevated the

sensitivity to gefitinib in
NSCLC patients with

mutated EGFR

[127]

Liver cancer 5-FU 56.65 mg/kg curcumin
+ 10 mg/kg 5-FU BALB/c nude mice

Decreased expression of
NF-κB protein in the nucleus.

Increased expression of
NF-κB protein in the

cytoplasm. Downregulation
of COX-2 expression

Synergistic effects and
in vivo tumor growth

inhibition
[128]
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As a result of the drawbacks of existing pharmacological MDR modulators, researchers
are looking for novel molecules that may be effective at manageable levels and have fewer
side effects. Hence, recent studies have revealed that natural compounds such as plant
polyphenols may be effective MDR modulators (Tables 1 and 2) [107]. Most of these
natural chemicals are necessary for human survival, and flavonoids, in particular, have
demonstrated exceptional profiles of safety and tolerability [36] even when administered
at extremely high dosages (e.g., 1.0 g dietary polyphenol/day). Clinical experiments
including these substances have shown promising findings, indicating that polyphenols
may have an anticancer effect; furthermore, multiple preclinical research suggests that
increasing polyphenol consumption or their usage as adjuvant therapy for cancer treatment
is warranted [36].

4.4. Flavonoid Antagonism of Drug Efflux Transporters

Vegetables, fruits, herbs, and drinks include flavonoids, which are a class of polyphe-
nolic compounds found in plants and characterized by their structural diversity due to
the presence of two or more aromatic rings in their molecular makeup [36]. Flavones,
isoflavones, flavonols, flavanones, chalcones, catechins (flavan-3-ols), and procyanidins are
subclasses based on the presence or absence of certain substitutions [36,37]. The relevance
of dietary flavonoids in cancer prevention or treatment has been extensively debated due
to their wide range of bioactivities, including antioxidant, anti-inflammatory, antiviral,
antiproliferative, and proapoptotic properties [36,37]. Flavonoids are well-known for their
ability to interact with ABC transporters [129], impeding the binding of drugs to the trans-
porters in either a competitive or an allosteric manner, therefore preventing the export of
antineoplastics [130]. By binding to members of the ABC transporter family, flavonoids can
either increase or decrease the transporters’ ATPase activity [131].

Flavonoids may potentially affect MDR transporter protein expression [132,133]. Many
P-gp inhibitors have been identified and investigated as potential MDR-reversing drugs,
meaning they can turn chemoresistance into chemosensitivity [134]. In particular, quercetin
has been shown to have antiproliferative effects in a wide variety of cancer cell lines
and animal models; hence, it is a well-established anticancer chemical. Despite the lack
of clinical evaluation of its chemo-sensitizing impact, preclinical studies have shown
significant promise of the use of this compound as an adjuvant to standard chemotherapy
(Tables 1 and 2), which may improve the therapeutic results for various malignancies,
including melanomas. Finally, researchers [101] showed that quercetin might sensitize
temozolomide-resistant DB-1 melanoma (wild-type p53) and SK-Mel-28 (mutant p53) cell
lines through the regulation of p53 family members. Multidrug-resistant MCF-7 human
breast cancer cells showed enhanced Adriamycin accumulation in the presence of quercetin,
according to preliminary studies of this chemical as a P-gp modulator [101].

Certain flavonoids have the ability to reverse MDR, just like the well-known but
highly lethal P-gp inhibitors verapamil and cyclosporine A [135]. By modulation of death
receptor 3, a receptor for tumor necrosis factor (TNF), fisetin induces apoptosis, inhibits
proliferation, and inhibits invasion in chemoresistant pancreatic cancer cells [101]. Several
studies looked at the structure–activity connections of various flavonoids that were shown
to impair P-gp-mediated transport. Flavanone (naringenin), flavone (baicalein), flavonols
(flavanols), kaempferol, quercetin, myricetin, morin, fisetin, and two additional glycosides
of quercetin were among the substances studied [101]. Drug buildup was observed in
P-gp-overexpressing human epidermal carcinoma KB-C2 cells due to a suppression of the
P-gp-mediated efflux of daunomycin, as demonstrated by the aforementioned studies. In
terms of promotion of daunomycin accumulation, kaempferol was followed by quercetin,
baicalein, myricetin, fisetin, and morin, among flavonoids [101]. Flavonols not only lowered
P-gp expression but also impeded P-gp-mediated drug transport [101].

Flavonoids have been demonstrated to interact with the ATP-binding domains of
P-gp and to reduce its ATPase activity, which is essential for drug translocation. P-gp
has been well recognized as an ATP-driven drug export pump. Both the ATP-binding
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site and the steroid-interacting sections of P-gp cytosolic domain are targets for these
drugs [136]. Certain flavonoids, in contrast to those that impede organic anion transport by
binding to and activating MRP1, increase the transport of reduced glutathione (GSH) [137].
The largest (six-fold) increase in GSH transport by apigenin was observed at a dose of
30 mM, when multiple flavonoids (apigenin, naringenin, genistein, and quercetin) were
employed to stimulate MRP1-mediated GSH transport. Flavonoids have been hypothesized
to promote GSH transport by elevating MRP1 apparent affinity for GSH [138]. In addition,
quercetin was shown to inhibit a heat shock factor in a P-gp-independent manner, reducing
MDR [139]. The results of this study were corroborated by another that found flavonoid-
rich foods caused tumor cells to accumulate more doxorubicin, allowing MDR to be
reversed [140]. Research on this topic has yielded mixed results, although the vast bulk of
the information points in a positive direction. Regarding this, various studies disproved
the hypothesis that the isoflavone genistein has no effect on cancer cell P-gp-mediated
MDR [141–143].

Research into the structural basis of MDR activity modulation by flavonoids and
the establishment of a strong structure–activity relationship for the ultimate selection
of a polyphenolic lead molecule have also been intensively pursued. P-gp active site
has been used to test the binding affinities of several synthetic analogues [144]. It was
also revealed [145] that several flavonoids may selectively revert BCRP-mediated drug
resistance in various chemoresistant leukemia cell lines. The possible clinical benefits
include enhanced efficacy and reduced toxicity of cancer chemotherapies made possible
by these flavonoid BCRP inhibitors [145]. In addition to enhancing the bioavailability of
doxorubicin, quercetin was demonstrated to decrease drug resistance by competitively
inhibiting P-gp, MRP1, BRCP, and the metabolizing enzyme cytochrome P4503A4 [146].
As an added bonus, quercetin was found to exert antiproliferative and apoptosis-inducing
actions on doxorubicin-resistant human gastric cancer cells [147].

As an ABC transporter, the BCRP protein plays a crucial role in healthy bodily
processes [148]. Moreover, BCRP is crucial in regulating access to pharmaceuticals [149].
Currently, there are not many studies looking for particular inhibitors of this transporter.
Several tamoxifen derivatives and the hormones estrone and estradiol have been found
to overcome BCRP-mediated medication resistance in cancer [150]. There is also strong
evidence that flavonoids can act as powerful BCRP-specific inhibitors. The accumulation of
BCRP substrates is stimulated by silymarin, hesperetin, quercetin, and daidzein in resistant
but not wild-type breast cancer cell lines [151]. The polyphenols genistein and naringenin
were shown to interact with BCRP at higher concentrations than estrone [101]. Certain
flavonols, such as kaempferide and kaempferol, and several flavones, such as acacetin,
apigenin, chrysin, diosmetin, and luteolin, have great potential to reverse BCRP-mediated
drug resistance, and they are safe enough to employed in clinical practice [101].

4.5. Dietary Polyphenol Inhibition of Oncogenic Signaling Pathways and Enhancement of
Tumor-Suppressive Pathways

Dietary polyphenols have been found to act as chemopreventive agents by disrupting
signal transduction pathways involved in carcinogenesis [152]. Cell cycle arrest, induction
of apoptosis, antioxidant and anti-inflammatory actions, and suppression of angiogenesis
are some of the outcomes of their interference with the cell’s natural processes [153].
A comparable effect of resveratrol on ovarian cancer cells’ sensitivity to cisplatin was
observed through its ability to modulate cancer cell growth via MAPK inhibition [101].
There are many NF-kB-controlled genes implicated in tumorigenesis that have been shown
to be downregulated when NF-kB activity is suppressed. These genes include tumor
necrosis factor alpha (TNF-a), cyclooxygenase-2 (COX-2), cyclin D1 (cyclin D1), matrix
metalloproteinase (MMP)-9 [154,155]. Curcumin and other polyphenols have inhibitory
effects on NF-kB, which is important because most anticancer medicines activate NF-kB,
leading to resistance [101].
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Curcumin, like other phenolic chemopreventive agents, reduces the activity of the
oncoprotein NF-kB and induces a proapoptotic cellular state by upregulating proapoptotic
signaling proteins (p53 and p21) and downregulating cell survival proteins (phosphatidyli-
nositol 3-kinase, protein kinase B, nuclear factor kappa B, and AP-1) [101].

Epigallocatechin gallate (EGCG), a component of green tea, inhibits the proliferation
of human breast cancer cells by reducing the production of survivin, a member of the
inhibitor of apoptosis protein family that is highly expressed in a wide variety of cancer
cells and tissues [101].

4.6. Polyphenol Resensitization of Drug-Resistant Cancer Cells and Tumors

Milk thistle seed silibinin was proven in numerous in vitro and in vivo investigations
to successfully sensitize cancer cells to apoptotic processes generated by a wide variety of
chemotherapy drugs [156,157]. The invasiveness of human ovarian cancer cells resistant to
paclitaxel was reduced in vitro after treatment with silibinin [158]. If this effect is replicated
in vivo, silibinin would be a great contender as an adjuvant for paclitaxel, suggesting a
potentially favorable chemotherapeutic regimen, particularly for patients with tumors
that are resistant to paclitaxel alone. Cell growth inhibition by cisplatin or carboplatin in
hormone-refractory DU145 prostate carcinoma cells was increased to 100% when silibinin
was added, according to another study. This was due to a more robust G2-M arrest brought
about by the reduced expression of Cdc2, cyclin B1, and Cdc25C, all of which are crucial
for the transition from the G2 to the M phase [159]. Similarly, A549 lung cancer tumor
xenografts were suppressed in growth, cell proliferation, and angiogenesis, and apoptosis
was triggered when nude mice were orally fed silibinin (200 mg/kg) after being pretreated
with doxorubicin (4 mg/kg). This anticancer impact was accompanied by less doxorubicin-
induced systemic toxicity, which was a notable finding when the medicines were taken
together [154]. As for methotrexate, silibinin dihemisuccinate increased the cytotoxic activ-
ity of methotrexate in a concentration-dependent manner, making methotrexate-resistant
human rhabdomyosarcoma cell lines more sensitive to the drug [160].

Therapeutic approaches that target DNA repair pathways are an attractive option
for making chemoresistant cancers more sensitive to treatment [161]. Inhibiting DNA
repair and inducing death in MDR cells via modulation of autophagy were described
following a short-term treatment with curcumin. Tumor angiogenesis and metastasis can
be stifled by curcumin because it reduces the levels of vascular endothelial growth factor
(VEGF) [162]. Downregulation of MMPs and VEGF is a possible mechanism by which
quercetin, genistein, resveratrol, and other phenolic acids are able to suppress angiogenesis
in in vitro cell-based systems and animal models [163,164]. The metastatic process may be
slowed by the fact that polyphenolic chemicals also suppress the expression of vascular
adhesion molecules [165,166].

Researchers found that the polyphenols in red raspberries can slow the expansion of a
variety of cancer cell lines by inducing cell cycle arrest, apoptosis, or autophagy-associated
cell death in a dose-dependent way [167]. At greater concentrations, berry extracts can
also resensitize fulvestrant-resistant cells to treatment (1 mM). This suggests that berry
extracts not only improve the response of resistant breast epithelial cells to the antiestrogen
fulvestrant, but also raise the cell death response in susceptible cell lines [168].

4.7. Polyphenols and Cellular Metabolism in Cancer

Recent research suggests that regardless of their tissue of origin, nearly all cancer cells
have a common trait of poor cellular energy due to uncontrolled metabolism [36,169–171].
There are significant differences between the metabolic features of cancer cells and those
of normal cells when it comes to the generation of cellular energy [172]. Cancer cells,
in contrast to normal cells, rely abnormally on anaerobic glycolysis and substrate-level
phosphorylation to meet their energy demands, with glucose and/or glutamine as sub-
strates [173]. Increased fatty acid production and elevated glutamine metabolism are just
two examples of tumors’ unusual metabolic features [174,175]. Cancer cells, in contrast
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to normal cells, which typically rely on growth factor signaling to make use of energy
resources [176], break down these resources via glycolysis and glutaminolysis to divert the
intermediate products that are required for biosynthetic pathways and the maintenance of
cellular growth and proliferation [177]. As a result of this metabolic transition, cells are no
longer limited in their ability to grow and divide.

Damage to mitochondrial respiration, a possible cause of cancer, leads to fermentation
(glycolysis) and dysregulated cellular metabolic processes [178]. In light of these hallmarks
of cancer cells, the disease is increasingly thought of as an interchangeable process involv-
ing metabolic abnormalities and genetic mutability. Metabolic problems associated with
genomic instability are commonly preceded by hypoxia and mitochondrial malfunction,
which have been linked to cancer and resistance [179,180]. If left untreated, this issue can
progress to the point of somatic genomic instability, which in turn can cause additional
mitochondrial abnormalities and metabolic rigidity in tumor cells [181,182]. Recent studies
have found that energy restriction mediated by interfering with glucose or glutamine
metabolic pathways is closely related to improvement in cancer therapeutic response and
tumor regression [183–185], lending credence to the hypothesis that dysregulated cellular
metabolism is linked to drug resistance in cancer therapy. Therefore, compounds that affect
particular metabolic components and enzymes (such as glucose transporters, hexokinase,
pyruvate kinase M2, lactate dehydrogenase A, glutaminase, and fatty acid synthase) as-
sociated with dysregulated cellular glycolysis, glutaminolysis, and fatty acid synthesis
may improve the therapeutic response or decrease resistance to conventional anticancer
agents [186]. Combining chemotherapeutics with inhibitors of cellular metabolism is also
regarded to be promising; however, this approach to overcoming chemoresistance has not
been thoroughly investigated [187].

The majority of bioactive chemicals with medicinal potential are found in nature.
Flavonoids and dietary polyphenolic chemicals are just two examples of these food com-
ponents that have been shown to have anticancer action [36,180]. Dietary polyphenols
have been linked in numerous studies to controlling glucose and lipid metabolism via a
variety of mechanisms and pathways [188]. In several types of cancer cells, polyphenols
were shown to regulate glucose transporter activity. Well-known inhibitors of glucose
absorption include myricetin, quercetin, genistein, cyanidin, hesperetin, naringenin, and
catechin [189–191]. To destroy cancer cells and make them more sensitive to chemotherapy,
polyphenols are used to inhibit their basal glucose transport [192]. EGCG, curcumin, and
resveratrol are three of the most researched and potentially cancer-preventing polyphenols.
These compounds’ chemopreventive effects can be explained in a number of different ways,
including the fact that they interfere with or even reverse the carcinogenic process by influ-
encing molecules in the intracellular signaling network that play a role in the development
and/or maintenance of cancer [193–195].

In addition to mediating hypoxia-induced MDR in cancer cells by preventing drug-
induced apoptosis and lowering intracellular drug accumulation, polyphenols can in-
hibit the activation of hypoxia-inducible factor-1 (HIF-1a), the central molecule respon-
sible for controlling the expression of glucose transporters and the other key glycolytic
enzymes [196,197].

By blocking the production of HIF-1 and its target genes GLUT-1, hexokinase II (HKII),
and VEGF, polyphenols are thought to sensitize cancer cells to chemotherapy [198]. Addi-
tionally, many polyphenols can inhibit the mitochondrial metabolism, a key mechanism
in cancer development [199,200]. Reduced mitochondrial membrane potential and an
imbalance in the cellular energy molecule (ATP/ADP) as a result of ATP synthase inhibi-
tion are two telltale signs of mitochondrial malfunction. Alterations in the expression of
apoptotic markers such as Bax and Bcl-2 are also linked to mitochondrial malfunction [201].
Polyphenols found in tea and curcumin have been shown to trigger apoptosis in a variety of
cancer cell types by disrupting mitochondrial metabolism and function [202–204]. Several
studies point to mitochondrial dysfunction in cancer as a result of redox changes. Examples
include a new mechanism for the regulatory role of curcumin in this phenomenon [205].
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Last but not least, one intriguing approach to inhibiting cancer cell survival and resistance
is to interfere with their lipid metabolism. Many natural polyphenols’ anticancer effects are
thought to stem from their capacity to regulate the lipid metabolism [206], specifically by
blocking the overexpression and activation of the enzyme fatty acid synthase [207].

4.8. Anti-Metastatic and Epigenetic Effects Exerted by Polyphenols

The term “metastasis” refers to the process by which cancer cells spread from their
original location to other parts of the body, where they might cause even more damage.
Microenvironmental components, such as stromal fibroblasts and immune cells, influence
tumor cell behavior and promote metastasis. The key processes that prime tumor cells
for infiltration are cellular motility, hypoxia, epithelial–mesenchymal transition (EMT),
and angiogenesis [208–210]. Studies have shown that matrix metalloproteinases (MMPs),
transforming growth factor beta (TGF-β), and TP53 all play critical roles in metastasis
management [208–210].

Multiple stages of this process have been demonstrated to be susceptible to mod-
ification by polyphenols. For example, curcumin reduces the metastatic properties of
cancer cells by influencing EMT-related proteins such as vimentin, fibronectin, β-catenin,
and E-cadherin as well as genes expressed in cancer stem cells such as Oct4, Nanog, and
Sox2 [211]. Additionally, quercetin and its derivatives are able to block EMT, MMP se-
cretion, NF-kB, and cancer cell migration and metastasis [212–215]. Resveratrol inhibits
metastasis by reversing EMT via AKT/GSK-3β/Snail signaling and reducing MMP-2 and
9 as well as Smad2 and 3 levels [216].

Tumor development, metastasis, and therapeutic resistance stem from epigenetic dys-
regulations and aberrations [217]. Cancer is characterized by epigenetic abnormalities in-
cluding, but not limited to, DNA methylation, histone modifications, chromatin/nucleosome
remodeling, and miRNA regulation [217].

Among the polyphenols, curcumin is one of the most effective at preventing these
modifications from helping cancer cells. The enzymes known as histone deacetylases
(HDACs) remove acetyl groups from histones, thereby contributing to gene silencing [218].
Curcumin has been shown to inhibit these enzymes and hence control the growth and
death of cancer cells [219]. Curcumin has been shown to block the activity of histone
deacetylases 1 (HDAC1), 2 (HDAC2), 3 (HDAC3), 4 (HDAC4), and 8 (HDAC8) [219–221].
Histone acetyltransferases (HATs) are another group of enzymes that can be used to foretell
whether or not cancer cells will proliferate and survive. Some studies have found that
curcumin inhibits these enzymes, and one of them is p300 [222,223]. This inhibition might
occur directly or indirectly.

In addition, curcumin inhibits DNA methylation in the promoter region of numerous
cancer-related genes by lowering the amount of DNA methyltransferase 1 (DNMT1) [224,225].
This includes the tumor suppressor gene Wnt inhibitory factor-1 (WIF-1) [226], FANCF [227],
Nrf2 [228], Neurog1 [229], and RARβ2 [230].

Curcumin regulates microRNAs (miRNAs) including miR-125-5p, miR-19a, miR-9, and
miR-145 in nasopharyngeal, breast, and ovarian cancer and leukemia [231]. Comparatively,
resveratrol can affect the expression of miR-200, miR-122-5p, miR-20, and miR-633, just like
other polyphenols can [232–235]. In cancer cells, quercetin controls the expression of many
microRNAs [236–239], including miR-16, miR-22, miR-200b-3p, and miR-146a. In addition
to EGCG, genistein regulates a number of other microRNAs [240,241] that play a role in
correcting epigenetic changes in cancer cells.

4.9. Targeting Cancer Stem Cells Using Polyphenols

Less than one percent of the cells in a tumor are cancer stem cells (CSCs), a sub-
type of tumorigenic cells that are distinguished by their capacity for self-renewal and
multipotency [242,243]. Researchers found that CSCs are to blame for the poor response of
tumors to chemotherapy and radiation in virtually all cases [244–252]. The main reasons
why CSCs provide resistance to our common therapies are their stemness features and
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the fact that they slow down the cell cycle, possess an anti-apoptotic machinery, have a
high capacity for repairing DNA damage, and have the power to establish a proper envi-
ronment for cancer growth [242,243,253,254]. Other factors that aid CSCs in this process
include the Notch, Wnt, STAT3, PI3K/Akt, and NF-kB signaling pathways, protective
autophagy, metabolic flexibility, and oxidative modulators [254,255]. It may be said that
CSC targeting is a viable strategy for lowering tumor resistance and raising the efficacy of
our standard medicines.

Recently, a novel idea for treating resistant tumors has emerged: using polyphenols to
specifically target these cells. Curcumin has been shown to have anti-CSC properties in a
variety of cancer types, including colon [256], pancreatic [257], liver [258], breast [259], and
brain [260]. Colon cancer cells treated with curcumin had reduced levels of CSC markers
such as CD44, CD133, and CD24 and a diminished ability to form a sphere [256]. Curcumin,
either alone or in combination with irinotecan (CPT-11), induced apoptosis in CSCs, leading
to less resistance to a chemotherapeutic medication [256]. Curcumin was also linked to
suppressing CSC stemness by blocking the EZH2 polycomb repressive complex 2 (PRC2)
subunit [257,261]. Curcumin increased the sensitivity to gemcitabine in pancreatic cancer
cells by inhibiting a long non-coding RNA called PVT1 [257]. Curcumin can also influence
genes including Nanog, Sox2, and Oct4 that are involved in stemness [259]. Curcumin’s
capacity to reduce antiapoptotic protein levels and raise proapoptotic protein levels in CSCs
is another method by which it reduces chemoresistance [262]. Bcl-2 and Bcl-w are examples
of the former, while Bax, Bak, Bad, Bik, and Bim are examples of the latter. By doing
so, mitomycin C resistance in breast cancer can be lowered [262]. Curcumin has shown
promise in the treatment of brain cancer when used in conjunction with nanomedicine [260].
Anti-aldehyde dehydrogenase-grafted curcumin-loaded nanoparticles not only improved
curcumin’ capacity to cross the blood–brain barrier but also released the polyphenol
steadily over time [260]. Curcumin’s ability to make breast cancer cells more vulnerable to
mitomycin C was also shown in an in vivo investigation [263]. Breast cancer stem cells were
inhibited by a combination of curcumin and paclitaxel [263]. This action was mediated
through the ATP-binding cassette (ABC) transporters ABCG2 and ABCC1.

The polyphenol EGCG can also inhibit CSC features including proliferation and
migration in nasopharyngeal cancer cells [264]. In an osteosarcoma cell line, baicalin, a
flavone, was tested for its role in EMT and was found to diminish anoikis-related resistance
by inhibiting the EMT-inducing transcription factors Snail1 and Slug [265]. In addition
to reversing EMT and decreasing the cisplatin resistance of lung cancer cells (in vivo and
in vitro), baicalin also suppressed the PI3K/Akt/NF-kB pathway [266].

The anti-resistance effects of EGCG in cancer stem cells were further supported by an
in vivo study. Researchers found that by inhibiting colorectal cancer stem cells with EGCG,
they were able to increase the levels of tumor-suppressing microRNAs and make the cells
more sensitive to the chemotherapy drug 5-fluorouracil (5-FU) [267].

4.10. Clinical Studies of Polyphenols with Promising Anticancer Effects

Polyphenols have emerged as a promising new class of therapeutic agents, and their
usage in clinical studies to investigate potential health benefits in various cancers has
increased dramatically in recent years [268]. Curcumin, EGCG, resveratrol, quercetin,
apigenin, and kaempferol were all shown to have strong anticancer effects, but most of these
research was conducted in preclinical models [269]. Experimental results in cellular/animal
models cannot be considered to be applicable to people, mainly because of variations in
genetics and metabolism; hence the bioactivities of polyphenols must also be explored
in detail in humans. Most of these investigations will focus on learning more about the
substances’ pharmacokinetics, pharmacodynamics, and safety and the processes by which
they manifest their effects. Table 3 summarizes the results of some recent clinical trials
involving a variety of polyphenols for the treatment of various cancers.
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Table 3. Recent clinical trials using polyphenols against cancers (adapted from ref. [268]).

Polyphenol Type of Cancer Outcome Status

Resveratrol Liver Cancer Improvement of the Metabolic
Profile of Liver Cells Withdrawn

Caffeic Acid Esophagus Cancer 1-Year Overall Survival (OS) Ongoing

Quercetin Primary Prevention
of Prostate Cancer

Log2-Transformed PSA
Measurements Ongoing

Retinol Lung Cancer Prevention Of Lung Cancer Completed

Alpha-Tocopherol Head and Neck
Neoplasms

Prevention of Second Primary
Cancers Completed

Grapes Colon Cancer
Localization of β-Catenin and
Wnt Target Gene Expression in
Intestinal Mucosa

Withdrawn

Retinol Lung Cancer Lung Cancer Incidence Completed

Moreover, polyphenols, when given as an adjuvant, were demonstrated to increase
chemosensitivity in tumor cells, as reported in Table 4.

Table 4. Polyphenols that make tumor cells more sensitive to chemotherapeutic drugs (adapted from
ref. [107]).

Polyphenol Chemotherapy Drug Result

Apigenin Cisplatin Inhibits growth of drug-resistant colon cancer
cells while inducing autophagy

Resveratrol Cisplatin Induces autophagic and apoptotic death in
drug-resistant oral cancer cells

Curcumin 5-Fluorouracil
Exerts synergistic effects with the
chemotherapeutic drug by impairing
AMPK/ULK1-dependent autophagy

EGCG Cisplatin Increases sensitivity of CAR cells, apoptosis, and
autophagy by AKT/STAT3 pathway

Curcumin Docetaxel Leads to induction of apoptosis and autophagy
through PI3K/AKT/mTOR pathway

Resveratrol Gefitinib
Overcomes drug resistance while inducing
apoptosis, autophagy, and senescence in PC9/G
NSCLC cells

Curcumin Gefitinib
Enhances the efficacy of the drug and overcomes
EGFR-TKI resistance in NSCLC patients with
wild-type EGFR and/or KRAS mutation

Polyphenols have the potential to be employed either alone or in combination with
other cancer therapies. Exploring the mechanisms of action of these compounds could
lead to greater therapeutic success in the treatment of cancer [268,269]. Prior to their usage
as prescription medications, however, the safety of these substances must be established
by additional research, which may include human subjects and various pharmacokinetic
parameters. Moreover, more clinical trials could investigate the development of a standard-
ized extract or dosage to be used as a successful cancer treatment regime.

5. Polyphenol Bioavailability and Metabolism

Recent research on the bioavailability of polyphenols has shown that even when
consumed in relatively large concentrations, these compounds have a low bioavailability.
Their poor bioavailability is a major roadblock to their application in pharmacology because



Biomedicines 2023, 11, 1709 20 of 31

of the molecular structure changes that occur during digestion, absorption, and distribution
as a result of interactions with food, digestive enzymes, and transporters in the intestine
and with blood proteins [270].

It is considered that polyphenols are bioavailable and can efficiently reach the target
tissue. Knowing how they are ingested, processed, and eliminated from the body is crucial.
The chemical complexity of polyphenol-rich diet, as well as other characteristics including
the degree of polyphenol polymerization and conjugation with other compounds and
phenols, makes absorption studies difficult to conduct [270]. Most polyphenols in food
are not digestible because they are bound to esters, glycosides, or polymers. As the body
treats polyphenols as foreign invaders after they have been ingested, their bioavailability is
limited compared to that of micro- and macronutrients [270,271].

Similar to metabolic detoxification, polyphenol metabolism can lessen their cytotoxic-
ity by increasing their hydrophilicity and making them easier to eliminate via the urinary
or the biliary system [270]. The rate and degree of absorption and the kind of circulating
metabolites in the plasma are determined by the structure of polyphenols, not by their
content. These chemicals are either easily absorbed in the small intestine (monomeric
and dimeric polyphenols) or reach the large intestine almost unchanged (oligomeric and
polymeric polyphenols) [270,271].

Only about 5–10% of polyphenols that are consumed are absorbed in the small in-
testine, according to some literature. Less complex polyphenolic chemicals are able to
undergo hydrolysis and biotransformation in enterocytes and subsequently in hepatocytes
following absorption. This process leads to a cascade of hydrophilic conjugated metabolites
(methyl, glucuronide, and sulfate derivatives) that are rapidly absorbed in the bloodstream
and either transported to various organs or eliminated in the urine [270]. Because each
phenolic molecule may give rise to ten other compounds throughout metabolism [270], it
is challenging to trace the fate of each component in the body. Metabolic activities typi-
cally transform phenolic antioxidants into entirely new compounds, making the parent
phenol nearly impossible to identify [270]. Phase I metabolism occurs in enterocytes when
xenobiotics are oxidized, reduced, or hydrolyzed to introduce or expose a functional group,
such as a hydroxyl group, particularly for conjugation (phase II metabolism) [270,271].
However, the hydroxyl groups on the phenolic aromatic ring are successfully conjugated
to glucuronide, sulfate, and/or methylated metabolites through the action of uridine-
5-diphosphate glucuronosyltransferase (UGT), sulfotransferase (SULT), and catechol-O-
methyltransferase (COMT) [270,271]. The meta position is the preferred conjugation site
for catechol antioxidants [270]. Para-position conjugation with a glucuronic acid or sulfate
group is less common than meta-position conjugation with a methyl group, although it
does happen [270–272].

The poor knowledge available regarding the absorption of polyphenols in humans
is a major hurdle that needs to be addressed to increase the efficacy of these compounds
as chemopreventive and chemotherapeutic agents for the benefit of health. Nanoparticle
encapsulation is a possibility that may allow for more precise targeting and controllable
release. However, further research is required to put this idea into general practice for
polyphenol-based cancer therapies.

6. Conclusions and Future Perspectives

New approaches are being considered to improve the therapeutic outcomes as the
incidence of cancer rises and standard treatments lose their efficacy. There has been a rise
in interest in alternative medicines because of the negative outcomes that can result from
conventional treatments. Scientists advocate for the use of polyphenolic chemicals found
in nature, which can spare healthy tissues while killing cancers. Polyphenols such as cur-
cumin, quercetin, EGCG, resveratrol, and apigenin have shown efficacy as potential cancer
therapy agents, especially when paired with chemotherapeutic drugs such as cisplatin,
5-fluorouracil, docetaxel, paclitaxel, gefitinib, and others to induce synergistic effects. They
are highly effective as antioxidants and also reduce inflammation, slow cell proliferation, in-
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hibit angiogenesis, inhibit metastasis, and promote apoptosis. They were shown to perform
exceptionally well in tests involving several different kinds of cancer, including those of the
lung, breast, liver, colon, and stomach. They were able to trigger apoptosis and block the
development and division of numerous cell lines. They can also be preloaded into certain
biomaterials to provide a steady release and a simultaneous therapeutic and regenerative
effect. In order to fully understand the mechanism involved in the polyphenol-induced
regulation of cancer, additional research is needed, particularly on in vivo models and in
additional clinical trials. The immunomodulatory impact of polyphenols, which can boost
the efficacy of treatments such as immune checkpoint blockade, also needs a thorough
evaluation. The potential for polyphenol treatment to reduce toxicity and adverse effects
has contributed to its increased prominence in cancer therapy. However, this technique
must be used with caution, as it can lead to the development of dormant tumor cells, which
can cause the disease to recur.
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268. Rudzińska, A.; Juchaniuk, P.; Oberda, J.; Wiśniewska, J.; Wojdan, W.; Szklener, K.; Mańdziuk, S. Phytochemicals in Cancer
Treatment and Cancer Prevention—Review on Epidemiological Data and Clinical Trials. Nutrients 2023, 15, 1896. [CrossRef]
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