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Abstract: The increased prevalence of disease, mortality, and antibiotic resistance among aquatic
microorganisms has renewed interest in non-conventional disease prevention and control approaches.
Nanoparticles present several benefits in aquaculture and hold significant potential for controlling
both human and animal infections. This study reports on the antibacterial properties of green copper
oxide nanoparticles (CuO NPs) synthesized from the urine of Mithun (MU) (Bos frontalis). In addition,
an array of analytical techniques, including scanning electron microscopy (SEM), X-ray diffraction
(XRD), UV-visible spectroscopy (UV), and Fourier transform infrared spectroscopy (FTIR), were
employed to investigate the synthesized MU-CuO nanoparticles. Aeromonas hydrophila and Aeromonas
veronii, two bacterial fish pathogens known to cause severe infectious diseases in fish, were tested for
their antibacterial efficacy against MU-CuO NPs. At 100 µg/mL, MU-CuO NPs exhibit enhanced
antibacterial efficacy against two bacterial pathogens commonly found in fish. Applications in
aquaculture may be looked at given that MU-CuO NPs showed greater antibacterial activity.

Keywords: nanotechnology; biosynthesis; cow urine; biomedicine; Aeromonas hydrophila; Aeromonas veronii

1. Introduction

Fish are prone to various illnesses, and the primary cause of fish mortality is attributed
to diseases, particularly in juvenile fish. Fish diseases can be classified into two categories,
namely pathogenic and non-pathogenic, based on their level of contagiousness. The ul-
timate state, which is associated with inadequate water quality, malnourishment, and
other related factors, is non-communicable in fish. Non-communicable diseases encompass
a range of conditions that may arise due to factors such as hyper aeration, inadequate
nutrient intake (including vitamin and mineral deficiencies), exposure to industrial and
agricultural pollutants, genetic mutations, and neoplastic anomalies, which involve ab-
normal growth and development of organs resulting in their structural and functional
impairment [1–4]. The alternative form of ailment is pathogenic in nature and is believed
to be especially deleterious due to its propensity for transmission between fish, ultimately
leading to substantial mortality rates.
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The utilization of chemotherapeutic and antimicrobial agents has been deemed a critical
approach in preventing and managing infectious pathogens, with considerable attention
devoted to this area in recent decades [5]. Nonetheless, the frequent utilization of these
medications presents a range of disadvantages. Aquatic fauna is also susceptible to the
significant adverse impacts of antibiotic resistance on all living organisms [6]. The scientific
community has extensively substantiated the potential threat to human well-being that arises
from the unselective application of antibiotics in aquatic organisms such as fish. When
antibiotics are used too much, they hurt the environment and living processes [7,8]. Moreover,
it often facilitates the emergence and dissemination of infections that exhibit elevated levels of
drug resistance. This increases the probability of horizontal gene transfer [9,10]. To effectively
manage infections, it is imperative to explore alternative strategies.

Metal nanoparticles have several potential applications in nanomedicine and biotech-
nology. In addition to being effective against viruses and inflammation, it also inhibits the
growth of biofilms and bacteria and promotes the healing of wounds [11]. The aforemen-
tioned phenomenon provides a substantial surface area for the management of biochemical
reactions occurring at various levels within pathogenic cells and simultaneously influences
multiple alterations in bacterial metabolic mechanisms [12]. The amalgamation of metallic
nanoparticles and antibiotics can potentially augment the antimicrobial properties of both
constituents through synergistic and reinforced performance, as suggested by previous
research [13]. Metal oxide nanoparticles, including Al2O3, ZnO, MgO, CuO, TiO2, and CaO,
have been synthesized and are recognized for their intrinsic antimicrobial properties [14].
Inorganic oxide nanoparticles offer sKarthika everal advantages over organic antimicrobial
agents, including enhanced stability, robustness, and superior efficacy, against resistant
microbial pathogens [15–17]. Copper oxide nanoparticles (CuO NPs) have unique char-
acteristics and several biomedical uses [18,19]. Several methods have been employed to
synthesize CuO NPs [20–23]. The relevance of CuO NPs has significantly increased due
to their simplicity and unique capabilities in the fields of optics, electricity, and pharma-
cology [24]. The utilisation of CuO NPs has been observed to demonstrate functional
properties such as antibacterial, antibiotic, antifungal, and antifouling agents in various
biological and biomedical applications [25].

Cows are regarded in Indian tradition as sacred and venerable creatures known as
“KAMADHENU”, which translates to “the mother of all spiritual entities”, from the dawn of
time. In India, panchagavya, which comprises of cow urine, ghee, milk, curd, and dung, is
utilised as a dietary supplement, spiritual aid, and medicine owing to its reputed legendary,
spiritual, and medical significance [26,27]. According to recent research [28], cow urine has
been suggested as a potential remedy for various health conditions, including joint pain,
high blood pressure, diabetes, heart disease, cancer, thyroid disorders, asthma, psoriasis,
skin inflammation, headache, ulcer, and gynaecological issues. According to ancient
Ayurvedic literature, cow urine contains 95% water, 2.5% urea, and 2.5% minerals, salts,
hormones, and enzymes [26]. Ancient Indian Ayurvedic literature suggests using cows’
liquid metabolic waste to treat chronic diseases. Cow urine is anti-neoplastic, according to
medical authorities [27]. Additionally, cow urine exhibits promising medicinal properties
in the fields of antimicrobial, antioxidant, anti-anthelmintic, anticancer, and biosensors,
which are significant in the realm of biotechnology. According to research findings, cow
urine has been established as a potent and effective therapeutic agent capable of treating
diverse medical conditions [28].

Cow urine (CU) is a component of panchagavya, an ancient Ayurvedic system in India,
due to its purported therapeutic properties. The potential to act as a reducing agent is given
to CU by the existence of different biomolecular entities within it [14]. The present research
introduces a new approach to employing copper nanoparticles by means of incorporating
MU integration. The utilization of the synthesis strategy is distinguished by its uncompli-
cated nature, economic viability, and ecological sustainability. The biomolecules within
MU serve as capping agents, thereby playing a role in the stabilization of the nanoparticles.
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The present investigation examined the antibacterial properties of MU-CuO NPs derived
from Mithun urine against Aeromonas hydrophila and Aeromonas veronii.

2. Materials and Methods
2.1. Chemicals

Copper sulphate (CuSO4·5H2O) of analytical quality was purchased from Merck in
Electronic City, India. All of the procedures in the experiment were carried out using
double-distilled (DD) water.

2.2. Collection of Mithun Urine

The Mithun urine sample was obtained from the Mithun breeding centre,
ICAR—National Research on Mithun, located in Medziphema, Nagaland, India. Fol-
lowing the filtration of the Mithun urine sample using Whatman filter paper No. 1, the
resulting filtrate was stored under refrigeration until its utilization in subsequent analyses.

2.3. Preparation of MU-CuO NPs

A 10 mM solution of copper sulphate, comprising 50 mL, was introduced to 5 mL of
freshly filtered urine from Mithun in a 100 mL Erlenmeyer flask. The mixture was subjected
to continuous stirring at a temperature range of 100–120 ◦C, facilitated by a magnetic stirrer.
The colour of the reaction mixture underwent several changes, transitioning from a deep
blue hue to colourless, followed by a shift from colourless to brick red, and ultimately
culminating in a dark red shade after undergoing vigorous stirring for a duration of 24 h.
Subsequently, the resultant amalgamation was subjected to centrifugation for a duration of
10 min at ambient temperature and a speed of 10,000 revolutions per minute, utilizing a
Beckman centrifuge equipped with a Beckman JA-17 rotor. The supernatant was eliminated
prior to the collection of the amalgamated substance. The MU-CuO NPs were air-dried on
a watch glass after collection. The resulting black precipitate was subjected to grinding in
order to enhance its distinctive properties.

2.4. Microorganisms

The bacterial strains used in the research were A. veronii (MTCC 3249) and A. hydrophila
(MTCC 646). We obtained both bacterial strains from IMTEH in Chandigarh, India.

2.5. Characterization of Synthesized MU-CuO NPs

The production of MU-CuO NPs was monitored by UV-visible spectroscopy (Make,
Perkin Elmer, Waltham, MA, USA). An FTIR spectrophotometer (Perkin Elmer Model
RXI) and the KBr pellet technique were used to verify the presence of functional groups.
The shape and elemental content of synthesized CuO NPs were studied using scanning
electron microscopy (SEM) Model FEG-Quanta 250 with energy dispersive atomic X-ray
spectroscopy (EDAX). The XRD patterns were captured using a Philips analytical X-ray
diffractometer with a CuK radiation (λ = 0.15418) source at 40 KV and 30 MA.

2.6. Antibacterial Activity

Gram-negative fish pathogenic strains, including A. hydrophila (MTCC 646) and
A. veronii (MTCC 3249), were investigated for antibacterial activity using an agar well
diffusion technique with green-generated MU-CuO NPs. The MIC of the MU-CuO NPs
against each bacterial pathogen was determined using the micro-dilution broth technique.
All bacterial dilutions were standardized using the McFarland (turbidity) standard, and the
resultant bacterial density was 1.5 × 108 CFU/mL. The agar well diffusion technique [28]
was followed by Cappuccino and Sherman [29] to examine the antibacterial activity. Differ-
ent quantities of MU-CuO NPs (T1-25, T2-50, T3-75, and T4-100 µg/mL; positive control
as Gentamycin; negative control as DMSO) were injected in the wells of cultivated agar
plates using a sterile well puncture. After adding MU-CuO NPs to the culture plates, the
plates were placed in a 37 ◦C incubator for 24 h. Following incubation, the plates were
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examined for the presence of zones, indicative of the nanoparticles’ inhibitory effect on
the bacterial pathogens. The areas were measured using a millimeter ruler, and the results
were compared.

2.7. Statistical Analysis

The data were subjected to one-way analysis of variance (ANOVA) for statistical
analysis. The concentrations were subjected to multiple comparisons using Duncan’s
multiple-range tests to assess any variations. The statistical analyses were conducted
utilizing SPSS software (Version 21). The statistical significance threshold was established
at a level of p < 0.05, and the outcomes were presented as the mean value accompanied by
the standard error.

3. Results
3.1. UV-Visible Spectroscopic Analysis

The UV-visible spectrum of the MU-CuO NPs that were synthesized is illustrated
in Figure 1. The UV-visible spectral analysis provides evidence for the formation and
endurance of MU-CuO NPs in a colloidal solution in an aqueous environment. The
plots depicted the relationship between absorbance and wavelength. The wavelength of
230.40 nm exhibits a notable increase in the absorption spectra of MU-CuO nanoparticles.
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Figure 1. The UV-visible spectra of green synthesized MU-CuO NPs.

3.2. Fourier Transform Infrared Spectroscopic Analysis

The FTIR spectrum of MU-CuO NPs is illustrated in Figure 2. The study employed
FTIR analysis to examine the presence of functional groups in MU-CuO NPs. The broad
absorption peak observed at approximately 2923.17 cm−1 can be attributed to the adsorbed
water molecules. 3759.00 cm−1 is the phenolic compound’s -OH group stretching vibrations.
The stretching modes of -CH2 and C-H in alkanes were assigned to the spectral bands at
1737.13 cm−1 and 1454.12 cm−1, respectively.
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Figure 2. The FTIR spectra of synthesized MU-CuO NPs.

3.3. Scanning Electron Microscopic Analysis

Figure 3a,b, illustrates the examination of the synthesized MU-CuO NPs through the
utilization of scanning electron microscopy utilizing Mithun urine. The MU-CuO NPs were
agglomerated with a particle size in the range of 44–56 nm. Various forms of MU-CuO NPs
were synthesized due to bioactive constituents in Mithun urine. The elemental composition
of MU-CuO NPs is seen in the EDAX spectra shown in Figure 3c.
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3.4. X-ray Diffraction Analysis

The XRD technique was employed to confirm the crystalline structure of the MU-CuO
NPs (Figure 4). The reflection at 2θ values 29.32, 35.89, 39.33, 43.11, 47.48, and 48.47, which are
indexed to be lattice planes with (110), (111), (200), (220), (301), and (204) individually, was
proven by the XRD pattern of synthesized MU-CuO NPs. The average size of the crystals was
determined from the XRD data, utilizing the Scherrer equation (D = 0.94 × λ/β × Cosθ). The
mean size of the crystals was determined to be 48.47.
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3.5. Antibacterial Analysis

Two fish pathogenic bacteria, shown in Figures 5 and 6, were used to test the antibac-
terial activity of MU-CuO NPs. The study observed that the highest level of zone inhibition
was recorded in T4 at 8.32 ± 0.12 mm, while A. hydrophila and A. veronii exhibited zone
inhibitions of 6.74 ± 0.09 mm and T4, respectively. The results of our study indicate that
MU-CuO NPs exhibit superior antibacterial efficacy.
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Figure 5. Antibacterial activity of Mithun urine CuO NPs against (a) Aeromonas hydrophila and
(b) A. veronii (different concentrations of MU-CuO NPs T1-25, T2-50, T3-75, and T4-100 µg/ mL;
positive control as Gentamycin).
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Figure 6. Antibacterial activity of Mithun urine-based CuO NPs against selected fish bacterial
pathogens (different concentrations of MU-CuO NPs T1-25, T2-50, T3-75, and T4-100 µg/mL;
C-DMSO; Std—Gentamycin). Differences between experimental groups that are statistically signifi-
cant (p ≤ 0.05) correspond to distinct alphabet letters.

4. Discussion

Nanotechnology is a burgeoning field that has many potential uses in fields as di-
verse as agriculture, food production, environmental protection, and healthcare admin-
istration [30–32]. Nanoparticles have demonstrated remarkable efficacy in all of their
socially advantageous applications over the course of their existence. Nanoparticles’ excep-
tional qualities make them superior to their bigger counterparts in a number of ways [33].
Nanoparticles composed of metals and/or their oxides have garnered attention as poten-
tial antibacterial agents due to their physicochemical properties. These nanoparticles can
eradicate infections in various ways, such as by inhibiting normal cellular functions or
preventing the synthesis of helpful macromolecules [34].

Fish exhibit susceptibility to a diverse array of microbial agents, with bacterial in-
fections being the predominant etiological factor and a major contributor to substantial
economic losses worldwide. Fungal infections are commonly observed in circumstances of
heightened stress and in regions characterized by suboptimal water quality [35]. Further-
more, cyanobacterial blooms have been observed to cause significant harm to aquaculture
on a global scale, with microcystins being particularly detrimental to fish at concentrations
as low as a few micrograms [36–39]. In addition, as an additional way, the antibacterial
activity of a broad range of nanoparticles that are both commercially available and syn-
thesized in the laboratory was evaluated and compared to the efficacy of a selection of
hazardous pathogens [40,41]. The investigators in this study synthesized the CuO NPs in
a lab. The research found that the most significantly synthesized CuO NPs had a mean
particle percentage of 128.25% and a peak size of 230.33 nm [42].

The nanoparticles that were synthesized exhibited antibacterial properties and have the
potential to enhance antimicrobial agents. Various types of nanoparticles, including silver,
zinc, magnesium, and calcium nanoparticles, have been investigated for their potential
applications as agents for cancer treatment [43–45] and wound healing [46]. The copper
oxide nanoparticles (CuO NPs) derived from Mithun urine exhibit several properties that
render them potentially useful in various fields. The current study has demonstrated that
MU-CuO NPs exhibit antibacterial properties. MU-CuO NPs are greenly synthesized by
mixing an aqueous solution of copper sulphate with MUD and incubating for 10 h at
room temperature. CuO NPs produced when Cu ions are reduced, resulting in a deeper
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blue colour. UV-visible spectroscopy identified MU-CuO NPs. The UV-visible spectrum
had a large peak at 280 nm, boosting MU-CuO NP synthesis [47]. The reaction mixture’s
UV-visible peak did not rise after 10 h incubation, demonstrating its completion (Figure 1).

The FTIR analysis of bovine urine revealed a conspicuous peak at 3439.30, 2923.17,
2852.73, 1737.13, and 1384.42 cm−1, along with highly broadened peaks around 3759.00 cm−1,
indicating the stretching of -O-H bonds that correspond to polyhydroxy compounds such as
lactose and cresol. A prominent and wide peak was observed at 2923.17 cm−1, indicating
the -O-H stretching vibration characteristic of a carboxylic acid. The spectral analysis reveals
a distinct and concentrated band at approximately 1737.13 cm−1, which corresponds to
the stretching of the carbonyl group of amide (-CO-NH). Additionally, a sharp peak at
1510.02 cm−1 is observed, which indicates the presence of a benzene ring in an aromatic
compound. The spectral peak located at a wavenumber of 1336.32 cm−1 corresponds to the
stretching vibration of the carboxylic group’s carbonyl functional group. The FTIR analysis of
MU-CuO NPs revealed significant peaks at 1661.48, 1271.85, and 1037.43 cm−1. Additionally,
a band was observed at 849.05 cm−1, indicating the stretching vibration of the -N-H group,
which is consistent with the presence of amides (Figure 2).

The scanning electron microscopy (SEM) image depicted in Figure 3a illustrates
that most of the MU-CuO NPs exhibit agglomerated spherical morphology and tend to
aggregate, forming clusters and showing a size range of 44–56 nm. The MU-CuO NPs were
subjected to X-ray diffraction (XRD) analysis after undergoing shade drying at ambient
temperature. The XRD pattern of the synthesized MU-CuO NPs exhibited reflections at
2θ values of 2θ values 29.32, 35.89, 39.33, 43.11, 47.48, and 48.47, which are indexed to be
lattice planes with (110), (111), (200), (220), (301), and (204), respectively. The average size
of the crystals was determined from the XRD data, utilizing the Scherrer equation. The
mean size of the crystals was determined to be 48.47. These values are consistent with
those reported in the literature [48]. The broadening of the peak observed in MU-CuO NPs
indicates the presence of small nanocrystals in the samples. The wide peak also shows that
the specimen lacks bulk materials. Figure 4 shows impurity-induced peaks.

The investigation into the antibacterial efficacy of MU-CuO NPs against A. hydrophila
and A. veronii through disc diffusion tests revealed the antimicrobial properties of MU-
CuO NPs. The outcomes of the disc diffusion experiments elucidated distinct zones of
inhibition (ZOI) for varying concentrations of MU-CuO NPs, indicating a robust correlation
between the dose and ZOI (refer to Figure 5a,b). The results suggest that the concentration
of 100 µg/µL of MU-CuO NPs exhibited the most significant antibacterial activity, as
evidenced by the observed zone inhibition. Specifically, the highest zone inhibition was
recorded for T4 (8.32 ± 0.12 mm) against A. hydrophila, followed by T4 (6.74 ± 0.09 mm)
against A. veronii.

The present investigation demonstrated MU CuO nanoparticles’ bactericidal efficacy
against all the assessed bacterial agents. Prior research has indicated that CuO nanoparticles
exhibit similar antibacterial efficacy against diverse bacterial strains [49–51]. The CuO
NPs showed a size of 40 nm, whereas the lab-manufactured CuO NPs had a larger size
of B93 nm. The latter demonstrated greater antibacterial efficacy and lower minimum
inhibitory concentration (MIC) values compared to commercial CuO NPs. The findings
of the present investigation diverge from those of Sohail et al. [52], as their research
revealed a correlation between the dimensions of CuO NPs and their antimicrobial efficacy.
Additionally, the researchers discovered that utilizing CuO NPs, having a size of either
20 or 1.24 nanometers, resulted in a noteworthy decrease in the incidence of infections. The
aggregation of CuO NPs in an aqueous environment of commercial nature may impede
the direct interaction between the particles and microorganisms. The various dissolving
properties may account for this variation in antibacterial effectiveness [53–55].

Nanomaterials that are mediated by cow urine exhibit a wide range of properties
that render them suitable for deployment in diverse applications. As a result, we have
emphasized their noteworthy results and guided for future researchers to underscore
their beneficial applications in anti-asthmatic, antibacterial, antioxidant, anticancer, and
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photocatalytic activities. In a study conducted by Sumathy and Babujanarthanam [56], cow
urine nanoparticles (NPs) were synthesized with acebrophylline. The generated NPs had an
overall agglomerated spherical shape. The anti-asthmatic properties of said nanoparticles
were subsequently examined. Meghnath Prabhu et al. [57] used aged cow urine to reduce
Ag NPs in a one-pot green synthesis. Synthesized nanoparticles were tested for antibacterial
characteristics. Sonication at pH 9.5 for one minute produced Ag NPs quickly.

Jain and colleagues [58] conducted an investigation into the hydrothermal synthesis
of silver nanoparticles (AgNPs) utilizing cow urine and honey as reducing agents and
subsequently assessed their antibacterial efficacy. Pseudomonas sp. bacteria were stopped
in their tracks by AgNPs that were artificially produced. Panchagavya and silver nitrate
were used in the manufacture of spherical AgNPs by Govarthanan and colleagues [59].
The formation of AgNPs was confirmed by XRD, SEM, and TEM. Nanoparticles were
synthesized, and tests showed that they were efficient against Aeromonas, Acinetobacter, and
Citrobacter sp.

Arumugam et al. [60] revealed that Panchagavya-mediated Cu NPs production was
inexpensive, simple, ecologically friendly, and non-toxic. Cu NPs were tested for brine
shrimp cytotoxicity. Vinay et al. [61] studied the antibacterial and catalytic properties of
AgNPs and presented a straightforward technique for their synthesis using cow urine with-
out hazardous chemicals. Synthesized AgNPs exhibited potential antibacterial properties.
Nazeruddin et al. [62] conducted a concentration-dependent study on dangerous bacteria
utilising cow urine to make CdNPs. The work by Suk et al. [63] outlined the microemulsion
procedure for encapsulating cellulose nanoparticles in cow urine and investigated their
antibacterial effectiveness against pathogenic bacteria.

Satheeshkumar et al. [64] synthesized spherical CuFe2O4 NPs using sol-gel and cow
urine as a chelating agent. 14.5–22.3 nm CuFe2O4 NPs. Chamoli et al. made GNs
from urea and cow urine [65]. Synthetic GNs performed better electrically and optically.
Prasad et al. [66] bio-inspired Pd NPs from cow urine. The produced NPs were tested for
antibacterial, antioxidant, and catalytic properties.

This work discusses the creation of copper oxide nanoparticles from Mithun urine
as well as their antibacterial effectiveness against gram-negative microorganisms. The
synthetic methodology is characterized by its simplicity, affordability, and cost-efficiency.
The outcomes of the ecologically sustainable approach for synthesizing CuO NPs exhibit
promising biological properties. Consequently, the CuO NPs produced in an environ-
mentally friendly manner exhibit potential utility in the realm of biomedicine. This study
focused on the eco-friendly production of CuO NPs and examined their efficacy as an
antibacterial agent against bacterial pathogens in fish. Mithun Urine as a precursor in the
synthesis process yields nanoparticles with precise control over their size and morphology.
XRD and SEM studies confirmed the formation of nano CuO with a cluster shape and a
crystallite size of 70.44 nm. The antibacterial properties were evaluated and demonstrated
significant efficacy against bacterial pathogens affecting fish. The characteristics mentioned
above of CuO NPs render them a promising antibacterial agent with potential applications
in aquaculture. Finally, the present research has shown that nanoparticles, in particular,
produced CuO, have exceptional antibacterial effects and may be further examined as
an alternative to antibiotics in aquaculture. It is critical to learn how metal nanoparticles
inhibit the growth of microorganisms used in aquaculture. Today’s studies concentrate
on developing environmentally friendly and economically viable methods of manufactur-
ing nanomaterials. Aquaculture and other environmental and health issues highlight the
need for laboratory research to be scaled up to industrial levels. Natural, non-hazardous
nanomaterials, like Mithun urine, are the current focus of nanotechnology research. This
environmentally friendly strategy might be effective in practise.

5. Conclusions

The feasibility of employing copper oxide nanoparticles sourced from Mithun urine as
an effective antibacterial agent to counteract bacterial pathogens in fish has been proposed.
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The MU-CuO nanoparticles exhibited notable bactericidal efficacy at a concentration of
100 µg/mL against the comparatively resistant A. hydrophila and A. veronii. It is noteworthy
that conducting scientific research in this area requires collaboration among materials sci-
ence, microbiology, and veterinary sciences experts. The researchers can provide valuable
insights into the unique properties of Mithun urine and its potential application in the
production of nanoparticles. Furthermore, they can conduct appropriate analyses to evalu-
ate the antimicrobial efficacy of the resulting nanoparticles toward bacterial pathogens in
aquatic organisms. In conclusion, the suggestion of utilizing copper oxide nanoparticles
derived from Mithun urine as a potential antibacterial remedy for fish bacterial infections
is intriguing. However, additional research and experimentation are necessary to establish
its effectiveness, safety, and feasibility.
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