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Abstract: Regulation of the human IGF2 gene displays multiple layers of control, which secures
a genetically and epigenetically predetermined gene expression pattern throughout embryonal
growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the
function of the IGF2-H19 gene cluster on Chromosome 11 and ultimately affect IGF2 gene expression.
Deregulation of such control checkpoints leads to the enhancement of IGF2 gene transcription and/or
transcript stabilization, ultimately leading to IGF-II peptide overproduction. This type of anomaly
is responsible for the effects observed in terms of both abnormal fetal growth and increased cell
proliferation, typically observed in pediatric overgrowth syndromes and cancer. We performed a
review of relevant experimental work on the mechanisms affecting the human IGF2 gene at the
epigenetic, transcriptional and transcript regulatory levels. The result of our work, indeed, provides
a wider and diversified scenario for IGF2 gene activation than previously envisioned by shedding
new light on its extended regulation. Overall, we focused on the functional integration between
the epigenetic and genetic machinery driving its overexpression in overgrowth syndromes and
malignancy, independently of the underlying presence of loss of imprinting (LOI). The molecular
landscape provided at last strengthens the role of IGF2 in cancer initiation, progression and malignant
phenotype maintenance. Finally, this review suggests potential actionable targets for IGF2 gene- and
regulatory protein target-degradation therapies.

Keywords: IGF2, insulin-like growth factor 2 gene; mRNA transcript; IGF-II, insulin-like growth
factor-2 peptide; p0–p4: IGF2 promoters 0–4; TF: transcription factor; DMR, differentially methylated
region; CTCF, CCCTC binding factor; CCD, centrally conserved domain; DMD, differentially methy-
lated domain; (IGF2/H19) IG-DMR, intergenic differentially methylated region; ICR1, imprinting
control region 1; BWS, Beckwith–Wiedemann syndrome; WT1, Wilms Tumor protein 1; SRS, Silver
Russel Syndrome; LOI, loss of imprinting; MOI, maintenance of imprinting; LOM, loss of methylation;
GOM, gain of methylation; UPD, uniparental disomy; CNV, copy number variation

1. IGF2 Gene Regulation at the Promoter and Transcript Level: An Unexploited View

A significant amount of experimental work has been previously produced to address
the epigenetic control of the IGF2 gene among various species, supported by its well-known
imprinting associated with DNA methylation [1–3]. IGF2 gene epigenetic regulation has
been studied both during mammalian development as well as in IGF2-overexpressing syn-
dromes and cancer [4–7]. Nonetheless, review work specifically addressing human IGF2
gene regulation at the transcriptional level is missing throughout the literature. This rela-
tive lack of recent experimental studies on IGF2-specific transcription factors has occurred
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despite the established biological role of IGF2 promoter regulation towards IGF2 transcrip-
tional activation. A number of findings have also addressed IGF2 transcript regulation via
non-coding RNA products (further discussed herein). More recently, among the known
IGF2 (gene) regulatory mechanisms, the role of a family of IGF2–mRNA binding proteins
(also known as IMPs) has emerged. In light of the increasing number of post-translational
mechanisms regulating IGF2 expression and biological function, especially in cancer, we
believe that focusing the current review on the control of IGF2 at the gene transcription
and RNA transcript levels and separating clearly from the post-translational mechanisms
is far more important. Accordingly, the present review on human IGF2 gene regulation
focuses, specifically, on integrating the current understanding of IGF2 gene epigenetic
control with the underlying mechanisms occurring at its promoter and transcript (mRNA)
levels in cancer and IGF2-expression syndromes. Moreover, this review will exclude any
discussion of the supplementary non-coding transcripts arising from the IGF2-H19 gene
locus, as no direct modulatory influence on the IGF2 gene product (RNA or protein) has
been conclusively established [8].

2. The Human IGF2 Gene Structure: A Functional Overview

The human IGF2 gene occupies the 11p15.5 chromosomal locus, positioned between
the insulin gene and the H19 gene, with which it establishes an imprinted gene cluster
(NCBI Ref Seq NG_008849.1) [9] (Figure 1). The IGF2 gene is composed of 10 exons [10–12]
whose expression is driven by five promoters (p0–p4), differentially activated from em-
bryonal to postnatal life (see Table 2) [13–15]. The IGF2 gene product is a peptidic ligand
(IGF-II), which plays a central role in embryonal growth in mammalians [16]. Furthermore,
the role of secreted IGF-II autocrine and paracrine effects in tumorigenesis [16] and its
growing role towards malignant feature maintenance are well documented (reviewed by
Scalia et al. [17]). Interestingly, an alternatively expressed exonic region has been recently
described as part of exon 6, and it appears to bear a role in diabetes predisposition (see
Figure 1) [18]. For this reason, the understanding of IGF2 gene expression and transcrip-
tional regulation bears intrinsic high biological and biomedical value. The IGF2 gene has
been widely studied for its epigenetic parental (allele)-specific control. The established
evidence demonstrates that in the majority of adult tissues, IGF2 is exclusively expressed
by the paternal (methylated) allele due to its imprinting on the maternal (hypomethylated)
allele, which is silenced as a result of its hypo-methylation status. In particular, the IGF2
promoter-specific differentially methylated regions (DMRs 0, 1, 2) partially overlap the IGF2
intronic and exonic sequences, along with the DMR known as “inter-genic- or IG-DMR” or
Imprinting Center Region 1, ICR1. This region is located between the IGF2 and H19 genes
coding regions and the IGF2 enhancer region downstream from H19, cumulatively estab-
lishing a phylogenetically conserved gene cluster acting as an epigenetic switch [19–21].
IG-DMR is an allele-dependent DMR (ICR1) containing the binding motif for the epigenetic
master regulator CTCF, which, along with the PRC2 complex components (discussed in
Section 2 and summarized in Table 1). The CTCF–PRC2 complex binds the maternal hy-
pomethylated ICR and insulates the IGF2 promoters [22,23]. On the contrary, the paternal
ICR1, being prevented from CTCF binding as a consequence of ICR1 methylation status,
results in a fully receptive effect of the enhancer regions, thereby displaying the classic
monoallelic expression of the human imprinted IGF2 locus. This is graphically summarized
in Figure 2A. A parallel promoter activation pattern for IGF2 expression in fetal growth,
compared to the postnatal and adult phases, includes the promoter usage switching from
the imprinted “fetal” (p2–p4) and “placental” (p0) promoters to the adult (p1) promoter [9].
Indeed, both cumulative and recent findings display a more diversified landscape of
IGF2 regulation, extending beyond the previously known abnormalities linked to either
(a) epigenetic deregulation or (b) allelic (uniparental) disomy, both of which are described
in IGF2 overgrowth syndromes [24]. Therefore, it is more correct to state that IGF2 displays
developmental-, tissue- and disease-specific gene expression patterns, as discussed further
in the present review. It is important to note that, regardless of which promoter region
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drives IGF2 primary transcript, the translation of all transcripts leads to a single 180aa
pre-pro-peptide, which is further processed to a 67 KDa peptide in normal somatic cells. An
exception to the above IGF-II post-translational peptidic maturation/processing is typically
observed in cancer, resulting in the production of a glycosylated high-molecular-weight
peptide variant, which bears additional biological advantage for cancer progression, as
reviewed elsewhere [17].
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Figure 1. Human IGF2 gene structure and major transcriptional regulatory sites. Dark-grey boxes:
non-coding exons; red-orange boxes: coding exons; red dotted yellow box between p3 and p4: alter-
natively expressed exon; p0–4: IGF2 promoter regions; light-grey rectangles: DMRs; red transcription
factors (TFs): activators; blue TFs: repressors; black solid arrows: IGF2 promoter sites with cited TF
binding motifs.
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Figure 2. Current model for IGF2-H19 gene cluster regulation. (A) Imprinted IGF2 gene regulation
in embryonal development, post-natal liver and tissues with maintenance of imprinting, MOI. The
maternal allele bears a hypomethylated ICR1 allowing for CTFC binding; bound CTCF acts as an
insulator by blocking the downstream enhancer effect on IGF2 which, as a result, is suppressed,
while H19 transcription is unleashed by the same CTCF-ICR binding. On the paternal allele, ICR1
is methylated also through ZFP57, which contributes to the maintenance of the methylated status
preventing CTCF binding; in absence of CTCF, the downstream enhancers trigger allele (paternal)-
specific IGF2 transcription predominantly through its fetal promoters. (B) IGF2 gene regulation
in cancer and IGF2 overexpression syndromes. In the case of IGF2 overexpression syndromes
(e.g., Beckitt–Wiedemann), IGF2 expression abnormalities are mostly linked to a number of genetic
abnormalities of the maternal IGF2-H19 ICR (microdeletions, CNVs, point mutations) leading to loss
of CTCF binding, imprinting relaxation and biallelic expression of IGF2. In case of IGF2 regulation in
cancers, a variety of regulatory modes have been described, which occur either independently or in
parallel with the imprinting determining factors converging on each or both the maternal and paternal
alleles and ultimately triggering the oncogenic activation of IGF2 transcription and/or the disruption
of IGF2 transcriptional suppressors. The TF-mediated mechanisms conveyed in (B) relate to the
potential full biallelic activation, but they can also be observed in monoallelic IGF2 overexpression.

3. IGF2 Gene Regulation during Development and IGF2 Overexpression Syndromes

Seminal studies have shown the importance of genomic imprinting for the IGF2 gene
and the entire IGF2-H19 gene cluster (reviewed in [9]). As discussed in the previous section,
ICR1 differentially methylated status affects the binding of epigenetic master-regulator
CTCF to unmethylated ICR1 motifs acting as an insulator [2,22,25–28]. More recently, the
role of the imprinting factor ZFP57 on the methylation maintenance status of the paternal
allele has been shown [29]. The above control model for IGF2 imprinting on the maternal
and paternal alleles is schematically summarized in Figure 2A.

The term ‘IGF2 overexpression syndromes’ relates to a variety of genetic abnormalities
sharing the phenotype reported by Beckitt–Wiedemann to describe the resulting pediatric
syndrome. A majority of the overgrowth symptoms in these subjects are secondary to the
high levels of IGF-II produced at the embryonal and postnatal levels. This overproduction
is mostly linked to the biallelic expression of IGF2 as a result of the imprinting relaxation
of the maternal allele. A recent analysis of the genetic abnormalities in these subjects [24],
leading to increased IGF2 activation, allows one to functionally classify the currently
known IGF2 gene expression defects into two types, namely, (a) ICR defects causing
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the above relaxation on the maternal allele (via microdeletions and/or to DMR point
mutations) [23,30–32], and (b) quantitative defects affecting the overall paternal gene cluster
as a result of either uniparental disomy (UPD) or copy number variations (CNVs) [30,33,34].
An additional layer of control on IGF2 imprinting disclosed by recent studies relates to
allele/DMR-specific factors acting as intrinsic-enabling factors and/or acting in synergy
with CTCF on the maternal ICR [35]. Among these are Sox2/Oct4 [36,37], SUZ12 [38] and
Vigilin [39], whose contextual functions as imprinting factors are governed by histone post-
translational modifications, as evidenced by studies confirming their role in affecting both
general and specific IGF2 imprinting. In particular, histone acetylation has been recognized
since the late 1990s as a regulator of IGF2 imprinting, as shown by the ability of histone
deacetylase inhibitors to cause IGF2 biallelic expression [40]. Even more detailed is the
demonstration of the key role of H3K27 histone methylation for the proper maintenance of
the maternal imprinting status via its effects on (a) the IGF2-H19 cluster loop conformation
and (b) the DNA protein complex formation on the imprinted maternal allele [41]. In
fact, in those cells with loss of imprinting (LOI), H3K27 demethylation leads to loss of
the CTCF-orchestrated intrachromosomal loop between the IGF2 promoters and the ICR.
The H3K27 methylation-free IGF2 promoters appear to become activated similarly to the
paternal promoters, leading to biallelic expression. Noteworthily, SUZ12 has been shown to
play a key role in the maintenance of the hypermethylation status of H3K27 by EZH2 since,
in the absence of SUZ12, the PRC2 cannot be recruited to the maternal IGF2 promoter where
this methylation takes place in order to induce the imprinting loop conformation [41]. The
chromatin conformation at the IGF2-H19 cluster locus has been found to be essential for
proper IGF2 expression, and this higher-order chromatin organization function is mediated
by Cohesin [42]. Altogether, these studies point at a wider molecular network for the
allele-specific control of IGF2 imprinting and offer additional potential mechanisms of
dysregulation that could be responsible for those, yet unaccounted, molecular defects,
leading to IGF2 increased transcription underlying the pathologic conditions discussed
herein. A graphic summary of the human IGF2-H19 cluster regulation focusing on the
latest landscape provided by the reviewed literature is conveyed in Figure 2 and Table 1.

Table 1. Factors binding IGF2-H19 ICR1 and affecting IGF2 imprinting status.

Imprinting Factor Key Feature Reference(s)

CTCF binds maternal ICR and
insulates IGF2-p activity [35]

Cohesin Cohesin is required for chromatin function at
the H19/IGF2 locus [42]

EZH2 CH3-transferase component of PRC2 [41]

SUZ12 PRC2 component
enabling ICR imprinting [38]

Sox2/Oct3–4 CTCF-like effect [36]

Vigilin ICR imprinting effect via CTCF binding [39]

ZFP57 Binds paternal ICR and maintains
methylated status [29]

4. IGF2 Gene Transcriptional Control in Cancer

A number of studies focusing on the role of IGF2 gene methylation and promoter
usage in cancer have established the importance of IGF2 LOI status [43–46]. Nonetheless,
the mechanistic relationship between promoter usage, both under monoallelic (under main-
tenance of imprinting, MOI) and biallelic status (caused by LOI), and the observed total
IGF2 expression pattern/levels in cancer remains an active area of investigation. Indeed, a
number of studies have shown a predominant activation of IGF2 fetal promoters (p2–p4) in
a variety of cancers displaying IGF2 increased expression levels, with variable uncoupling
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of DMR0–2 methylation, along with monoallelic IGF2 and/or H19 expression [47–56]. In
this context, it is important to stress that promoter usage and transcriptional activity are
directly dependent on the involved transcription machinery, which is affected, in its turn,
by the contextual transcriptional co-activator and co-repressor effects (also provided by the
underlying IGF2 epigenetic protein–DNA interactions). For this reason, unlike other pub-
lished review works (to date), we here discuss the promoter usage in terms of underlying
transcriptional machinery (see Sections 4.1 and 4.2 below). In addition to the protein/DNA-
driven control layer (or lack of control) of IGF2 gene expression, it is important to add
the regulation layer provided by the RNA transcript control (Sections 4.4 and 4.5 below).
This type of integrated approach to study IGF2 gene regulation both in IGF2 expression
syndromes and in cancer, according to the authors of the present work, is essential in order
to move the field beyond the historical (and still ongoing) compartmentalized approach to
IGF2 gene studies. A graphic summary of our current understanding of the regulation of
the human IGF2 gene, spanning from IGF2 expression syndromes to cancer (overlapping
in vivo), is provided in Figure 2B and Table 2.

Table 2. IGF2 promoter usage in physiology and disease.

Promoter Usage Imprinting Control Reference(s)

IGF2-p0 Not imprinted
Mostly active in fetal placenta [15]

IGF2-p1 Not imprinted—mostly active
in postnatal Liver [57,58]

IGF2-p2 Imprinted-
Mostly active during Fetal growth [59]

IGF2-p3 &
IGF2-p3/p4 (*)

Imprinted-
Mostly active during Fetal growth,

Widely reactivated in cancer
[51,57,58,60]

(*) P3 and P4 are indicated together due to shared binding motifs often causing consensual activation.

4.1. Transcription Factors Regulating IGF2 through Its Fetal Promoters

IGF2 p2–p4 are all imprinted promoters [13]. Therefore, as discussed for the IGF2
overexpression syndromes, the relaxation of their imprinting status can play a promoting
role in IGF2 activation, as confirmed in a set of cancers displaying LOI. Nonetheless, to date,
a few studies have shed full light on the molecular mechanisms and dynamic modifications
in DNA methylation occurring at the IGF2 DMRs partially overlapping with the IGF2 main
promoters located upstream of ICR1 (responsible for the IGF2 imprinting status). This
is important given that their methylation status plays a direct role in the transcriptional
activation of the underlying IGF2 promoters in cancer.

AP-1. AP-1 is a collective term referring to dimeric transcription factors sharing high
affinity and activating ability for the AP-1 binding site when present at a promoter DNA
level. The AP-1 TF dimer components are members of the Jun, Fos and ATF DNA-binding
protein families (reviewed in [61]). The IGF2 gene has been shown to contain AP-1 binding
motifs in its promoter p3, and mammalian IGF2 transcription is activated by AP-1 [62].
Nonetheless, the exact composition of the AP dimers involved in the IGF2 gene regulation
under the various physiological and pathological contexts remains to be clarified.

AP-2. AP-2 refers to dimeric transcription factors of the homonymous family, which
binds to a CG-rich DNA binding motif and is involved in cellular proliferation and suppres-
sion of terminal differentiation in embryonic development [63]. AP-2 has been shown to
activate IGF2 transcription via IGF2-p3, which has been found to contain four AP-2 binding
motifs [64].

C/EBPβ. C/EBP’s role in IGF2-p1 activation in human liver cells and tissues has been
known since the early 1990s [65]. More recently, it was shown that 2,3,7,8-Tetrachlorodibenzo-
p-dioxin (TCDD) was able to trigger the onset of hepatoma in a rodent model via specific
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induction of IGF2 transcription, concomitant with the increase in C/EBPβ promoter activity.
The identification of a specific C/EBPβ binding motif within the IGF2-p3 promoter, whose
activity increased upon TCDD treatment, further supports the role of this C/EBP paralog
in IGF2-driven tumorigenesis [66]. This finding assumes particular interest in IGF2-driven
cancer in light of the mechanistic demonstration of the dimeric requirement of C/EBPs
towards gene target transcriptional activation, similarly to other bZIP family of DNA
binding proteins (reviewed in [67]). The potential cooperative effects observed between
C/EBPβ and SP1 on other promoter types [68] have also been found to play a role towards
switching promoter binding affinities towards modulating gene expression, in this case
allowing C/EBPβ to gain a permissive role over SP1 activation of IGF2-p1, as further
discussed under Sp1 below.

Egr1 and Egr2. Egr1, also known as Krox24, is a transcription factor of the zinc-finger
family binding IGF2-p3, as part of a constitutive response pathway to hypoxia [69]. Egr2,
also known as Krox20, is a putative activator of IGF2 gene transcription based on the
identified binding site on IGF2-p3 [10]. Interestingly, the IGF-II signal is also involved
in HIF-1α upregulation [70], suggesting the establishment of a positive feedback mecha-
nism requiring IGF2 local gene upregulation under hypoxic conditions [71]. This type of
mechanism is particularly important in solid cancer progression, which is characterized
by hypoxia during the early phases of tridimensional growth and as part of the observed
cancer angiogenic switch (reviewed in [71]).

E2F3. E2F3 has been shown to play a key role in driving IGF2 expression in postnatal
cells and tissues, and the decline in E2F3 levels correlates with the reduction in age-
related IGF2 levels, both in humans and in other mammalians [59]. Furthermore, E2F3-
overexpressing cancer cell lines display increased IGF2 expression, which can provide an
LOI-independent mechanism for IGF2 regulation in cancer. For such reasons, inclusion of
E2F3 in expression screening panels to identify and properly treat IGF2-driven cancers in
adults has a proper rationale.

Menin/MLL. As previously discussed in relation to the role of H3K27 methylation,
the Menin/MLL complex has been shown to play a role in the activation of IGF2 p3 and
p4 promoters in hepatocellular carcinoma [72]. As shown by the study, the role of the
Menin/MLL complex provides another mechanism to overcome the imprinting-promoting
status of H3K27 methylation on the maternal allele, ultimately allowing for biallelic IGF2
expression and potentiation of the IGF-II oncogenic signal in liver cancer.

PLAG1/PLAGL2 [73–76]. PLAG1, along with PLAG-like protein 2 (PLAGL2), belongs
to a subfamily of zinc-finger proteins [74]. PLAG1 was first isolated from salivary gland
adenomas [73], while PLAGL2 was isolated in hepatoblastomas. PLAG1 expression mirrors
that of IGF-II, with high-level expression during fetal development and a substantial
decrease after birth. Both PLAG1 and PLAGL2 overexpression in cultured cells triggers
IGF2 gene expression and induces cancer-promoting effects, including transformation [74].
Five putative PLAG1 binding sites have been identified in IGF2-p3 and IGF2 transcript
size described in such tumors (6 Kb), corresponding to IGF2-p3. This further strengthens
the claims that IGF2 is a PLAG1/PLAGL2 transcriptionally activated target. The finding
that PLAG1 is overexpressed and induces IGF2-p3 activation also in hepatoblastoma cell
lines [75] suggests that PLAG1 and PLAGL2 may play a wider role in IGF2 overexpression
in cancer. Equally important is the parallel observation that cancers overexpressing PLAG1
did not show IGF2 LOI [75], supporting the latest view that overexpression of specific
IGF2 promoters targeting transcription factors constitutes an important, still unexploited,
LOI-independent mechanism for IGF2-mediated tumorigenesis.

TP53. The suppressor effect of TP53 on IGF2 gene activation at the level of its p3
promoter has been established since the mid-1990s [77]. This discovery has provided a
rationale for the inverse relationship demonstrated in cancer between IGF2 expression and
TP53 status [78], reinforcing the role of IGF-II as a bona fide oncogenic factor in a variety
of tumors [17,79]. The role of the TP53/IGF2 axis towards IGF-mediated effects in cancer
have been discussed elsewhere [80].
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ZBED6. The finding of a mutation on the third IGF2 intronic region in pigs with an
overgrowth phenotype [81] interfering with ZBED6 binding to a conserved IGF2 promoter
site among placental mammals [82] places this TF among the negative regulators of IGF2
expression. As discussed in the next section, despite its binding site location suggesting
a potential effect on p3, it actually affects IGF2 expression via p2 and p1 at the postnatal
level [82].

WT1. Wilms Tumor protein 1 (WT1) is a zinc-finger domain-containing protein [83].
WT1 suppresses IGF2 gene expression [84] through physical interaction to the same DNA
binding motif used by Egr1 on IGF2-p3 [85], specifically at the level of its p3 and p4
promoters [86,87]. However, the demonstration that WT1 also binds with high affinity to
the corresponding transcribed motif and inhibits translation of the IGF2 RNA transcript,
along with the parallel finding that its nuclear localization overlaps with RNAse-sensitive
rather than DNAse-sensitive areas [88], offers a wider scenario for the WT1 suppressing
capability of IGF2 expression in vivo. Indeed, in Wilms tumors, in which WT1 is biallelically
mutated or deleted, Egr1 is upregulated, offering a dual synergistic mechanism for IGF2
increased transcriptional activation [89]. In addition, IGF2 transcription can be differentially
affected by the various WT1 isoforms, which are expressed in a tissue- and cancer-specific
context. In fact, two isoforms of WT1 have been described, differing in three amino acids
(KTS) at the 5′ junction [90,91]. The full-length isoform (+KTS) is the form most widely
expressed and studied, and it is responsible for the observed suppressive effect on IGF2-p3.
Interestingly, the less common but contextually expressed −KTS WT1 isoform displays
gene activating ability through the same promoter, independently of TP53 status [92].
Altogether, these findings suggest that isoform-specific transcriptomic profiling is a critical
strategy towards developing molecular therapeutics specifically aimed to target gene
expression mechanisms.

4.2. Transcription Factors and Other Co-Factors Regulating IGF2 via Its Placental (p0) and Adult
(p1) Promoters

Promoters p1/p0 (adult and placental, respectively) are found activated after birth at
variable levels and co-expression with transcripts generated by p2–p4 in those tissues which
have retained fetal promoter activity. Indeed, a number of studies have shown that the
human IGF2 promoter usage in cancer switches from monoallelic p2–p4 IGF2 control to
biallelic IGF2 expression under p1 control during tumorigenesis [43]. Another study looking
at the relationship between LOI and promoter usage in cervical carcinoma [52] found an
exclusive usage of p1 in tumor tissues with underlying IGF2 LOI but not in those tumors
with maintenance of IGF2 imprinting (MOI). This suggests that promoter usage (both
for IGF2 and other cancer-driving genes) is cancer-type-specific and/or it may reflect the
specific tumorigenic stage (specifically, early/partially differentiated versus advanced/fully
dedifferentiated). In the cited study, the overall IGF2 transcript in LOI tumors was increased
along with markedly reduced H19 levels compared to normal tissues, confirming a general
hallmark of the IGF2-H19 cluster expression pattern used to differentiate pathologic from
normal conditions, since under normal conditions, the observed IGF2 and H19 expression
levels are comparable. A previous study on cervical carcinoma found similar uncoupling of
H19 and IGF2 expression along with biallelic hypomethylation of H19 [48]. Other studies
displaying a variable level of p1 usage under LOI have been reported in Wilms tumors [49]
and hepatoblastoma [93]. This further supports the view that additional mechanisms
for IGF2 gene activation take place during the tumorigenic process to act in parallel or
independently from the imprinting molecular machinery. Such mechanisms aim to regain
usage of favorable IGF2 promoter activities on a cancer-type and cell-status basis. The
specific transcription factors interacting with the IGF2 “placental” (p0) and “adult” (p1)
promoters cause IGF2 transcriptional activation.

C/EBPα. As mentioned earlier, C/EBPα has been described to be an IGF2-p1 activating
factor in postnatal and adult mammalian and human liver [94,95]. More recent findings
(reviewed in Lekstrom-Himes et al. [67]) suggest a dominant role of C/EBPα compared to



Biomedicines 2023, 11, 1655 9 of 19

C/EBPβ paralog over the choice of the promoter usage. This supports the idea that both
C/EBPα homodimers as well as C/EBPα/β heterodimers would use p1 to increase IGF2
transcriptional levels while only C/EBPβ homodimers could be able to trigger IGF2-p3
transcription. Additional studies are needed to clarify the role of C/EPB heterodimers
towards IGF2 expression in cancer. Interestingly, C/EBPα along with its beta paralog may
also contribute to Sp1-driven activation of IGF2-p1, as further discussed herein.

KLF4. KLF4 is a member of the Kruppel-like transcription factor family, playing
a cancer-type-specific role as an activator of epithelial genes involved in differentiation
and a repressor of mesenchymal genes involved in EMT and metastasis [96]. On the
other hand, KLF4 has been found to have repressor activity towards tumor suppressors
such as TP53, ultimately conferring to it a contextual oncogenic effect [97]. These latest
considerations could be relevant in light of the finding that a KLF4 binding motif has been
identified within IGF2-DMR0 and that KLF4 has been found to activate IGF2-p0 in a DMR0
hypomethylation- and H3K27-methylation-dependent modes. This is independent of the
underlying LOI and ICR1 methylation status [98]. Based on these reviewed findings, KLF4
plays a contextual activation role on IGF2 transcription both directly [98] as well as via
suppression of TP53 [97]. Its mechanistic involvement in IGF2-driven cancers requires
further attention.

NSD1. Interestingly, a study conducted on an overgrowth syndrome characterized
by NSD1 deficiency [99], a molecular defect found in a subset of BWS, demonstrated the
role of NSD1 as a specific co-activator for a novel enhancer in DMR0 affecting IGF2-p0
transcriptional activity in a cell-type-specific manner. This finding raises the question of a
potential role of NSD1 and its demethylase activity in the IGF2-driven tumorigenic process.

Sp1. A finding bearing plenty of biological value for its mechanistic implication
relates to the identification of an Sp1 binding motif on IGF2-p1 [100]. The results of this
study have shown (a) the requirement for specific positioning and sequence specificity
of the Sp1 binding motif within IGF2-p1, and (b) the cooperative role of C/EBPα and
C/EBPβ through binding to the close C/EBP site towards IGF2-p1 activation by Sp1.
The same type of cooperative control by Sp1 and C/EBPs has been observed on other
promoters [68]. This is particularly important given the inability of C/EBPβ to bind to p1
as a homodimer supporting that the co-expression of Sp1 and C/EBP1β may play a role
in allowing for efficient IGF2 expression via its p1 promoter beyond the potential role of
C/EBPβ homodimers on IGF2-p3.

ZBED6. A recent study identified the transcription factor ZBED6 as a major regulator
of postnatal IGF2 expression in mammalians acting as a strong repressor of IGF2 in a
number of adult tissues through its specific effects on the activity of IGF2 p1(adult)-p2
(fetal) promoters [82]. This study disclosed the important role of the ZBED6–IGF2 axis in
regulating IGF2 expression, muscle growth and the growth of internal organs in placental
mammals. The specific role of this axis in cancer promotion in adult tissues remains to
be elucidated.

ZFP568. Another member of the Kruppel zinc-finger family, ZFP568, was found to
repress IGF2 transcription at the level of its p0 promoter in the placenta [101]. The actual
role of this TF in affecting IGF2-driven tumorigenesis is still to be determined.

The reviewed TFs and their binding sites within the IGF2 gene promoters are summa-
rized in Figure 1 and listed in Table 3.

Table 3. Transcription factors associated with human/mammalian IGF2 gene regulation.

Transcription
Factor

TF Motif(s)
in hIGF2
Promoter

Effect on
IGF2 Gene

Transcription
Reference(s)

AP1 p3 Activator [62]

AP2 p3 Activator [64]

C/EBPα p1 Activator [94]
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Table 3. Cont.

Transcription
Factor

TF Motif(s)
in hIGF2
Promoter

Effect on
IGF2 Gene

Transcription
Reference(s)

C/EBPβ p3 Activator [66]

E2F3 p2 Activator [59]

Egr1(Krox24) p3 Activator [69]

Egr2(Krox20) p3 Activator [10]

KLF4 p0 Activator [98]

Menin/MLL p3 Activator [72]

NSD1 p0 Activator [99]

PLAG1 p3 Activator [76]

Paxillin p3 Activator [102]

TP53 p3 Repressor [72]

SP1 p1 Activator [100]

ZBED6 p1-p2 Repressor [82]

ZPF568 p0 Repressor [101]

WT1 p2/p4 Repressor [85,87]

An important area of current and future investigation towards understanding IGF2
gene activation by both transcription factors and imprinting factors (co-activators and/or
co-repressors) relates to their ability to bind and activate preferentially or exclusively un-
methylated rather than methylated binding sites, and vice versa. This potential scenario
is even more relevant for those IGF2-regulating TFs, for which DNA binding motifs con-
tain CpG islands, such as for KLF4, ZPF568 [87] and C/EBP (reviewed by Blatter et al.,
2013) [103].

4.3. Transcription Factors and Co-Factors Affecting IGF2 Transcription through Interactions
Outside the IGF2 Direct Regulatory Cluster

This category is expected to grow substantially in the future. To date, a few examples
we found in the literature can be useful to grasp the potential of this category. One is
provided by the muscle-tissue-specific TF MyoD, which has been found to interact with a
site on H19 to actually promote its activation while inhibiting IGF2 activity during differ-
entiation of specific smooth muscle districts such as in mouse diaphragm formation [104].
The other example, which may actually have a greater effect on IGF2 cancer-related effects,
relates to Paxillin, a focal adhesion protein found to bear unexploited nuclear functions
as a chromatin interacting co-factor, specifically affecting a number of genes; in particu-
lar, Paxillin has been found to activate IGF2 transcriptional activation by stimulating the
interaction between the enhancer region and the IGF2 promoters while restraining the
interaction between the enhancer and H19 via downregulation of it gene [102]. Such an
effect seems to be mediated through a protein complex formation with Cohesin, allowing it
to mediate long-range chromosomal looping. Such findings suggest that Paxillin may play
a supporting role in proliferation and fetal development through IGF2 gene upregulation.

4.4. Regulation of IGF2 Gene Expression via mRNA Stabilization and Beyond

Another level of regulation of IGF2 gene expression occurs through specific binding of
its RNA transcript at the level of the 5′UTR by a family of RNA binding proteins that are
known as IGF2BP-1, IGF2BP-2 and IGFBP-3, and by their acronyms IMP-1, IMP-2 and IMP-3
(reviewed by Bell et al. [105]). They are a class of oncofetal proteins preferentially expressed
during development as well as in a variety of cancer cell types and are able to bind a high
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number of RNAs estimated in the range of hundreds, although an exact number has not yet
been determined. IGF2BP2 is also expressed in two isoforms of 58 kDa and 65kDa [106]. All
of them have been demonstrated to bear cancer-promoting functions [107–111]. However,
while all of them can bind the IGF2 transcript, IGF2BP2 and IGF2BP-3 have been shown
to specifically enhance IGF2 expression [112,113]. In particular, the IGF2BP2-driven IGF2-
enhancing effect in cancer seems to be synergistically exerted by the parallel suppression
of IGF2 signal inhibitors [110]. Post-translational modification of IGF2BPs by upstream-
initiated signals has been already shown for some of them [112,114] and is expected to
shed light on their cellular regulation and functional network. IGF2BPs are the object of an
active area of investigation given their cancer-promoting effects extending beyond the ones
mediated via IGF2 transcript binding [115].

4.5. Non-Coding RNA-Mediated Regulation of IGF2 Gene Expression

It has become increasingly apparent that multiple non-coding RNAs control IGF2 tran-
script expression. Nctc1 is a cell-/tissue-specific long-non-coding (lnc) RNA co-regulated
by the IGF2-H19 cluster found to interact on their allelic shared enhancer [116]. miR-30e
was shown to suppress IGF2 in mesenchymal and aortic smooth muscle cells, decreasing
proliferation and increasing differentiation [117]. IGF2 was identified as a major target
of miR-125b in the search for skeletal muscle regulators [118]. Interestingly, miR-125b
and miR-100 have been found to confer stem-like features to hepatocellular carcinoma
cells [119]. A recent study in Wilms tumor patients’ derived cell lines found IGF2 to be
downregulated by miR-155-5p via direct binding to its 3’ untranslated region [120]. In
these cells, miR-155-5p upregulation and IGF2 knockdown suppressed cell proliferation,
migration and invasion and induced cell apoptosis. mir185-5p has been found to bind
both NEAT1 and IGF2 transcripts, and it upregulates IGF2 while enhancing migration and
invasion in colon cancer cells [121]. IGF2 is a direct target of miR-210 in human retinal en-
dothelial cells [122]. miR-223 has been found to suppress IGF2 and Zeb1 in myoblasts [123].
miR-483-5p, a microRNA (miRNA) overexpressed in primary Wilms’ tumors, has been
found to upregulate IGF2 mRNA through enhancement of its transcriptional levels [124].
The study also showed its ectopic expression in IGF-II-dependent sarcoma cells and its
direct correlation to the increased tumorigenesis in vivo. miR-483-5p is one of the two
miRNAs (483-5p and 483-3p) generated at the same locus and embedded within the IGF2
gene. A study found miR-483-5p to be expressed in esophageal squamous cell carcinoma
(ESCC), with low levels of IGF2 promoter methylation (associated with increased IGF2
expression) and proposed a permissive level for IGF2 promoter methylation towards the
observed miR-483-5p tumor suppressing effects [125]. Interestingly, in hepatocarcinoma
cells, miR-493-5p displayed anti-tumor activity by inhibiting the IGF2-derived intronic
miR-483-3p, the expression of which correlates with IGF2-LOI in liver cancer cells [126].
MiR-543 has been found to inhibit ovarian cancer cell proliferation by suppressing IGF2,
and this effect would reflect its levels in exosomes [127]. Another miRNA contributing
to the epigenetic regulation of IGF2 in cancer is miR-615-5p, which has been found to
bear tumor-suppressing abilities by inhibiting proliferation, migration and invasion in
pancreatic ductal adenocarcinoma (PDAC) primary cell lines [128]. The suppressing role
of miR-615-5p has also been studied in endothelial cells where the IGF2 block affects the
VEGF-AKT/eNOS signaling, decreasing angiogenesis [129]. Given the demonstration by
the same study of parallel inhibition of JunB, future studies will have to quantify the role of
IGF2 suppression on the whole tumor-suppressing activities of this miRNA. More recently,
the demonstration that the transcription factor pleomorphic adenoma gene 1 (PLAG1),
overexpressed in Wilms tumors with mutations in microRNA processing genes, is a target
gene of microRNA strengthens the role of this class of non-coding transcripts in the regula-
tion of the IGF2 gene in cancer [130]. miR-491-5p, which plays a role in cancer initiation and
progression, displayed tumor-suppressing activity linked to targeting of IGF2 in a study
conducted in cell lines, tissues and plasma from CRC patients [46]. Hypoxia-inhibited
miR-4521 has been found to inactivate the AKT/GSK3b/SNAIL pathway by targeting
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IGF2 and FOXM1 and suppressing gastric carcinoma [131]. miR-6759-5p was found to
target IGF2 and is suppressed by a long-non-coding RNA (lnc-MCEI), which stimulates
IGF2-mediated chemosensitivity in esophageal squamous cell carcinoma (ESCC) [132]. This
evidence further confirms the widespread role of non-coding regulatory RNA transcripts
in gene activity regulation and sheds additional light on the parallel positive and negative
feedback affecting the IGF2 gene. The non-coding RNAs found involved in IGF2 regulation
to date are listed in Table 4 below.

Table 4. Non-coding RNAs affecting IGF2 gene expression.

miRNA Features References

Nctc1 Coregulated with IGF2 at muscle enhancer [116]

Let-7 Suppresses IMP1-3 and their oncogenic
potential [133]

Let-7a/a-3 Let7a-3 hypermethylation associated with low IGF2
in ovarian and Breast cancer [134]

Let-7i Suppresses IGF2BP2-3 in HCC [135]

miR-23a-5p Suppresses IGF2 and its inhibition by circular
non-coding RNA (100084) stimulates HCC [136]

miR-30e Suppressed IGF2 in mesenchymal cells [117]

miR-100 Confers stem cell features to HCC [119]

miR-125b Suppresses IGF2 in skeletal muscle
Confers stem cell features to HCC [118]

miR-155-5p Suppresses IGF2 and PI3K-AKT in WT [120]

miR-185-5p Mediates NEAT1 upregulation of IGF2 in CRC [121]

miR-210 Suppresses IGF2 in HRECs [122]

miR-223 Suppresses IGF2 and ZEB1 in myoblasts [123]

miR-483-3p Is co-regulated and over-expressed in WT, CRC,
Breast ca, and HCC [137]

miR-483-5p Overexpressed in WT/ Enhances IGF2
Increased in low methylated IGF2 promoter ESCC [124]

miR-486-5p Upregulate IGF2/βCatenin axis effects in CRC by
suppression of PLAG2 [138]

miR-491-5p Suppresses IGF2 in CRC [46]

miR-493-5p Suppresses miR-483-5p in HCC/ inhibits IGF2 [126]

miR-543 Suppresses IGF2 and ovarian ca cells proliferation [127]

miR-4521 Suppresses IGF2 and FOXM in gastric ca [131]

miR-615-3p Inhibits IGF2 in NSLC [139]

miR-615-5p Suppresses IGF2 in Human PDAC-
Inhibits angiogenesis by targeting IGF2 in ECs [128]

miR-1275 Suppresses IGF2BP1-3 and inhibits HCC
malignant growth [140]

miR-6759-5p Suppresses IGF2 and mediates the
competing effects of lnc-MCEI in ESCC [132]

4.6. IGF2-p3 Functional Block: A Valuable Targeting Strategy for Cancer Gene Therapy?

Given the cumulative evidence displaying such wider preference for IGF2-p3 by
established oncogenic TFs, a new class of gene therapies targeting IGF2-p3’s function
may bear a distinctive advantage in cancer therapeutics. Such pharmacological strategies
may consider either a direct (e.g., gene editing) or an indirect (protein degradation of key
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oncogenic TFs) targeting mode and be classified under the proposed category of “IGF2-p3
blockers” to indicate their planned or otherwise established mode of action. Surely, the
technological advancement in effective cellular targeting of previously undruggable gene
products bearing non-enzymatic classic activity, such as transcription factors using protein-
targeted degradation strategies (e.g., PROTAC and related technologies) [141–143], further
supports the design and adoption of this new class of smart therapeutics.

5. Conclusions and Perspectives

A growing set of studies provide a scenario in which modifications in the methylation
status (both general and promoter-specific) of the IGF2 gene (independently of its biallelic
expression as result of LOI) do not fully explain both the levels and patterns of IGF2
gene product expression observed in cancer. This is in line with the recent mechanistic
findings disclosing additional layers of IGF2 transcriptional control. Among these controls
are the mechanisms regulating IGF2 RNA transcripts discussed herein. The contextual
and/or parallel role of tissue- and cancer-specific transcription factor expression (and
potential underlying isoform or mutant variants) has also become evident as a crucial
factor for the biological enhancement in those cancer subsets with either LOI or MOI
of the IGF2 gene. Overall, despite more mechanistic studies being expected to emerge
in the future, the scientific work generated to date suggests a more complex and highly
integrated scenario underlying the expression and transcriptional activation of the human
IGF2 gene. This clearly suggests that more integrated and multilayer analysis of the IGF2
gene control should be taken into consideration for the design of future studies pointing at
the characterization and modulation of the IGF2 gene in cancer. The new research approach
proposed and integrated in this review should move beyond the simple LOI and promoter
usage evaluation and include the detection/analysis of the underlying components of
the transcriptional machinery on a case-by-case basis. This would eventually allow us to
design new strategies with more accurate diagnostic and therapeutic potential.
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