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Abstract: Caries/carious lesions are a growing concern among the general population across the
world, and different strategies are evolving to combat the bacterial invasion that resultantly leads
to caries. In this systematic review, we are looking to analyse the role of silver diamine fluoride
(SDF) on the growth of bacterial biofilms. The search strategy for the studies to be selected for the
review was initiated by a search across multiple databases, which ultimately yielded 15 studies
that were in accordance with our objectives. The reviewed articles indicate a very clear correlation
between the usage of SDF and the decrease in bacterial biofilms, which are limited not just to one or
two but multiple bacterial species. As shown by the events favoring SDF’s odds ratio of 3.59 (with
a 95% confidence interval of 2.13 to 6.05), a risk ratio of 1.63 (1.32 to 2.00), and a risk difference of
0.28 (0.16 to 0.40), there was strong evidence that SDF is a successful treatment for reducing bacterial
biofilms in dental practice. This study offers substantial proof that SDF works well to reduce bacterial
biofilms in dentistry practices. We advise further investigation to examine the potential of SDF as
a standard therapy choice for dental caries and related conditions given the obvious relationship
between the use of SDF and the reduction in bacterial biofilms.
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1. Introduction

Oral biofilms, also known as dental plaque, are complex microbial communities that
form on the surfaces of teeth and other structures in the mouth [1–4]. These biofilms are
composed of a variety of microorganisms, including bacteria, fungi, and viruses, and can
vary in composition depending on factors such as diet, hygiene habits, and genetics [5].
The formation of oral biofilms begins with the attachment of bacteria to the surface of the
tooth, known as the pellicle layer [6]. Over time, the biofilm can become thicker and more
complex, with different layers of microorganisms forming different niches based on their
specific needs and environmental preferences. For example, some bacteria may prefer to
live in areas with more oxygen, while others may thrive in areas with less oxygen [7]. While
they are a natural part of the mouth’s ecology, they can also pose a threat to oral health if
left unchecked [8,9]. For example, certain types of bacteria in the biofilm can produce acids
that damage tooth enamel and lead to cavities. Additionally, the build-up of plaque can
lead to gum disease, which can cause tooth loss and other oral health problems [10,11].

The primary pathogens responsible for tooth decay come in various numbers and
ratios and generate bacteria that make acids and bases [12–14]. Mutans streptococci (MS),
one of the speculated acid-producing bacteria, was discovered to be crucial in the early
stages of dental caries on both enamel and root surfaces after a comprehensive literature
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analysis [15–17]. This is true for several reasons, including the fact that MS is the species
that is frequently isolated from a caries lesion, that it is highly acidogenic and aciduric, and
that it can produce surface antigens and water-insoluble glucan, which promote bacterial
adhesion to other bacteria and to the tooth’s surface. To break the closed loop of the process,
a measure that can prevent the microorganisms that produce acid must be taken [18,19].

SDF is a unique and versatile liquid treatment that has garnered a great deal of attention
in recent years [20]. SDF is a highly effective and cost-effective treatment for a wide range of
dental issues, including tooth decay, gum disease, and oral infections [21,22]. In this article,
we will explore the properties of SDF and the role it plays in modern dentistry [23,24]. SDF is
a clear, odorless liquid that contains two main ingredients: silver and fluoride [25]. Silver is a
powerful antimicrobial agent that has been used for centuries to treat various infections, while
fluoride is a mineral that is known to strengthen tooth enamel and prevent cavities. When
these two ingredients are combined, they create a powerful solution that is highly effective at
killing bacteria and preventing the spread of infection [26].

One of the key advantages of SDF is its ability to penetrate deep into the tooth structure,
where it can kill bacteria and prevent further decay [27]. This makes it an excellent choice
for treating cavities and other dental issues that are difficult to reach with traditional dental
tools. SDF is also highly effective at killing the bacteria that cause gum disease, which is a
major contributor to tooth loss in adults [28].

In addition to its antimicrobial properties, SDF is also highly effective at preventing
the spread of infection [29]. When applied to an infected tooth or gum tissue, it quickly
kills the bacteria and prevents it from spreading to other parts of the mouth. This can be
particularly important for patients who are at risk of developing oral infections due to
weakened immune systems or other medical conditions [30].

Another important property of SDF is its ability to strengthen tooth enamel and
prevent cavities [31]. Fluoride is a mineral that is known to bond with tooth enamel,
making it stronger and more resistant to decay [31]. When applied to the teeth, SDF
releases fluoride ions that bond with the enamel and help to prevent the development of
cavities. This makes it an excellent choice for patients who are at risk of developing tooth
decay due to poor oral hygiene or other factors [32]. Moreover, unlike traditional dental
treatments, which can be painful and time-consuming, SDF can be applied quickly and
easily in a single visit. This makes it an excellent choice for patients who are anxious about
dental procedures or who have difficulty sitting still for long periods of time [33–35].

The creation of in vitro biofilm models has simplified the investigation of mouth
biofilm today [36,37]. But this approach isn’t without several drawbacks [38]. An option
is to use an in-situ biofilm model to study natural oral biofilms and various therapeutic
approaches. Several gaps in the literature need to be addressed when examining the
effect of SDF on bacterial biofilms. Firstly, there is a need for standardized protocols and
methodologies to study the effect of SDF on biofilms. Varying experimental conditions,
biofilm models, SDF concentrations, and application methods make it difficult to compare
and synthesize findings across studies. Developing standardized protocols would enhance
the reliability and reproducibility of research outcomes. Additionally, there is a lack
of evidence regarding the long-term effects and durability of SDF on biofilms. Most
studies focus on short-term effects, but understanding the persistence and long-term
effectiveness of SDF in controlling biofilms is crucial. Furthermore, there is a need for
more clinical research assessing the clinical outcomes and patient-centered effects of SDF
on biofilms. Comparative studies that assess the effectiveness of SDF compared to other
treatments for bacterial biofilms are also lacking. Comparative research would shed light
on the relative efficacy, safety, and cost-effectiveness of SDF as a treatment option. Finally,
further mechanistic understanding is needed to elucidate the underlying mechanisms of
SDF’s action on bacterial biofilms. Investigating the interaction between SDF and biofilm
components, as well as its impact on biofilm formation, maturation, and eradication, would
enhance our understanding of its mode of action. Addressing these gaps in the literature
might provide a comprehensive understanding of the effect of SDF on bacterial biofilms
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and guide its optimal clinical use. Therefore, this investigation aimed to systematically
review and meta-analyse the available literature on the effect of SDF on bacterial biofilms.
Secondarily, we also wanted to provide an overview of the existing evidence regarding the
efficacy of SDF in reducing bacterial biofilms in dental practice. Additionally, the study
aimed to evaluate the effectiveness of SDF compared to other biomarkers used in dental
practice and to identify potential limitations or biases in the available literature.

2. Materials and Methods
2.1. Eligibility Criteria

All studies were assessed for eligibility according to the following participants, inter-
vention, comparison, and outcomes (PICO) model:

(P) Participants in this systematic review are patients with bacterial biofilms. To include all
relevant studies, the Boolean operator “OR” was used to combine different keywords
related to bacterial biofilms, such as “biofilm”, “plaque” and “microbial colonies”.

(I) The intervention consisted of Silver Diamine Fluoride (SDF). To ensure that all relevant
studies on SDF were included in the review, the Boolean operator “OR” was used to
combine different variations of the keyword, such as “silver diamine fluoride” or “AgF”.

(C) The comparison consisted of control groups that compared SDF to other chemical
compounds. To identify studies that compare SDF to other biomarkers/control groups,
the Boolean operator “AND” was used to combine the intervention and comparison
groups that were considered as interventions.

(O) The outcome measures the effect of SDF on bacterial biofilms. To identify studies that
measure the effect of SDF on bacterial biofilms, the Boolean operator “AND” was
used to combine the intervention and outcome keywords.

Only studies providing data at the end of the intervention were included. Exclusion
criteria were as follows: (1) studies that did not investigate the effect of SDF on bacterial
biofilms or microbial colonies; (2) studies that did not compare SDF to other biomarkers
or control groups; (3) studies that did not report a statistical analysis of the evaluation of
SDF; (4) studies that considered the effect of SDF but abstained from revealing the findings;
(5) cross-over study design; (6) studies written in a language different from English; and
(7) full-text unavailability (i.e., posters and conference abstracts).

2.2. Search Strategy

PubMed, Scopus, and Web of Science databases were systematically searched for
articles published from the year 2013 until 2022, following the strategy described in Table 1.
Furthermore, a manual search of the references of previous systematic reviews on a similar
topic was conducted as well.

Table 1. Search strategy.

PubMed: (“silver diamine fluoride” OR “SDF”) AND (“bacterial biofilms” OR “anti-bacterial
agents”[MeSH Terms] OR “fluorides”[MeSH Terms] OR “dental caries”[MeSH Terms] OR
“Streptococcus mutans”[MeSH Terms] OR “dental plaque”[MeSH Terms] OR “biofilms”[MeSH
Terms]) AND English[lang]

Web of Sciences: (“silver diamine fluoride” OR “SDF”) AND (“bacterial biofilms” OR
“anti-bacterial agents” OR “fluorides” OR “dental caries” OR “Streptococcus mutans” OR “dental
plaque” OR “biofilms”) AND Language: (English)

Scopus: (“silver diamine fluoride” OR “SDF”) AND (“bacterial biofilms” OR “anti-bacterial
agents” OR “fluorides” OR “dental caries” OR “Streptococcus mutans” OR “dental plaque” OR
“biofilms”) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”)) AND (LIMIT-TO
(LANGUAGE, “English”))

This systematic review with meta-analysis was conducted according to the guidance
of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [39], Figure 1 and the Cochrane Handbook for Systematic Reviews of Interventions [40]. The
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systematic review protocol has been registered on the International Prospective Register of
Systematic Reviews (PROSPERO) with acknowledgement of the receipt number 405877.
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Figure 1. Representation of selection of articles through the PRISMA framework.

2.3. Data Extraction

Two reviewers (S.O. and S.C.) independently extracted data from the included studies
using a customized data extraction on a Microsoft Excel sheet. In case of disagreement, the
consensus was achieved through a third reviewer.

The following data were extracted: (1) first author; (2) publication year; (3) nationality;
(4) type of study design; (5) type of compounds as intervention; (6) type of control (placebo
or other); (7) population and the number of patients/biofilms included; (8) SDF’s efficacy
as an outcome; and (9) main findings.

2.4. Quality Assessment

The ROBINS-E tool was used for the assessment of bias in the selected papers for our
review (Figure 2). The tool is used to evaluate the risk of bias in cohort studies, case-control
studies, and before–after studies, among others [41].

2.5. Statistical Analysis

Using the data extraction form that the reviewers had compiled in a single dataset,
the statistical protocol for this study was initiated by entering the data into RevMan 5,
choosing the random effects statistical model for the meta-analysis, calculating the odds
ratio, risk ratio, or risk difference for each study and entering the data into the RevMan 5
software (IBM, version 5.4.1, New York, NY, USA), thereby generating a forest plot to
graphically display the results of the meta-analysis, assessing the heterogeneity of the
studies using the I2 statistic, interpreting the results of the meta-analysis and drawing
conclusions about the effect of SDF on bacterial biofilms, conducting sensitivity analyses to
examine the robustness of the meta-analysis results, interpreting and reporting the results
of the sensitivity analyses (which included the forest plot, summary of the effect estimates,
and interpretation of the heterogeneity and sensitivity analyses).
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3. Results

After conducting an extensive search of online journals, a total of 207 documents were
identified, out of which 103 papers were initially selected. After eliminating 47 similar or
duplicate articles, 56 separate papers were available for further review. Subsequently, after
reviewing the abstracts and titles of the submissions, a further 41 papers were excluded.
Finally, 15 studies that met the inclusion and exclusion criteria were included in the
systematic review and meta-analysis. These studies comprised eight in vitro studies,
four case-control studies, and one in situ, ex situ, and ex vivo study each.

The results of the systematic review have been presented in Table 2, providing details
of the 15 studies included in the review. The meta-analysis was performed using RevMan 5
software, and the results were presented in the form of forest plots depicting the odds ratio,
risk ratio, and risk difference, as shown in Figures 3–5, respectively.

Our investigation revealed a very positive impact of SDF compared to other biomark-
ers mentioned in the 15 studies. The events favoring SDF demonstrated an odds ratio of
3.59 (2.13, 6.05), a risk ratio of 1.63 (1.32, 2.00), and a risk difference of 0.28 (0.16, 0.40). These
findings provide strong evidence that SDF is an effective treatment for reducing bacterial
biofilms in dental practice.

The implications of these findings are significant for improving oral health outcomes,
particularly for individuals who may not have access to traditional dental treatments or
who may have difficulty receiving such treatments. The clear correlation between the usage
of SDF and the decrease in bacterial biofilms makes it a potential standard treatment option
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for dental caries and related conditions. Therefore, further research is recommended to
explore the potential of SDF in dental practice.

The statistical analysis displayed an odds ratio of 3.59 (2.13, 6.05) for events favoring
SDF compared to other biomarkers/control groups in the selected studies as represented
in Figure 3. The forest plot visualized the risk difference for each study included in the
meta-analysis, which represented the difference in the proportion of events favoring SDF
between the SDF and control groups. The analysis found heterogeneity between studies,
with a Tau2 of 0.49 and a Chi2 of 31.64 with 14 degrees of freedom (p = 0.005) and an I2 of
56%. The significant p-value for Chi2 indicates that this heterogeneity was unlikely to have
occurred by chance. The Z-statistic for the overall effect was 4.81 (p < 0.00001), indicating
that the odds of events favoring SDF were significantly higher in the SDF group compared
to the control group. In summary, the statistical analysis suggests that SDF is associated
with a higher odd of events favoring SDF compared to other biomarkers/control groups,
with some degree of heterogeneity between studies. Further research may be needed to
better understand this variation.

The risk ratio of 1.63 (1.32, 2.00) is displayed in Figure 4 for events favoring SDF
compared to other biomarkers/control groups in the selected studies. The forest plot
displayed the risk difference for each study included in the meta-analysis, representing the
difference in the proportion of events favoring SDF between the SDF and control groups.
The analysis found heterogeneity between studies, with a Tau2 of 0.08 and a Chi2 of 36.46
with 14 degrees of freedom (p = 0.0009) and an I2 of 62%. The Z-statistic for the overall effect
was 4.60 (p < 0.00001), indicating that the odds of events favoring SDF were significantly
higher in the SDF group compared to the control group.

The representation of the risk difference in the form of a forest plot in Figure 5 displayed
the individual studies included in the meta-analysis, the value of which was found to be
0.28 (0.16, 0.40). The results showed some heterogeneity, with a tau-squared value of 0.03 and
a Chi2 value of 48.79 with 14 degrees of freedom, resulting in a p-value of less than 0.00001.
This indicated significant heterogeneity in the results. The overall effect was statistically
significant, with a Z-score of 4.72 and a p-value of less than 0.00001. The analysis indicated
that SDF had a significant risk difference compared to other biomarkers/control groups,
and while some heterogeneity was observed, the overall effect was statistically significant.

Table 2. Variables selected and analysed for the review at the end of the data extraction protocol.

ID and Year Study Sample (n) Objectives Design Assessment Drawn

Bao Ying et al.
(2020) [38] Five children

To evaluate the antibacterial
performance of SDF in

dentine biofilms
In vitro Microbial diversity fell after

SDF application.

Ebtissam et al.
(2019) [39]

Seventy dentin discs
(made from extracted

human teeth)

To evaluate the antibacterial
performance of CHX and

NaOCl as compared to SDF
Case control SDF exhibited higher antibacterial

efficacy as compared to the controls.

Gerd et al.
(2017) [40]

100 samples of
bovine dentin.

To evaluate the antibacterial
performance of NaF and CHX

as compared to SDF
In vitro

When compared to control, SDF
dramatically reduced

bacterial numbers.

Jaivrat et al.
(2019) [41]

32 extracted human
molars and 32 extracted

human premolars

To evaluate the antibacterial
performance of CHX, distilled
water and PAA as compared

to SDF

Case control SDF-KI was deemed to be effective in
eliminating S. mutans.

Kausar et al.
(2020) [42] 35 Candida isolates

To evaluate the antifungal
performance of SDF

in isolation
In vitro

SDF appeared to successfully stop
fungal filamentation even at extremely

low doses, complementing its
antibacterial activity

Klanliang et al.
(2022) [43]

10 healthy individuals
(aged between

26–31 years)

To evaluate the
microbiological performance

of SDF in dentine biofilms
In situ

Dental biofilm development was
inhibited and the percentage of killed
bacteria was enhanced when SDF was
applied to demineralized dentin but

only up to 4 days
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Table 2. Cont.

ID and Year Study Sample (n) Objectives Design Assessment Drawn

Maribasappa
et al. (2019) [44]

5 patients with
carious lesions

To evaluate the antibacterial
performance of SDF +
potassium iodide (KI).

In vivo In four of the five patients, SDF + KI
totally stopped the growth of S. mutans

May L. Mei et al.
(2014) [45]

12 primary upper-central
carious incisors

To evaluate the
physicochemical performance

of SDF in carious teeth
Ex vivo Clinical SDF application enhanced the

levels of dentine remineralization

May Lei et al.
(2016) [46] 6 premolars

To evaluate the antibacterial
performance of SDF in

two different types
of restorations

In vitro
SDF application made both the types

of restorations more resistant to
subsequent caries.

Mitwalli et al.
(2019) [47]

20 participants (who had
at least one cervical

carious lesion or soft
cavitated root)

To evaluate the
microbiological performance

of SDF in carious lesions
In vitro

Several bacterium species showed a
substantial decrease in relative

abundance following SDF treatment.

Najmeh et al.
(2018) [48]

45 extracted
deciduous canines

To evaluate the antibacterial
performance of fluorinated
varnish as compared to SDF

In vitro
No significant differences between the
antibacterial performance of both the

compounds were observed
Parand

Sorkhdini et al.
(2020) [49]

90 human enamel samples
To evaluate the antibacterial
performance of AgNO3, KF

and water as compared to SDF
Case control

SDF performed on a similar parlance
as DW and KF that SDF was

compared with.

Rima et al.
(2020) [50]

Samples of bovine dentin
divided into 3 groups

To evaluate the antifungal
performance of SDF

in isolation
In vitro

SDF appeared to successfully stop
fungal filamentation even at extremely

low doses, complementing its
antibacterial activity

Sunny et al.
(2019) [51]

159 active dentinal carious
lesions from

primary molars

To evaluate the antibacterial
performance of AgF as

compared to SDF
RCT SDF performed on a similar parlance

as NaF that SDF was compared to

Vinson et al.
(2018) [52]

S. mutans biofilm in
six-well tissue
culture plates

To evaluate the antibacterial
performance of KI as

compared to SDF
In vitro

SDF + KI performed with the highest
efficacy, followerd by KI and

SDF alone.
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4. Discussion

The findings observed through the meta-analysis reveal important information about
the effectiveness of SDF as a therapy for bacterial biofilms. The results of the review show
that SDF, both alone and in contrast to other conventional antibacterial and antifungal
substances frequently used in dentistry, has a very favorable effect on reducing bacterial
biofilms. This is a significant finding because it implies that SDF may be a more effective
treatment option for dental caries and related conditions, especially for people who might
not have access to or struggle with conventional dental treatments. This study also empha-
sizes SDF’s promise as a standard treatment for dental caries and associated conditions.
SDF may be a useful and efficient way to improve oral health outcomes, especially in places
where access to conventional dental treatments is restricted. This is supported by the clear
correlation between the use of SDF and the decline in bacterial biofilms across a variety of
bacterial species. This comprehensive review and meta-analysis, in addition, offer crucial
direction for further study in this field. The review’s conclusions suggest that additional
study is required to fully investigate SDF’s potential as a remedy for bacterial biofilms and
associated conditions. Studies examining the long-term benefits of SDF therapy and the
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possibility of combining SDF with other therapies to further enhance oral health outcomes
may fall under this category.

In a clinical trial [53], a single SDF application reduced the burden of care for weak,
dependent patients. An annual application of SDF varnish halted the active root carious
lesions in nearly 90% of cases in one of the studies [44]. Therefore, it seems that SDF
applied by an expert is effective in delaying the onset and development of root caries [54].
Nevertheless, there have also been claims that SDF treatment has disadvantages, including
staining/discoloration [55–57], an inflammatory impact on the dentin–pulp complex, and a
decrease in bond strength [58].

When a serious caries lesion has already developed, root caries cannot be successfully
treated by simply controlling plaque and using fluoride treatments [59,60]. Because dentin’s
decay and flaws have progressed, restorative materials must be used as a management
strategy. The progression of tooth decay can be halted with SDF therapy, but it is possible that
cavities will need to be filled with dental fillings. The restorative approach is regarded as a
non-traumatic method that could provide patients with a sense of aesthetic gratification [61].
In order to effectively treat advanced root caries lesions, the focus has been placed on the
use of restorative materials in combination with SDF administration [60].

Discoloration, one of the main problems that plagues SDF, has been the subject of
numerous efforts. A study suggested following SDF usage with KI application to address
the issue [62]. Another clinical study revealed that the use of KI did not, however, have
a long-term impact on resolving the staining problem, and the discoloration eventually
returned [44]. There have been other suggested remedies for staining, such as adding glu-
tathione to SDF, which significantly lessened the coloring but left some pigmentation [63].
Other efforts have used different compounds with somewhat promising results [64,65], but
more studies are needed in that regard.

AgNPs have garnered considerable scientific interest and significance owing to their
distinct characteristics and broad-ranging applications in diverse scientific domains [66].
Their small size and large surface area-to-volume ratio contribute to heightened reactivity
and unique physicochemical properties, rendering them highly versatile nanomaterials.
A primary facet of the importance of silver nanoparticles lies in their remarkable antimi-
crobial efficacy [67]. They exhibit potent antimicrobial activity against a wide spectrum of
microorganisms, encompassing bacteria, fungi, and viruses. This renders them prospective
candidates for the development of antimicrobial agents, disinfectants, and coatings that im-
pede the growth and dissemination of pathogens [66,67]. Their integration into healthcare
settings, including wound dressings, medical devices, and antibacterial coatings, holds
promise for mitigating the risk of infections and enhancing patient outcomes.

A couple of studies provide important insights into the synthesis and potential appli-
cations of AgNPs. In the first study [66], silver nanoparticles were synthesized using olive
leaf extract as a reducing agent. The results demonstrate the feasibility of using natural
extracts for the synthesis of AgNPs. This study highlights the green synthesis approach and
the potential of synthesized AgNPs using olive leaf extract. In the second study [67], an
aqueous extract obtained from chickpea leaves was used for the synthesis of AgNPs. The
results reveal the successful synthesis of AgNPs with specific properties, including a maxi-
mum surface plasmon resonance wavelength, crystallite dimension, and size range. The
inhibitory effect of AgNPs on food pathogen strains and yeast was evaluated, demonstrat-
ing high effectiveness at low concentrations against certain strains. The cytotoxic effects of
AgNPs on cancerous and healthy cell lines were also investigated, showing no significant
decrease in cell viability with increased AgNPs concentration. Overall, these studies [66,67]
emphasize the importance of silver nanoparticles as versatile and potentially valuable
nanomaterials. The green synthesis approach using natural extracts offers an eco-friendly
and cost-effective method for their production. The synthesized AgNPs exhibit desirable
characteristics such as specific size, shape, and inhibitory effects against pathogens. The
findings support the exploration of AgNPs for various applications, including antimicro-
bial agents in food preservation and potential biomedical applications. However, further
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research is necessary to elucidate the mechanisms of action, optimize synthesis methods,
and assess the long-term effects and safety of AgNPs in different contexts.

While our study provides valuable insights into the efficacy of Silver Diamine Fluoride
(SDF) on bacterial biofilms, there are some limitations to consider. The studies included in
the analysis were limited to those published in English, which may introduce bias into the
results. It is possible that studies conducted in other languages may have different findings,
which were not included in the review. Moreover, the studies included in the analysis
varied in their methodology, which may have influenced the results. Some studies had
smaller sample sizes or shorter follow-up periods than others, which may have affected
the overall conclusions drawn from the analysis. In addition, the review only included
studies published up to a certain point in time, and new research may have been published
since then that could affect the conclusions drawn from the analysis. It is also important to
note that the review focused specifically on the effects of SDF on bacterial biofilms and did
not examine other potential benefits or drawbacks of SDF treatment. Therefore, while the
findings of the review are important for understanding the potential of SDF as a treatment
for dental caries and related conditions, they do not provide a comprehensive analysis of
the potential benefits and drawbacks of SDF treatment.

5. Conclusions

In conclusion, our systematic review and meta-analysis has revealed a very positive
impact of SDF in comparison to other biomarkers mentioned in the 15 studies that were
included in this review. The events favoring SDF exhibited statistical values which indicate
that, on an overall basis, our systematic review and meta-analysis provide strong evidence
that SDF is an effective treatment for reducing bacterial biofilms. This finding has important
implications for improving oral health outcomes, particularly for individuals who may
not have access to traditional dental treatments or who may have difficulty receiving
such treatments. Given the clear correlation between the usage of SDF and the decrease
in bacterial biofilms, we recommend that further research be conducted to explore the
potential of SDF as a standard treatment option for dental caries and related conditions.
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