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Abstract: Epigenetic mechanisms finely regulate gene expression and represent potential therapeutic
targets. Cambinol is a synthetic heterocyclic compound that inhibits class III histone deacetylases
known as sirtuins (SIRTs). The acetylating action that results could be crucial in modulating cellular
functions via epigenetic regulations. The main aim of this research was to investigate the effects
of cambinol, and its underlying mechanisms, on cell differentiation by combining wet experiments
with bioinformatics analyses and molecular docking simulations. Our in vitro study evidenced the
ability of cambinol to induce the differentiation in MCF-7, NB4, and 3T3-L1 cell lines. Interestingly,
focusing on the latter that accumulated cytoplasmic lipid droplets, the first promising results related
to the action mechanisms of cambinol have shown the induction of cell cycle-related proteins (such
as p16 and p27) and modulation of the expression of Rb protein and nuclear receptors related to
cell differentiation. Moreover, we explored the inhibitory mechanism of cambinol on human SIRT1
and 2 performing in silico molecular simulations by protein–ligand docking. Cambinol, unlike from
other sirtuin inhibitors, is able to better interact with the substrate binding site of SIRT1 than with the
inhibition site. Additionally, for SIRT2, cambinol partially interacts with the substrate binding site,
although the inhibition site is preferred. Overall, our findings suggest that cambinol might contribute
to the development of an alternative to the existing epigenetic therapies that modulate SIRTs.

Keywords: cell differentiation; epigenetics; post-translational modification; acetylation; HDAC
inhibitor; molecular simulation; protein–ligand docking; active site pocket; binding affinity

1. Introduction

The interest in the involvement of epigenetic alterations on the development of
metabolic and oncological diseases is constantly growing [1]. Epigenetic phenomena regu-
late genes through chemical processes that do not involve changes in the DNA sequence,
but can strongly modify the phenotype of the individual and its progeny [2,3]. Covalent
modifications of histone core, such as acetylation on ε-N-amino groups of lysine residues in
the N-terminal tails, are key mechanisms that reversibly allow the alteration of the physical
accessibility of macromolecular complexes to the genome by being responsible for the regu-
lation of the degree of gene functioning. In this way, “closed” chromatin (heterochromatin)
mediates transcriptional repression, while “open” chromatin (euchromatin) includes tran-
scriptionally active genes. The acetylation levels of the histone core are controlled through
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the balance of two counteracting enzyme activities: histone acetyltransferase (HAT) and
histone deacetylase (HDAC) [3]. Four classes of HDAC have been identified in eukaryotes
according to their structural homology. More specifically in mammals, class III HDACs
have a catalytic activity that is dependent on nicotinamide adenine dinucleotide (NAD+)
and are better known as Sir2 proteins or sirtuins (SIRTs) to indicate that their protein family
is homologous to the yeast protein Sir2 (Silent Information Regulator 2) involved in gene
silencing, chromosomal stability, and ageing [4]. In the human genome, there are seven
different homologous genes of NAD+-dependent deacetylases: SIRT1–SIRT7. These share a
catalytic region of about 270 amino acids formed by a Zn-binding domain and a Rossmann
fold hosting the NAD+ cofactor. SIRTs can combine deacetylation with the hydrolysis of
NAD+ by forming 2′-O-acetyl-ADP-ribose and releasing nicotinamide (NAM), a feedback
inhibitor of SIRTs. These enzymes exert their deacetylase activity on a variety of substrates:
transcription factors, tumor suppressors (p53), and regulators of metabolism. It has been ob-
served that SIRTs promote cell survival during stress through the deacetylation of histones
and non-histone proteins that are essential to cell cycle regulation.

In mammals, SIRTs are also involved in cell differentiation and adipogenesis through
interactions with the peroxisome proliferator-activated receptor-γ (PPARγ), a member of a
class of nuclear hormone receptors regulating adipogenesis [5]. The function of SIRT1 in
adipocytes also involves the repression of PPARγ through the interaction with the cofactors
NCoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid
hormone receptors), which leads to the repression of adipogenesis, the reduction in lipolysis,
and the mobilization of fatty acids [5]. The activity of SIRT2 is involved in the regulation of
metabolism: the lowering of the levels of this protein in adipocytes causes an overexpression
of C/EPBα and PPARγ and promotes adipogenesis [6]. SIRT3 is involved in the metabolism
of carbohydrates, amino acids, fats, and in the tricarboxylic acid cycle for its deacetylase
activity [7]. Each of these SIRT isoforms carries out its own function located to a different
cell compartment, so SIRT1 is mostly allocated in the nucleus, SIRT2 in the cytoplasm, and
SIRT3 in the mitochondria. In addition, as more recently and interestingly shown, different
SIRTs prefer to cleave specific lysine acylations on ε-N-amino groups [8,9].

The role and functions of SIRTs in cancer development have not yet been fully eluci-
dated, above all because they play different roles in different kinds of cancer. It is known
that SIRT1 has an inhibitory effect on the p53 tumor suppressor and on other genes in-
volved in the stress response, suggesting a pro-carcinogenic role of this SIRT. Furthermore,
antisense oligonucleotides directed against SIRT1 induce apoptosis in lung cells, showing
its therapeutic potential in lung cancer [10]. SIRT2 could also represent a possible target for
anticancer drugs, given its ability to modulate the cell cycle. The fact that the levels of this
enzyme are drastically decreased in human glioma cells suggests a function comparable to
a tumor-suppressor gene [11]. SIRT3 expression is increased in breast cancer [12] and is
also implicated in the basal apoptotic process, although it is less relevant than SIRT1 [13].
To date, these and other observations allow us to state that SIRTs have a dual role in cancer,
acting as either oncogenic or oncosuppressor factors on the basis of the cellular makeup,
confirming their fundamental modulatory function in cancer development [1,14].

Transcriptional dysregulations, related to numerous human diseases, are due to alter-
ations in the equilibrium of HAT/HDAC that so constitute the potential target of new drugs
such as the HDAC inhibitors (HDAC-I). NAD+-dependent HDACs belonging to class III
(sirtuins) are not inhibited by conventional HDAC-I such as TSA and SAHA [15]. Among
the sirtuin inhibitors, we can list nicotinamide (formed by the deacetylation reaction), sirti-
nol, M15, and splitomycin [2,16]. However, the rapid hydrolysis of splitomycin and related
lactone compounds at neutral pH (half-life 30 min at pH 7.4) makes their therapeutic use
difficult in mammalian cells. Being a precursor for NAD+, nicotinamide non-selectively
inhibits SIRTs through competition to the NAD+ binding site [17]. The development of
novel agents that specifically block sirtuin activity could provide a therapeutic strategy for
the treatment of numerous diseases. Heltweg et al. (2006) [18] identified and characterized
cambinol (Figure 1), a chemically stable synthetic heterocyclic compound, which shares the
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pharmacophore β-naphthol with sirtinol and splitomycin (the chemical structures of these
inhibitors are reported in Supplementary Figure S1).
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Figure 1. Structure of heterocyclic compound cambinol. (A): Three-dimensional view of cambinol.
Atoms are colored with conventional code (gray: carbon; white: hydrogen; blue: nitrogen; red:
oxygen; yellow: sulfur). The image is generated with UCSF Chimera software (see Methods for
references). (B): chemical structure of cambinol in 2D.

Cambinol showed in vitro inhibitory activity of the human deacetylases SIRT1 and
SIRT2, with IC50 values of 56 and 59 µM, respectively. Cambinol had weak inhibitory
activity against SIRT5 (42% inhibition at 300 µM) and no activity against SIRT3. Class I and
II HDACs are not sensitive to inhibition by cambinol, while SIRT4, SIRT6, and SIRT7 do not
possess in vitro deacetylase activity. Enzymatic activity studies using NAD+ cofactor and
acetyl-histone H4-peptide as substrate of sirtuins showed that cambinol is a competitive
inhibitor toward H4-peptide, but not toward NAD+ [18]. Therefore, cambinol does not
directly interfere with the Rossman fold and the NAD+ binding to sirtuins. This evidence
suggests that it does not affect other NAD+-dependent enzymes, such as dehydrogenases,
specifically blocking the sirtuin activity. It is this peculiarity that makes cambinol a drug
candidate with potentially reduced adverse effects in the therapeutic use.

More recently, new research is revealing the molecular interactions in the sirtuin–
inhibitor complexes and the underlying mechanisms of how these inhibitors have an
impact on cell growth and differentiation [19]. Therefore, in the present study, we decided to
investigate the effects of the sirtuin inhibitor cambinol on the induction of cell differentiation
in vitro, and to study the molecular mechanisms of interaction of cambinol with SIRTs in
silico. In more detail, we analyzed the cell differentiation activity of cambinol on tumor
and normal cell lines. Then, we focused our studies to characterize the differentiating effect
on the 3T3-L1 murine embryonic fibroblast cell line, which is potentially able to mature
into adipocytes under appropriate conditions [20]. Our results demonstrated that cambinol
was able to differentiate 3T3-L1 pre-adipocytes into mature adipocytes, also inducing
important cell cycle inhibitors (p16, p27, p130) and the expression of nuclear receptors
such as retinoic acid receptors (RARs) and PPARγ. Moreover, we explored the action
mechanism of cambinol on human SIRT1 and 2 performing in silico molecular simulations
by protein–ligand docking. The 3D molecular models showed that cambinol is able to
interact with the substrate-binding site of SIRT1 better than that of SIRT2.

2. Materials and Methods
2.1. Cell Line Culture, Treatment Conditions, and Differentiation Assay

The 3T3-L1 mouse cell line [20] and MCF-7 breast cancer cell line were obtained from
American Type Culture Collection (ATCC, Rockville, MD, USA). Cells were grown at 37 ◦C
with 5% CO2 atmosphere in formulated Dulbecco’s Modified Eagle’s Medium (DMEM;
Thermo Fisher Scientific, Carlsbad, CA, USA), completed with bovine calf serum to a final
concentration of 10%, 1% L-glutamine, 1% ampicillin/streptomycin, and 0.1% gentamicin.
Human acute promyelocytic leukemia NB4 cell line, provided by M. Lanotte (INSERM
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U-496, Centre G. Hayem, Hospital Saint-Louis, Paris, France), was grown at 37 ◦C in
5% CO2 atmosphere in RPMI-1640 medium (Gibco, NY, USA), supplemented with 10%
heat-inactivated bovine calf serum, 1% L-glutamine, 1% ampicillin/streptomycin, and
0.1% gentamicin. The cell lines were treated for 5 days (3T3-L1 and MCF-7) and 7 days
(NB4) with 50 µM cambinol (100 mM in DMSO, Merck Life Science, Milano, Italy). Cell
morphology was analyzed after staining by Oil Red O solution (Merck Life Science) for
3T3-L1 and MCF-7 cells, and after staining by May–Grünwald–Giemsa (Sigma-Aldrich,
Saint Louis, MO, USA) for NB4 cells. Then, 3T3-L1 cells were treated with cambinol to a
final concentration of 50 µM, with a drug cocktail consisting of troglitazone (5 µM), insulin
(1 µg mL−1), and dexamethasone (1 µM), and their combination cocktail–cambinol for the
time periods indicated in each experiment. After the treatments as above, 3T3-L1 cells
were analyzed for adipogenic differentiation by Oil Red O staining following the protocol
reported in Bontempo et al. (2015) [21].

2.2. Cell Cycle Analysis and Evaluation of Pre-G1 Phase

For cell cycle analysis and evaluation of pre-G1 phase, samples were processed and
analyzed as previously reported by Bontempo et al. (2013) [22]. Briefly, 3T3-L1 cells
were plated (2 × 105 cells/mL) and then collected after the treatments, centrifuged, and
resuspended in PBS 1× containing propidium iodide (PI, 50 µg/mL), sodium citrate (0.1%),
and NP40 (0.1%). Cell cycle was analyzed using the FACScalibur flow cytometer with
ModFit technology (Becton Dickinson) and cell death levels were measured as pre-G1
DNA fragmentation.

2.3. Western Blot Analyses

Cell lysis was carried out as previously reported [23]. After centrifugation of cell
lysate at 13,000× g for 30 min, protein concentration was determined, and protein extract
aliquots of 40 µg were separated by 12% polyacrylamide gel electrophoresis and blotted as
previously described [23]. Western blots were run for p16, p27 using mouse monoclonal
antibodies (dilution 1:500; #sc-1661; #sc-1641; Santa Cruz Biotechnology-SCBT, Santa Cruz,
CA, USA); for Rb130 using rabbit polyclonal antibodies (dilution 1:500; #sc-317; SCBT);
immunodetection was performed for RARα, RARβ, and RARγ proteins (retinoic acid
receptors) using rabbit polyclonal antibodies (#sc-551; #sc-552; #sc-550; SCBT) with a
dilution of 1:500; for the PPARγ protein using a mouse monoclonal antibody (#sc-7273;
SCBT) with a 1:500 dilution; for acetylated histone H3 (Lys27) using a rabbit polyclonal
antibody (#4353; Cell Signaling Technology—CST, Europe, B.V., Leiden, The Netherlands)
with a dilution of 1:500; for acetylatedα-tubulin protein using a mouse monoclonal antibody
(#MABT868; Merck KGaA, Darmstadt, Germany) with a 1:500 dilution; for acetyl-p53
(Lys373, Lys382) using a polyclonal rabbit antibody (#06-758, Merck) with a 1:500 dilution;
for SIRT2 using a polyclonal rabbit antibody (#LS-B3221, LS-Bio, Seattle, WA, USA) with a
1:500 dilution; and ERKs (with rabbit polyclonal antibody, #sc-94; SCBT, dilution 1:1000)
was used to normalize the samples for equal loading. Immunoprecipitation (IP) was
performed to analyze PPARγ acetylation. 3T3-L1 cells treated and untreated with 50 µM
cambinol were lysed in TAP buffer (Tris-HCl pH 7.0, 50 mM NaCl 180 mM, NP-40, 0.15%
glycerol, 10% MgCl2, 1.5 mM NaMO4, 1 mM NaF) with protease inhibitors (Sigma), 1 mM
DTT, and 0.2 mM PMSF. Briefly, 650 µg was pre-cleared with 20 µL A/G Plus Agarose
(#sc-2003; SCBT). Mouse anti-PPARγ (#95128; CST) or purified mouse IgG (#sc-2025; SCBT)
antibodies were added and IP proceeded overnight at 4 ◦C. Then, 30 µL A/G Plus Agarose
was added and incubated for 2 h. Finally, 20 µL of 2× concentrated electrophoresis sample
buffer was added. Following Western blot analyses, mouse anti-PPARγ (#95128; CST; 1:500
dilution), mouse anti-acetyl-Lysine (#05-515; Sigma-Aldrich; 1:500 dilution), and normal
mouse anti-IgG (#sc-2025; SCBT; 1:500 dilution) were used. Secondary antibodies (CyDye™
800; #GE29360790; #GE29360788; GE Healthcare-Amersham, Biosciences, Milano, Italy)
were used with a dilution of 1:10,000. At the end, the target proteins were visualized by
chemiluminescence (ECL Kit; GE Healtcare-Amersham, Biosciences) and semi-quantified
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by densitometry using the Java-based image-processing and analysis software ImageJ (U.S.
National Institutes of Health, Bethesda, MD, USA).

2.4. Molecular Docking Simulations and Sequence Comparison

In order to analyze the interactions between cambinol and SIRTs, molecular docking
studies were performed. Three-dimensional structures of SIRT1, 2, and 3 available in
Protein Data Bank (PDB) [24] were analyzed to select the ones with the best overall quality
and suitable conformation features. Particularly, the structures with PDB codes 4I5I [25],
5DY4 [26], and 4BN5 [27] were selected for SIRT1, 2, and 3, respectively. The X-ray
structures of SIRT1 and 3 have 2 and 12 chains, respectively, but since they are monomeric
proteins, we decided to only perform our study on chain A. All structures presented an
inhibitor co-crystallized with the protein, i.e., EX527 analog for SIRT1, SirReal for SIRT2,
and SRT1720 for SIRT3. The NAD+ cofactor was present for SIRT1 and 2, while Carba-
Nicotinamide-Adenine-Dinucleotide (CNA) was present for SIRT3. Since it is known
from the literature that the binding to the inhibitor causes an important movement in
the NAD+ molecule, blocking its kinked active conformation [25], molecular docking
simulations focused on the active site were performed, which enabled flexibility of NAD+

for SIRT1 and 2 and of CNA for SIRT3. Water molecules present in the active site of SIRT1
and 2 crystals were kept in order to study their possible functional role in the inhibitor
binding. Redocking with their respective inhibitors and exploiting blind and focused rigid
body docking procedures were also performed, according to the procedure in use in our
laboratory and similar studies from the literature [3,28]. For better system control, docking
simulations in the presence or absence of the cofactor and of the water molecules were
performed, both focused and blind. Both rigid and flexible docking were executed by
AutoDock 4.2.5.1 [29], proteins and ligand were prepared by AutoDock Tools 1.5.6 [29],
and docking results analyzed with the same. The .pdbqt formats of the complexes were
converted to .pdb using OpenBabel 3.1.1 [30]. Parameters applied for SIRT1 docking are as
follows: grid box 82 × 126 × 110 and spacing 0.514 Å (grid center: 42.573, −22.315, and
21.547) for blind docking, and grid box 62 × 80 × 56 and spacing 0.375 Å (grid center:
44.926, −22.087, and 22.662) for focused docking. Parameters applied for SIRT2 docking are
as follows: grid box 118 × 108 × 126 and spacing 0.514 Å (grid center: −14.461, −26.079,
−0.222) for blind docking, and grid box 92 × 80 × 78 and spacing 0.375 Å (grid center:
−15.981, −23.675, 10.895) for focused docking. Parameters applied for SIRT3 are as follows:
grid box 126 × 100 × 126 and spacing 0.460 Å (grid center: 225.093, 12.431, 20.687) for
blind docking, and grid box 76 × 82 × 68 and spacing 0.375 Å (230.228, 4.936, 13.084) for
focused docking.

The images of molecular structures were generated using the software UCSF Chimera [31]
or AutoDock Tools [29], as reported in each figure legend. Sequence alignment was obtained
by Clustal O (1.2.4) [32].

3. Results and Discussion
3.1. Cambinol Induces Cell Differentiation

In this study, the differentiating action of cambinol was initially evaluated with a
preliminary morphological screening in the solid and hematological tumor cell lines MCF-7
and NB4, respectively. Cambinol-associated effects, whose antiproliferative and proapop-
totic actions are already known in the tumor cell lines, were evaluated in comparison to the
3T3-L1 non-tumor cell model. Interestingly, we found in all three cell lines a differentiating
effect after treatment with 50 µM cambinol (Figure 2A). MCF-7, NB4, and 3T3-L1 cells
incubated with cambinol showed features resembling the mature cell phenotype. MCF-7
showed features reminiscent of mature mammary phenotypes, including a massive accu-
mulation of neutral lipids, which are an important milk component and the most typical
trait of mature epithelial mammary cells. Granulocytic differentiation was observed in
NB4 cells of human promyelocytic leukemia. 3T3-L1 cells, a model of potential adipocyte
maturation, also responded to the treatment with evident droplets of intracellular lipids.
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Then, we chose to use the non-tumor cell model 3T3-L1 to investigate how molecular
targets are involved in the observed effects under physiological-like conditions. For this
purpose, we used a drug cocktail as the positive control, whose differentiating action on
the same cell line was already known [20,33]. We evaluated whether it acted with different
timing and biological efficacy compared to cambinol. In addition, the cambinol–cocktail
combined treatment was applied for finding the existence of potential synergistic or antag-
onistic effects. Since these inhibitors perform multiple functions, we focused our studies on
characterizing their differentiating effects.
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Figure 2. Cambinol induced cell differentiation in the MCF-7, NB4, and 3T3-L1 cell lines. Cells
were treated for 5 days (MCF-7 and 3T3-L1) and 7 days (NB4) with cambinol, and then they were
stained by Oil Red O and May–Grünwald–Giemsa, respectively (A). Cambinol, a drug cocktail, and a
cambinol–cocktail combination induced cell differentiation in the 3T3-L1 cell line. Cells were treated
for 5 days and then were stained by Oil Red O (B). Cells were observed by optical microscopy; size
bars: 10 µm.
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Successively, 3T3-L1 cells were separately treated with 50 µM cambinol, cocktail of
drugs (5 µM troglitazone, 1 µg mL−1 insulin, and 1 µM dexamethasone) whose differen-
tiating effects have already been reported [20,33], and a cambinol–cocktail combination.
The results of the optical microscopy observations showed the cell differentiation effect of
cambinol, as evaluated by Oil Red O staining (Figure 2B and Supplementary Figure S2).
Interestingly, cambinol-induced differentiation emerged more rapidly than that of the
cocktail of drugs; in fact, clearly evident lipid droplets appeared in 3T3-L1 cells treated with
cambinol already after 2–3 days (data not shown), and only after about 5 days if treated
with the cocktail alone (Figure 2B). In the same Figure 2B, it can be seen that a more evident
effect was present after 5 days of cambinol administration in combination with the drug
cocktail (see also Supplementary Figure S2). The number of Oil Red O positive cells for the
presence of lipid droplets is almost comparable after 5 days of treatment with the cambinol
or cocktail. However, an important difference can be observed due to the larger size of
the lipid droplets in the treatment with cambinol, confirming what has already been said,
because the differentiating effect was induced earlier.

3.2. Cambinol Modulates Cell Cycle in 3T3-L1 Line

Therefore, with the aim of characterizing the cell differentiation action induced by
cambinol, we assayed its biological effects on the cell cycle. For this purpose, the 3T3-
L1 cells were treated for 1, 2, and 3 days with 50 µM cambinol, a drug cocktail (5 µM
troglitazone, 1 µg mL−1 insulin, and 1 µM dexamethasone), and a cocktail–cambinol
combination. The analysis of the cell cycle showed that cambinol did not exhibit cytotoxic
effects, as detected by the low percentage value of cell death in the pre-G1 phase (for details,
see Materials and Methods; Figure 3).

In addition, interestingly, FACS analysis showed that cambinol determined an early
and significant increase (41%) of the cell number in the G2-phase of the cell cycle after
1 day of treatment, associated with a reduction (22%) in the cell number in the G1-phase
(Figure 3A). This trend was progressively lost in the following 2 days (Figure 3B,C), when
a reduction (39%) in the cell number in G2-phase was observed. Overall, the number of
cambinol-treated cells decreased in the G2-phase after 3 days as compared to the previous
time points, and it also diminished with respect to the other two treatments and to the
untreated control (Figure 3C). At the same time, the number of S-phase cells underwent
a progressive increase compared to the control up to 3 days in the samples treated with
cambinol alone (116%) and with cambinol in combination with the drug cocktail (86%), even
if their relative values with respect to the other cellular phases remained approximately
constant. The S-phase cells did not undergo significant changes over time (2 and 3 days)
with the drug cocktail alone, remaining approximately at the same levels as the control.
The observable levels of cell death were negligible with respect to the control in almost
all cases, except for the cocktail at 2 days, in which an increase in the cells in the pre-G1
and in the G1 phases was observed, which is associated with a reduction in the number
of cells in the G2 phase. This trend is in line with the restoration of the cell differentiation
program [21], as also evidenced by the early accumulation of cytoplasmic lipid droplets
after 2–3 days, as reported above.

3.3. Molecular Targets Involved in the Differentiation Action of Cambinol

In order to tentatively characterize from a molecular point of view the differentiation
activity induced by cambinol under physiological-like conditions of 3T3-L1 cells, a model
of adipocyte maturation, we analyzed the expression of various protein factors that can
play a key role in the control of the cell cycle and in the induction of differentiation. We
evaluated the expression of the regulatory cell cycle proteins p16 and p27, both known to
cause cell cycle arrest through the inhibition of cyclin-dependent kinases (CDKs) [22,34].
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Overall, as shown in Supplementary Figure S3A, these first results seem to demonstrate
that cambinol can contribute to modulating the cell cycle progression early after 2–3 days
of treatment by up-regulating the expression of p16 and p27, whose functions as cell cycle
regulators and tumor suppressors are well-known [34]. Then, cambinol may interact with
the drug cocktail by increasing the final effects on both proteins p16 and p27.

Several nuclear receptors are involved in the cell differentiation process, including
the retinoic acid receptors (RARs), which are ligand-controlled transcription factors func-
tioning as heterodimers with retinoid X receptors (RXRs) to finely regulate cell growth,
differentiation, survival, and death in different cell systems after activation by retinoic acid
(Ra) binding [35]. Once inside the cell, Ra is transported through specific cellular trans-
port proteins and, after binding to the specific receptors, can regulate the gene expression
through the recruitment of transcription co-activators (such as p160). The immunoblot of
protein extracts obtained from 3T3-L1 cells treated with cambinol highlighted an increase
in the expression levels of three RARs. In particular, a prolonged effect of cambinol was
observed on the expression of RARα, RARβ, and RARγ, at the considered time points, as
shown in Supplementary Figure S3A. These first results showed that the treatment with
cambinol could also induce the modulation of the expression of these important nuclear
receptors related to cell differentiation.
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Another important member of the nuclear receptor superfamily of ligand-dependent
transcription factors is PPARγ, whose role in adipose tissue differentiation has been exten-
sively studied [36]. The PPARs and the RXRs coordinately regulate gene expression. PPARγ
directly regulates gene transcription through the formation of functional heterodimers
with RXR and binding to specific DNA sequences (PPAR response elements) [37]. In this
way, PPARγ can regulate the storage of fatty acids and glucose metabolism by intervening
in the adipogenesis process. PPARγ has been identified to possess different isoforms,
differentially transcribed from the same gene. Among these, PPARγ1 is ubiquitous, but
highly expressed in adipose tissue, while PPARγ2 (with an additional 30 amino acids on
N-terminal of PPARγ1) is exclusively expressed in adipose tissue. A high adipogenesis
capacity is the main function of PPARγ2. Since it was reported that cambinol can modulate
the activity of PPARγ [38], to further characterize its cell differentiation activity, we thought
of studying the possible involvement of PPARγ by analyzing the expression levels of this
receptor by immunoblotting. Our results, obtained by treating 3T3-L1 cells with cambinol,
indicated that adipocyte differentiation was induced even in the absence of troglitazone
(Figure 2), a ligand agonist of PPARγ [39]. As shown in Supplementary Figure S3A, the first
results seem to indicate that cambinol induces adipogenesis through the PPARγ activation
route, working synergistically with the drug cocktail. In conclusion, the expression of
full-length PPARγ and then its cleavage are essential for cell differentiation [36,40,41].

The retinoblastoma tumor-suppressor family proteins (pRb) are key factors in the
control of cell proliferation and are also known as “pocket proteins” [42]; their overex-
pression induces cell proliferation arrest. We analyzed the expression levels of Rb130
by immunoblotting and found an increased expression level after 3 days and up to
5 days after treatment with cambinol and with cambinol together with the drug cocktail
(Supplementary Figure S3B). These first results seem to indicate that the cell differentiation
effect of cambinol also involved the Rb130 protein, which is related to cell differentiation, as
well as being notoriously up-regulated in differentiated cells [42]. The evidence indicated
that pRb bind a variety of transcription factors and chromatin remodeling enzymes, form-
ing transcriptional repressor complexes that control gene expression [43]. More recently, Li
et al. (2018) [44] demonstrated that the activation of the Rb pathway in a transient manner
is important for cell differentiation. Therefore, cambinol could play an important role in
regulating differentiation capacities through Rb up-regulation.

It is well-known that cambinol acts as an inhibitor of NAD+-dependent deacetylases
(class III HDAC or sirtuins) by specifically modulating the activity of the human SIRT1
and SIRT2 [18]. Therefore, we wanted to verify if in our conditions the differentiation
effect could be correlated to a possible epigenetic modulation exerted by the cambinol
itself. To this aim, we evaluated the variation of the acetylation status of histone and
non-histone targets. In our study, histone H3 was analyzed, and the results showed an
increase in its acetylation levels upon cambinol treatment (data not shown). To evaluate
the acetylation status of non-histone targets, the proteins α-tubulin and p53 were chosen.
The results of immunoblotting showed increased protein acetylation at 2 days for both
p53 and α-tubulin in cambinol-treated samples as compared to the untreated control (data
not shown). SIRT1-dependent PPARγ deacetylation is known to be an important and
selective modulation of PPARγ action [45]. PPARγ is considered a lipid sensor that, when
activated by acetylation, can stimulate gene expression, promoting lipid accumulation
and storage [37,46,47]. Our further experiments also detected an increase in the PPARγ
acetylation levels after 2 days of cambinol treatment (data not shown) modulating its own
activity. In the following analyses, we also studied the variation of expression levels of the
SIRT2 protein. The results, shown in the Supplementary Figure S4, indicated unchanged
levels of SIRT2 protein expression after 2 days of cambinol treatment. This confirms that
the observed acetylating effect of cambinol was due to the well-known inhibition of the
deacetylase activity of SIRTs, not associated with the variation of their expression. All
this allows us to state that the differentiating action may in part be clearly related to the
cambinol-induced hyperacetylation of non-histone and histone cell targets due to sirtuin
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inhibition. Furthermore, in-depth studies are needed in this regard on the same and other
representative targets of adipogenesis to confirm and better investigate these aspects at the
molecular level.

3.4. Docking Simulations of Molecular Interactions between Cambinol and the Target SIRTs

Since the observed effects of cambinol are the result of sirtuin inhibition, it was
interesting to explore the inhibitory mechanism of cambinol on human SIRT1, 2 and 3 in
silico by protein–ligand docking simulations.

Docking experiments performed on SIRT1 show that cambinol seems to prefer a non-
canonical inhibition site, moving into or behind the site for access to the substrate. In
particular, docking with flexible NAD+ shows a difference of about 1 Kcal/mol between
the binding to the substrate site (lowest binding energy equal to −7.29 Kcal/mol) and to
the canonical inhibition pocket (lowest binding energy equal to −6.35 Kcal/mol). Better
values are obtained for the non-canonical site under other docking conditions (see Table 1
and Figure 4).

Table 1. Binding energies from docking simulations of cambinol interaction with SIRT1, 2, and 3.

Receptor a Docking Procedure Binding Energy
(Kcal/mol) Interaction Region on the Receptor b

SIRT1

Blind

−7.66 c
Near the binding site

(Ser370, Lys408, Glu410, Ile411, Val412, Glu416, Asn417,
and Leu418)

−7.57 c
Binding site

(NAD, His363, Val412, Phe413, Phe414, Gly415, Glu416,
Asn417, Leu418, and Arg446)

Focused

Rigid NAD+

−7.96 d
Near the binding site

(Ser370, Lys408, Glu410, Ile411, Val412, Glu416, Asn417,
and Leu418)

−7.91 d
Binding site

(NAD, His363, Phe413, Phe414, Gly415, Glu416, Lys444,
Val445, and Arg446)

Flexible NAD+

−7.29 e
Binding site

(NAD, His363, Val412, Phe413, Phe414, Gly415, Glu416,
Leu418, Val445, and Arg446)

−6.35 e
Inhibition site

(NAD, Ile270, Phe273, Ile279, Phe297, Ile316, Ile347, His363,
HOH717, and HOH702)

SIRT2

Blind −9.52
Inhibition site

(NAD, Phe96, Leu103, Phe119, Phe131, Leu134, Ile169, His187,
Ile232, and Phe234)

Focused

Rigid NAD+ −9.71
Inhibition site

(NAD, Phe96, Leu103, Phe119, Phe131, Leu134, Ile169, His187,
Ile232, and Phe234)

Flexible NAD+ −9.35
Inhibition site partially occluding the binding site

(NAD, Phe119, Ile169, His187, Ile232, Val233, Phe234, Phe235,
and HOH534)
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Table 1. Cont.

Receptor a Docking Procedure Binding Energy
(Kcal/mol) Interaction Region on the Receptor b

SIRT3

Blind −7.06
Protein surface

(Phe157, Arg158, Leu168, Gln169, Gln171, Asp172, Leu173,
Tyr175, and Pro176)

Focused

Rigid CNA −7.36 Binding site
(Phe157, Glu177, Phe180, Val292, Phe293, and Phe294)

Flexible CNA −8.12
Binding site

(NAD, Glu177, Gln228, Ile230, His248, Phe180, Ile291, Val292,
Phe294, and Val324)

a The structures with PDB codes 4I5I [25], 5DY4 [26], and 4BN5 [27] have been selected for SIRT1, 2, and 3,
respectively. b Residues interacting with cambinol are reported in parenthesis; residues forming H-bonds are
underlined. c Two clusters of conformations under blind docking simulation are reported because they have
similar energies and different interaction region on the receptor. d Two clusters of conformations under focused
docking simulation with rigid NAD+ are reported because they have similar energies and different interaction
region on the receptor. e Two clusters of conformations under focused docking simulation with flexible NAD+ are
reported because they have different interaction region on the receptor.
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Figure 4. Cambinol binding to the canonical inhibition pocket (panel (A)) and to the substrate site
(panel (B)). SIRT1 is represented in gray cartoons, the Histone H4 peptide in dark green spheres,
the Carba-Nicotinamide-Adenine-Dinucleotide (CNA) and Nicotinamide-Adenine-Dinucleotide
(NAD+) in yellow and fuchsia ball and sticks, respectively; cambinol is in orange spheres; and the
indole (EX527 analogue) SIRT1 inhibitor pocket and the Histon binding site in cyan and light green
surfaces, respectively. Cambinol binding to both binding pockets forces the NAD+ in a stretched
conformation that does not allow the correct interaction of the histone in the pocket, for which an
NAD+ kinked conformation is necessary (represented as an example by the CNA) [25]. In (panel (A)),
in fact, cambinol covers part of the kinked NAD+ binding site (note steric clashes between CNA and
cambinol); in (panel (B)), instead, it makes direct interaction with stretched NAD+ conformation.
Moreover, this conformational change determines steric clashes between NAD+ and the substrate,
preventing the correct interaction of the latter with the active site and the cofactor; moreover, the
presence of cambinol in the binding site represents a hindrance to the peptide binding. The image is
generated with UCSF Chimera software (see Methods for references).
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However, both the binding poses unveil the blocking of the NAD+ kinked active
conformation, which results in a stretched conformation. Docking performed with a rigid
NAD+ in inhibited conformation and functional water molecules shows a similar binding
energy (−7.57 Kcal/mol). It is important to underline that the redocking analysis, per-
formed exploiting the inhibitor co-crystallized with the protein structure selected, showed a
better binding energy (−11.25 Kcal/mol) for binding to the canonical inhibition cavity, but
a worst binding energy for the site of the substrate access (−6.44 Kcal/mol) (Table 2). These
results suggest that cambinol is able to act on SIRT1 in a different mechanism compared to
the co-crystallized inhibitor.

Table 2. Binding energies from redocking simulations of interaction of SIRT1, 2, and 3with the
co-crystallized inhibitors.

Receptor/Inhibitor Docking
Procedure

Binding Energy
(Kcal/mol)

Interaction Region
on the Receptor

SIRT1/EX527 analog a Blind
−11.07 b Inhibition site
−6.44 b Binding site

Focused −11.25 Inhibition site

SIRT2/SirReal a Blind −10.92 Inhibition site
Focused −12.39 Inhibition site

SIRT3/SRT1720 a Blind −13.66 Inhibition site
Focused −13.59 Inhibition site

a The structures with PDB codes 4I5I [25], 5DY4 [26], and 4BN5 [27] have been selected for SIRT1, 2, and 3,
respectively. All structures present an inhibitor co-crystallized with the protein. b Two clusters of conformations
under blind docking simulation are reported because they have different interaction regions on the receptor.

In the case of SIRT2 and cambinol, the results of both docking approaches, i.e., whether
flexible or rigid NAD+ with functional water molecules display a higher propensity of
cambinol to occupy the same position detected for the co-crystallized inhibitor, i.e., the
inhibition site. This finding is in agreement with previous work that simulated an inter-
action between cambinol and SIRT2 [47]. The binding energies are comparable, too, with
the lowest binding energy that varies from −9.71 to −9.33 Kcal/mol for the cambinol
under the different docking conditions (see Table 1) and from −12.39 and −10.92 Kcal/mol
for the SirReals inhibitor (see Table 2). In a docking simulation with flexible NAD+, the
binding energy value at the inhibition site is very similar (−9.35 Kcal/mol). However,
the position is slightly shifted toward the substrate binding site, with a partial occlusion
of its access. This finding confirms the experimental results reported in the literature at
the molecular interaction level [18], which indicates that cambinol is competitive with
substrates. Cambinol makes a direct interaction with NAD+, forming H-bonds with the
cofactor and inhibiting its correct conformation (Figure 5). Moreover, it also forms an
H-bond with the active site H187, preventing its activity; a water molecule seems to also be
involved in the binding of the inhibitor. The partial occlusion of the substrate binding site
seems to also be detected by re-docking for the already known inhibitor (data not shown).
Moreover, docking performed without NAD+ did not reveal a cambinol competition with
the cofactor (data not shown), which is in agreement with the literature [18].

Particularly, docking performed for SIRT1 and SIRT2 in the absence of water molecules
and a cofactor (Supplementary Table S1) confirmed the detection of the same binding
pockets obtained in the presence of these compounds. All the tested conditions (i.e.,
docking in the presence of NAD+ and water molecules in the active site, docking in the
presence of the cofactor but without water molecules, and docking without all heteroatoms)
confirmed for SIRT1 the possibility of cambinol to bind to both the inhibition and substrate
binding sites, and for SIRT2 the preference for the inhibition site (Figure 6).
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Figure 5. Cambinol and SIRT2 interactions resulting from flexible docking simulation. Cambinol
(in red sticks) forms H-bonds with the cofactor and the active site H187 (green dots), inhibiting the
enzyme. SIRT2 is represented by dark green cartoon; NAD+ and SIRT2 residues involved in the
interactions are represented by yellow and gray sticks, respectively. The image is generated using
AutoDockTools software (see Methods for references).
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Figure 6. Cambinol binding to the SIRT1 (panel (A)) and to SIRT2 (panel (B)) using different docking
protocols. SIRT1 is in green cartoons, while SIRT2 is in rosy cartoons; the cambinol is in different
color sticks. More specifically, in (panel (A)), cambinol is represented in blue and magenta for the
poses detected by focused docking, including NAD+ but not water molecules; in cyan for the poses
detected by focused docking without NAD+ and water; and in yellow and orange for the poses
detected by focused docking, including NAD+ and water molecules. In (panel (B)), instead, cambinol
is highlighted in red for the best pose from focused docking including NAD+ but not water molecules,
in cyan for the pose from focused docking without NAD+ and water, and in yellow and blue for the
poses from the focused docking including water molecules and flexible and rigid NAD+, respectively.
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The docking simulations of the interaction of cambinol with SIRT3 show that, under
blind conditions, neither the inhibition site nor the binding site are identified as energetically
preferred, and the ligand is positioned on the protein surface without specific preferences.
In particular, the binding site of the co-crystallized inhibitor was not recognized at all as a
possible binding site for cambinol. Focused docking between SIRT3 and cambinol with
NAD+ shows that cambinol might recognize the substrate binding site. When NAD+ is
kept rigid, the predicted energy is −7.36 Kcal/mol, while in the simulations performed
with a flexible NAD+, the predicted energy is −8.12 Kcal/mol (see Table 1). When NAD+

is not present in the crystal, cambinol does not recognize the enzyme binding site and
positions itself on the surface of the protein (data not shown).

By comparing the results of the molecular docking of cambinol with the three SIRTs
(see Table 1), the best binding energy values are obtained for SIRT2, while the values with
SIRT1 and SIRT3 are similar. However, the redocking simulations with the co-crystallized
inhibitors must also be considered. Although the predicted binding energies indicate that
cambinol could bind to SIRT3, the values may be not enough to inhibit enzymatic activity, as
redocking of SIRT3 with its inhibitor predicted values of about −13 Kcal/mol (see Table 2).
The energy difference of about 6 kcal/mol between redocking and SIRT3-cambinol docking
is higher than SIRT1 (about 4 kcal/mol) and SIRT2 (about 2–3 kcal/mol) simulations, thus
explaining in part why cambinol does not inhibit SIRT3 [18].

Since the docking results indicate a preference of cambinol for the substrate binding site
over the inhibition site only in the case of SIRT1, we investigated the detail of the residues
at the interface, as reported in the last column of Table 1. Two aromatic residues of SIRT1
are involved in both sites (Phe413 and Phe414 in the binding site; Phe273 and Phe297 in the
inhibition site). Therefore, in both cases, cambinol finds a similar aromatic environment.
However, the inhibition site presents only hydrophobic residues, except for the catalytic
His. On the contrary, the substrate binding site also presents polar residues, which may
interact with the polar moiety of cambinol and form H-bonds (see the underlined residues
in the last column of Table 1). This may explain the preference of cambinol for the substrate
binding site instead of the inhibition site in SIRT1. By comparing all SIRT1 amino acids at
the substrate binding site in different conditions (Figure 7, residues in yellow) to the aligned
corresponding amino acids in SIRT2, we found that most of the amino acids were identical,
with the exception of three polar residues of SIRT1, i.e., Ser370, Glu410, and Arg446,
substituted in SIRT2 by His, Asp, and Gln, respectively. Although in SIRT2 the amino acids
were still polar, the differences in charge state (Ser/His and Arg/Gln substitutions), and
length of the side chain (Glu/Asp) may prevent the formation of appropriate interactions,
and explain why cambinol prefers to bind at different sites of SIRT1 and SIRT2.

Moreover, the comparison of the two sequences indicates a good level of conservation
of the residues interacting with cambinol at the canonical inhibition sites (Figure 7, residues
in green). However, we note that the regions 271–316 of SIRT1 and 94–138 of SIRT2, which
are part of the inhibition site, present relevant differences and sequence gaps. The low
similarity of the two regions coincides with the mismatch at the conformational level
(Figure 8), which is probably due to the presences of prolines without correspondence in
the other sequence (i.e., P288 in SIRT1 and P99 in SIRT2). It is well-known that prolines,
due to their imino acid structure, impose irregular conformations of the backbone. It is
likely that the conformational difference affects the final inhibition site shape, more favored
for cambinol in SIRT2 than SIRT1, as indicated by the binding energy values in Table 1
(around −6 Kcal/mol for SIRT1 and −9 Kcal/mol for SIRT2).
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Figure 7. Alignment of SIRT1 and SIRT2 sequences. Amino acids of SIRT1 at the substrate binding
site that interact with cambinol at different conditions are highlighted in yellow. The red letters
evidence the three amino acids (i.e., Ser370, Glu410, and Arg446) without identical correspondence
in SIRT2. Amino acids of SIRT1 and SIRT2 at the inhibition site that interact with cambinol at
different conditions are highlighted in green. Histidines of the catalytic site are represented by
gray background. The 271-316 region of SIRT1 and 94-138 region of SIRT2, which are part of the
inhibition sites, are evidenced by the blue background. Red arrows indicate the two prolines without
correspondences in the other sequence (i.e., Pro288 in SIRT1; Pro99 in SIRT2). Alignment has been
obtained by Clustal O (1.2.4; see Methods for references), which adds symbols under the aligned
amino acids to evidence identical residues (asterisk), strong similarity (colon), or similarity (period).
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Figure 8. Comparison between the mismatching portions at the canonical inhibitory site of SIRT1 and
2, represented in beige and cyan cartoons, respectively; the SIRT1 region between residues 271–316 is
highlighted in orange; the region between residues 94–138 of SIRT2 is shown in blue. Amino acids
interacting with cambinol are represented in balls and sticks. The image is generated with UCSF
Chimera software (see Methods for references).

4. Conclusions

Altogether, the findings presented here highlight the ability of cambinol to induce
the differentiation of 3T3-L1 preadipocytes into mature adipocytes, likely by modulating
important nuclear receptors. Furthermore, the results on the identification and characteriza-
tion of the effects of cambinol suggest that the inhibition of SIRTs can be used as a treatment
for human pathologies in which they perform essential functions. The identification of
other SIRT targets involved in the pathogenesis of metabolic and tumor pathologies paves
the way for the possibility of revealing other contexts where the inhibition of deacetylases
represents a real opportunity for a therapy. The ability of cambinol to specifically inhibit
some SIRTs makes this synthetic molecule a potential model structure in the research and
development of new therapeutic agents that are able to decisively counteract various hu-
man pathologies such as tumors and metabolic alterations. Our molecular docking studies,
showing that cambinol is potentially able to interfere with substrate binding, indicate
possible differences in the mechanism of the inhibition of SIRT1 and SIRT2. However,
further studies are necessary to fully understand the molecular mechanisms underpinning
the cellular responses and SIRT inhibition for the potential applications of cambinol and its
derivatives as candidate drugs.
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HDAC inhibitors. Figure S2: Quantitative evaluation of the cell differentiation effect. Figure S3:
Cambinol modulated expression levels of p16, p27, retinoid receptors (RARs), PPARγ, and Rb130.
Figure S4: Cambinol does not modulate the expression level of SIRT2 protein. Table S1: Docking
results in the absence of cofactors and water molecules.
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