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Abstract: Monoclonal antibodies are among the most effective tools for detecting tumor-associated
antigens. The U.S. Food and Drug Administration (FDA) has approved more than 36 therapeutic
antibodies for developing novel alternative therapies that have significant success rates in fighting
cancer. However, some functional limitations have been described, such as their access to solid
tumors and low interaction with the immune system. Single-chain variable fragments (scFv) are
versatile and easy to produce, and being an attractive tool for use in immunotherapy models. The
small size of scFv can be advantageous for treatment due to its short half-life and other characteristics
related to the structural and functional aspects of the antibodies. Therefore, the main objective of this
review was to describe the current situation regarding the mechanisms of action, applications, and
limitations of monoclonal antibodies and scFv in the treatment of cancer.
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1. Introduction

Cancer represents one of the leading causes of death worldwide, despite advances in
diagnosis and treatment. Several side effects, such as relapse and resistance to therapy, have
been associated with the non-specificity of conventional therapies (such as chemotherapy
and radiotherapy) [1]. Therefore, the cancer biomedical research community has been
focused on searching for specific novel molecules related to each type of cancer for a more
personalized therapeutic approach [2]. Antibodies are molecules capable of recognizing
tumor cells due to their specific recognition of tumoral antigens. In addition, they can be
used to target drugs for immune system activation and early tumor detection [3]. Despite
all the promising applications accomplished using monoclonal antibodies (mAb), they also
have some therapeutic disadvantages, such as their difficulty in penetrating to solid tumors
due to the complexity of the tumor microenvironment. To overcome these difficulties,
advances in genetic engineering have enabled the creation of different antibody formats by
modifying or eliminating the Fc region. One of the most used is scFv, a novel short format
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antibody capable of recognizing the target antigen but lacking the fragmented crystallizable
(Fc) region. ScFv represents a basic functional unit for developing antibodies and more
complex molecules, such as bi-, tri-, tetra-specific, and immunotoxins. However, the small
size of these molecules reduces their half-life in blood; therefore, more complex structures
are needed to achieve therapeutic effects [4].

2. Cancer Overview

According to the World Health Organization (WHO), in 2019, cancer was the second
cause of death in patients younger than 70 years old from 112 countries. In 2020, 19.3 million
new cases (18.1 million cases of non-melanoma skin cancer were excluded) and almost
10 million deaths by cancer were reported. About 70% of those deaths were in low- and
middle-income countries. In 2040, the number of cases is expected to increase to 28.4 million,
representing an increase of 47%. GLOBOCAN reported that the ten most diagnosed types
of cancer were: breast (in females) (11.7%), lung (11.4%), colorectal (19%), prostate (7.3%),
and stomach (5.6%). However, in terms of mortality, lung cancer (18%), colorectal (9.4%),
liver (8.3%), stomach (7.7%), and breast cancer (6.9%) were the most common. If the
number of cases was classified according to sex, in men, lung, prostate, and colorectal
cancers represent the most frequent, whereas liver and colorectal had the highest mortality
rates. In females, breast cancer ranks first in causes of death by cancer, followed by cervical
cancer [5].

Cancer is defined as the alteration in the cellular growth of normal cells and can
originate in any organ. Tumor cells are characterized by the loss of control of cellular
division. According to the WHO, metastasis is typically the actual cause of death due to the
multiplication and invasion of adjacent organs by neoplastic cells [6]. Cancer is commonly
detected when the number of cells reaches one million or when the tumor size has reached
one centimeter, except for in the blood and bone marrow (leukemia and lymphomas),
as these do not form solid structures [7]. This process results in the loss of function
in normal cells and the gain of malignant characteristics (tumorigenesis) that includes
dedifferentiation, increased proliferation, metastasis, apoptosis, and immunosurveillance
inhibition, and changes in the metabolism and epigenetic functions (i.e., hallmarks of
cancer) [8].

The risk factors for cancer development have been grouped into the following cate-
gories: tobacco use; infectious agents; alcohol consumption; ultraviolet or ionizing radi-
ation; obesity; dietary carcinogens; air and water pollution; drugs (diethylstilbestrol and
phenacetin); and exposure to occupational carcinogens, along with other risk factors, such
as genetics, poor diet, lack of physical activity, poor immune status, and age, which perform
an essential role in the development of cancer [9]. However, the WHO stated that many
types of cancer have a high chance of being cured if they are diagnosed in the early stages.
Due to the worldwide relevance of cancer, the search for alternatives that could improve the
diagnosis, treatment, and research has been promoted. Several tools that could identify the
target molecules in cancer have been produced, including antibodies that target essential
proteins during oncogenic development [10].

3. Monoclonal Antibodies: Structure and Function

Immunoglobulins (Ig) or antibodies have a molecular weight of around 150 kDa and
are produced by plasma or B-cells. Structurally, they contain two functional parts: Fc or a
crystallizable region (associated with the effector mechanism) and a fragmented antigen-
binding (Fab) region for the recognition of the target antigen. The two functional regions of
the antibody are composed of two polypeptide chains: two light and two heavy chains,
joined by disulfide bonds that confer stability and rigidity. The heavy chains have one
variable domain (VH) and three constant domains (CH1, CH2, and CH3). The light chain
has one variable domain (VL) and one constant domain (CL). The Fab region is made up of
VH and CH1 together with VL and CL, while the Fc region consists of two segments, CH2
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and CH3. Antibodies also have post-translational modifications, such as glycosylation in
the Fc domain, that stabilize and modulate the binding to Fc receptors [11].

3.1. Monoclonal Antibodies Production Methods

Monoclonal antibodies (mAbs) come from a single cellular clone that has been divided
multiple times in order to produce antibodies against the same antigen. The most common
antibody production method is based on the generation of hybridomas, which are cells
derived from the fusion of spleen and myeloma cells. Hybridomas possess two fundamental
abilities: produce antibodies and proliferate indefinitely [12]. The method consists of
immunizing mice with the antigen, spleen extraction, and fusion with myeloma cells.
Hybrids are cloned by limiting dilution to ensure the growth and proliferation of one single
cell per well. Finally, the clone is expanded, and the antibody is purified from the culture
medium and validated [13]. The generation of hybridomas has been the most common
technique for mAb production, and this technique can be modified or changed for the
specific production of therapeutic antibodies. The substitution of murine regions with
human sequences and the preservation of the Fab region has resulted in chimeric antibodies
(-ximab), while the substitution of the Fc and Fab domains with human sequences and the
preservation of the murine hypervariable regions (CDR) has resulted in antibodies that are
close to the human version. Finally, the production of fully human antibodies (-zumab) has
been achieved by using transgenic mice and molecular biology techniques [14].

For the generation of chimeric, humanized, and fully human antibodies, different
genetic engineering techniques have been developed. These techniques have been based on
the use of transgenic animals and the amplification of genes that encode for the antibody
from B-cells or hybridomas. The process began starts with RNA extraction, cDNA synthesis
by reverse transcription, then the subsequent amplification of the heavy and light chain
encoding genes by PCR. Afterward, genes were cloned into different expression systems,
such as bacteria, yeasts, and mammal cells. At this point, several formats could be obtained
using specific regions derived from the antibody to facilitate large-scale production for
commercial and therapeutic purposes [15–17].

3.2. Monoclonal Antibodies in Cancer Treatment

The use of monoclonal antibodies has been considered a novel treatment against cancer
in conjunction with conventional therapies, such as surgery, radiation, and chemotherapy.
The main advantages of mAbs are their mechanism of action, which could promote the
death of tumor cells by recognizing the tumor-associated antigens (TAA) and the stimula-
tion of long-lasting antitumoral activities without any effect on healthy cells [14]. TAA are
proteins overexpressed on the surface of tumor cells, including mutated proteins and those
with post-translational modifications [18,19].

Since the approval of the first commercial monoclonal antibody (Rituximab) by the
U.S. FDA in 1997, many antibodies have been developed and approved (Table 1) [20]. Rit-
uximab is a chimeric antibody that targets the loops H1, H2, H3, and L3 (169-PANPSE-174
and 183-CYSIQ-187 regions) of the extracellular domain of CD20 [21,22]. CD20 is expressed
in B-cell during maturation and B-cell neoplastic cells, and it is lost after differentiation
to plasmatic cells. Due to the success of Rituximab in the treatment of non-Hodgkin’s
lymphoma, other antibodies targeting CD20 were developed [23]. Additional research
enabled the authorization of mAbs for more than one type of cancer; for example, Sac-
ituzumab Govitecan was approved for the first time in 2020 for the treatment of solid
tumors. Furthermore, it was recently approved for use in patients with metastatic or locally
advanced urothelial cancer [24], triple-negative breast cancer [25], and HR-positive breast
cancer [26]. In addition, it was proposed the combinations of various mAbs targeting
different TAAs [27]. MAbs are biological reagents that can be modified, improved, and
continuously evolved to enhance their efficacy in multiple types of cancer.
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Table 1. Monoclonal antibodies approved by the FDA (www.fda.gov/, accessed on 20 January 2023).

mAb Name Target/Epitope Antibody Kind Cancer Kind Year Approval

Rituximab CD20/169-PANPSE-174
and 183-CYSIQ-187 [22] Chimeric IgG1 Non-Hodgkin lymphoma 1997

Trastuzumab HER2 1/extracellular
domain [28]

Humanized IgG1 Breast 1998

Alemtuzumab CD52/C-terminal with
part of the GPI anchor [29] Humanized IgG1 Chronic myeloid leukemia 2001

Ibritumomab tiuxetan CD20/Same as
Rituximab [30] Murine IgG1 Non-Hodgkin lymphoma 2002

Cetuximab EGFR/Domain III amino
acids 334–504 [31] Chimeric IgG1 Colorectal 2004

Bevacizumab
VEGF-A/Hairpin loop

(β5–turn–β6) and
β2–α2–β3 [32]

Humanized IgG1 Colorectal 2004

Panitumumab
EGFR/Domain III, P349,

P362, D355, F412 and
I438 [33]

Human IgG2 Colorectal 2006

Ofatumumab CD20/FLKMESLNFIRAHT
region [34] Human IgG1 Chronic lymphocytic

leukemia 2009

Ipilimumab CTLA-4/front β-sheet [35] Human IgG1 Metastatic melanoma 2011

Brentuximab vedotin CD30/Extracellular
domain [36] Chimeric IgG1

Hodgkin lymphoma,
systemic anaplastic large

cell lymphoma
2011

Pertuzumab HER2/Extracellular
domain II [37] Humanized IgG1 Breast 2012

Obinutuzumab CD20/Large extracellular
loop (172–176 region) [30]

Humanized IgG1
Glycoengineered

Chronic lymphocytic
leukemia 2013

Ramucirumab VEGFR2/Domain III [38] Human IgG1 Gastric 2014

Blinatumomab
CD19, CD3/Residues
97–107, 155–166, and

216–224 [39]

Murine bispecific
tandem scFv

Acute lymphoblastic
leukemia 2014

Nivolumab PD-1/BC-loop [40] Human IgG4 Melanoma, non-small
cell lung 2014

Pembrolizumab
PD-1/C, C′, and G

antiparallel beta sheets and
C-C′ and F-G loops [41]

Humanized IgG4 Melanoma 2014

Necitumumab EGFR/Domain III [42] Human IgG1 Non-small cell lung cancer 2015

Dinutuximab GD2 [43] Chimeric IgG1 Neuroblastoma 2015

Daratumumab
CD38/C-terminal loop
(residues 189–202 and

223–236) [44]
Human IgG1 Multiple myeloma 2015

Elotuzumab SLAMF7/IgC2
domain [45] Humanized IgG1 Multiple myeloma 2015

Olaratumab PDGFRα 2/Extracellular
domain [46]

Human IgG1 Soft tissue sarcoma 2016

Atezolizumab PD-L1 3/Beta-sheet C′ and
B-C loop [41]

Humanized IgG1 Bladder 2016

Inotuzumab
ozogamicin CD22/V-like domain [47] Humanized IgG4 Acute lymphoblastic

leukemia 2017

www.fda.gov/
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Table 1. Cont.

mAb Name Target/Epitope Antibody Kind Cancer Kind Year Approval

Avelumab PD-L1/Central beta-sheets
C and F [41] Human IgG1 Merkel cell carcinoma 2017

Gemtuzumab
ozogamicin

CD33/Ig-like
V-set domain [48] Humanized IgG4 Acute myeloid leukemia 2017

Durvalumab PD-L1/Central beta-sheets
C and F [41] Human IgG1 Bladder 2017

Cemiplimab PD-1/BC and FG loops
(N58 Glycan) [49] Human mAb Cutaneous squamous

cell carcinoma 2018

Polatuzumab
vedotin-piiq CD79β/ARSEDRYRNPKGS [50] Humanized IgG1 Diffuse large B-cell

lymphoma 2019

Enfortumab
vedotin-ejfv Nectin-4/V-domain [51] Human IgG1 Cancers expressing

Nectin-4 2019

Sacituzumab govitecan Trop-2/Q237-Q252 [52] Humanized IgG1 Solid tumors 2020

Isatuximab-irfc CD38/C-terminal loop
(residues 81–90) [44] Chimeric IgG1 Multiple myeloma 2020

Tafasitamab-cxix CD19 [53] Fc-modified IgG1 Diffuse large
B-cell lymphoma 2020

Belantamab
mafodotin-blmf BCMA 4 [54] Afucosylated IgG1 Multiple myeloma 2020

Naxitamab GD2 [55] Recombinant
humanized IgG1 Neuroblastoma 2020

Margetuximab-cmkb HER2/Extracellular
domain [28]

Chimeric
Fc-engineered IgG1

Metastatic HER2-positive
breast 2020

Loncastuximab
tesirine-lpyl CD19/RB4 [56] Humanized IgG1 Large B-cell lymphoma 2021

Amivantamab-vmjw
EGFR/Residues K443,

K465, I467, S468 [57] and
MET

Human Ig G1-based
bispecific antibody

Metastatic non-small
cell lung 2021

Dostarlimab-gxly PD-1/PD-L1/BC, C′D and
FG loops [58] IgG4 humanized Advanced solid tumors 2021

Tisotumab vedotin-tftv Tissue Factor [59] IgG1 Cervical 2021

Teclistamab-cqyv BCMA [60]
Humanized Ig

G4-proline, alanine,
alanine

Multiple myeloma 2022

Mirvetuximab
soravtansine-gynx FRα 5 [61]

IgG1, Antibody-drug
conjugate

Epithelial ovarian,
fallopian tube,
or peritoneal

2022

Mosunetuzumab-axgb CD20/CD3 [62]
Bispecific

CD20-directed CD3
T-cell engager

Relapsed or refractory
follicular lymphoma 2022

1 Human Epidermal Growth Factor Receptor 2; 2 Programmed cell death ligand; 3 Platelet-derived growth factor
receptor alpha; 4 B-cell maturation antigen; 5 Folate receptor-alpha.

Therapeutic mAbs approved by the FDA target a special type of TAA, named dif-
ferentiation clusters, which are overexpressed on the surface of lymphocytes (used in
directed therapies against hematopoietic tumors), growth factors essential for the cellular
proliferation in specific tissues (targets in the treatment of solid tumors) and transmem-
brane proteins involved in cellular adhesion (Nectin 4), signaling transduction (Trop2)
and immunological checkpoints (PD-1/PD-L1) (Table 1). Based on the current successful
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antibodies and therapeutic targets, novel antibodies targeting different epitopes were de-
veloped. For example, Cetuximab, Necitumumab, and Panitumumab target the same TAA
but different epitopes in domain III of EGFR, and they compete with EGF for the binding
site in EGFR to block signaling and cellular proliferation. Panitumumab overlapped with
the binding site of EGF in D355 and K443, whereas Cetuximab overlapped with the binding
site in D355, Q408, H409, K433, and S468 [33]. However, due to the presence of structural
mutations in the sequence of domain III in EGFR, a notable decrease in the recognition
of these antibodies was observed [63]. The main reported mutations described in EGFR
were the following: V441, S442, I462, S464L, G465R, I491M, K467T, K489, and S492R. These
could be involved in the resistance to therapy due to their presence in epitopes recognized
by Panitumumab and Cetuximab [31,64,65]. It was reported that Necitumumab could
bind to EGFR, in addition to the mutation S492R, in the domain III of EGFR that conferred
resistance to Cetuximab [66]. Additional studies were performed to analyze the presence of
novel epitopes in the same domain to target novel antibodies and provide new alternatives
in the case of resistance [42].

In addition to the homology of the target, all the aforementioned antibodies possess
unique structural and functional characteristics. For example, among anti-EGFR, Cetux-
imab is an IgG1 mAb, and Panitumumab is an IgG2, and the structural difference was
the size of the hinge (15 amino acids for IgG1 and 12 to IgG2) that was associated with
flexibility [67]. It was reported that Cetuximab was capable of inducing the activation of
cytotoxic T cells against tumor cells, while Panitumumab had a low binding affinity to
CD16 and could not induce ADCC promoted by NK cells or cytotoxic T cells; however, it
could induce cytotoxicity mediated by neutrophils and monocytes [33].

3.2.1. Effector Mechanisms of mAb in Therapy

In mammals, antibodies have been classified into five classes: IgM, IgD, IgG, IgE, and
IgA. The most commonly used isotype in cancer therapy is IgG [68]. The characteristic
“Y” shape of antibodies has been associated with the basic unit of Ig. Antibodies can specif-
ically recognize one defined antigen in Fab regions and perform its biological functions in
the Fc region, which could then bind to cellular receptors in macrophages or mast cells or
mediate cytotoxic activities by the complement or NK cells [69].

Blocking Signaling Pathways

MAbs can induce the death of tumor cells by blocking the signaling pathways associ-
ated with growth factor receptorsGrowth signaling and tumor survival could be interrupted
when a mAb recognize by the Fab region to receptors for the growth factors and inactivates
signaling pathways or blocks the of the ligand. For example, one of the most used targets
with this mechanism was the receptor for the epidermal growth factor (EGFR) [70], which
can be overexpressed in different types of cancer, such as colon, neck, and head, ovary, and
lung, among others. It was reported that the activation of EGFR promoted an increase in
the proliferation rate, migration, and cellular invasion, through the stimulation of the sig-
naling pathways phosphoinositol 3-kinase (PI3K) and guanosine triphosphatase (GTPase)
Ras [71].

Some mAbs approved by the FDA act by blocking signaling pathways, such as Cetux-
imab and Panitumumab. Cetuximab was able to bind to EGFR and competitively inhibited
the binding to the epidermal growth factor (EGF) and other ligands, which blocked the
phosphorylation of EGFR induced by ligands and mitigated the activation of the signaling
pathways related to cancer development [72] (Figure 1A). Panitumumab is an antagonist
and induces the internalization of EGFR. The intracellular processes triggered by EGFR ac-
tivation (e.g., dimerization, autophosphorylation, and signal transduction) were prevented
using this mAb, which promoted an increase in the apoptotic rate and a reduction in the
proliferation and angiogenesis of tumor cells [73].
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Figure 1. Effector mechanisms of therapeutic mAbs in cancer therapy. (A) Signaling pathway blocking.
(B) Antibody-dependent cellular cytotoxicity. (C) Complement-dependent cytotoxicity. (D) Antibody-
dependent cellular phagocytosis. AKT: Protein kinase B, ERK: extracellular signal-regulated kinase,
C1q: complement component 1q, MAC: Membrane attack complex, FcγRIII: Fc-gamma receptor
III, FcγRI: Fc-gamma receptor I. Image created in BioRender (www.biorender.com, accessed on
20 January 2023).

Antibody-Dependent Cellular Cytotoxicity

Antibody-dependent cellular cytotoxicity (ADCC) is an effector function derived from
the antibody binding to the tumor cell and immune cells. The variable regions of the
antibody could bind to antigens in the tumor cell, and the Fc region could bind to the Fcγ
receptors (FcγR) expressed in leukocytes; for example, FcγRIIIA expressed in natural killer
(NK) cells promoted cellular destruction through the release of lytic factors [74]. Tafasitamab
is one of the most recently approved therapeutic mAbs by the FDA; its target is CD19, a
differentiation cluster successfully used as a target for other therapeutic antibodies, such as
Loncastuximab and Blinatumomab. The expression of CD19 is limited to B-cells during
maturation and is overexpressed in B-cell-associated tumors [75]. Tafasitamab contains
modifications in the Fc (two amino acid substitutions: S239D and I332E) to increase the
binding to Fcγ and improve the ADCC. This modification increased not only the ADCC
activity but also promoted the induction of antibody-dependent cellular phagocytosis
(ADCP) [76] (Figure 1B).

Complement-Dependent Cytotoxicity

Many therapeutic mAbs used in the conventional treatment against cancer can pro-
mote the activation of the complement classical pathway (CDC), specifically those with the
IgG1 isotype. IgG1 antibodies can simultaneously promote the activation of receptors in
macrophages and NK cells (Fcγ); at the same time, they regulate CDC, to which most of
the therapeutic mAb try to preserve the Fc region of the IgG1. The mAbs were able to bind
to the tumoral antigens expressed in the membrane of the target cell; thereafter, C1q was
able to bind to the Fc region of the antibody for the activation of the proteolytic process,

www.biorender.com
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which then enabled the binding of other complement factors until poly-C9 was attached to
the target cell for the formation of the membrane-attack-complex (MAC) [77].

As an example, Rituximab could promote synergy between ADCC (mediated by NK
cells), ADCP (mediated by macrophages), and CDC [78]. Other antibodies, such as Naxita-
mab, also promoted this mechanism. The target molecule of Naxitamab was the glycolipid
GD2, a disialoganglioside overexpressed in neuroblastoma and other neuroectodermal
cells, including the central nervous system and peripheral nerves. During in vitro studies,
Naxitamab was able to bind to GD2 at the cellular surface and induced CDC and ADCC [79]
(Figure 1C).

Antibody-Dependent Cellular Phagocytosis

ADCP is the biological function mediated by the binding of Fc with the FcγRI receptor
expressed in macrophages, neutrophils, and eosinophils. ADCP is the mechanism by
which the antibodies opsonize the tumor cell for its internalization and degradation in
the phagosome. In general, it has been observed that antibodies that induced ADCC (for
example, Tafasitamab) could promote ADCP, which was associated with the production
of gamma-interferon (IFN-γ) by NK cells that induced the expression of the FcγRI in
polymorphonuclear cells, thus, promoting phagocytosis [80] (Figure 1D). Antibodies as
Daratumumab could promote several effector mechanisms in cancer cells, such as ADCC,
ADCP, CDC, apoptosis, and the modulation of CD38 enzyme ac-tivities. Daratumumab
was the first fully human IgG1-κ against the C-terminal loop in the residues 189–202 and
223–236 of CD38. This antibody was approved for the treat-ment of multiple myeloma,
and it is expressed at low levels in normal lymphoid cells, myeloid cells, and some non-
hematopoietic tissues [81].

3.2.2. Conjugated Antibodies

Another fascinating application of mAbs has been their use as vehicles in the transport
of drugs due to their specificity and high affinity. The use of antibody-drug conjugates
(ADC) arose from the need to enhance the antitumoral effects of conventional treatments,
taking advantage of their specificity to target antigens in order to increase the antitumoral
activity. During ADC, different effector molecules (cytotoxic agents, toxins from bacteria,
proteins, plants, and radiopharmaceutical agents) promoted cellular death after binding to
and internalizing antibodies [82].

Tisotumab vedotin-tftv has been a successful ADC against the tissue factor (TF) (co-
agulation pathway), which performs an essential role as a receptor in signaling pathways
related to cancer development. This ADC is a human IgG1 conjugated to a small molecule
of monomethyl auristatin E (MMAE), a disruptor agent of microtubules. The effector
mechanism of Tisotumab vedotin-tftv was the binding of the antibody to TF expressed
in the tumor cells, the internalization of the ADC-TF, and the release of the MMAE by
proteolytic cleavage. Later, MMAE disrupts the microtubule network in the actively divid-
ing cells, which stops the cell cycle and induce cellular death by apoptosis. Additionally,
Tisotumab vedotin-tftv can promote ADCP and ADCC by the Fc region of the antibody [83]
(Figure 2).
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Figure 2. Mechanism of action of the ADC Tisotumab vedotin-tftv. Tisotumab vedotin-tftv targets
and blocks TF, which later is internalized and enters the lysosome-mediated intracellular trafficking.
Then, it is enzymatically degraded for the intracellular release of MMAE, which promotes cellular
death by microtubule disruption. In addition, releasing MMAE into the tumoral microenvironment
promotes the apoptosis of neighboring cancer cells. Red symbol represents the drug released. Image
created in BioRender (www.biorender.com, accessed on 20 January 2023).

3.2.3. Disadvantages of mAb-Based Therapy

Unfortunately, only some of the mAbs have been as successful as Rituximab and other
therapeutic mAbs approved by the FDA. One of the major inconveniences in therapeutic
mAbs is the development of drug resistance, which increases the need to improve the
knowledge of their mechanisms of action. Modifications could overcome this resistance in
the conjugation with other compounds, changes in the Fc region to enhance NK cells and
macrophages activation, or their use as support during conventional therapy [84,85].

On the other hand, mAbs are multimeric proteins with a molecular weight of 150 kDa,
and they contain disulfide bonds and N-linked glycans as posttranslational modifications.
In addition, for their in vitro production, they require sophisticated eukaryotic machinery,
which increases the concentration of the antibody required during the treatment, making
them inaccessible to all the patients. For this purpose, several strategies have been devel-
oped for cost reduction in commercial antibodies, such as Rituximab [86]. Historically, the
first therapeutic mAbs derived from mice resulted in side effects, such as immunogenicity
and poor immune response, limiting their clinical use. Currently, this disadvantage has
been circumvented using biotechnological techniques that enabled the translation of the
murine Fc into a fully human Fc or the complete deletion of this region for the generation
of other formats of antibodies [87].

www.biorender.com
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4. Single-Chain Variable Fragments (scFv)

Due to biotechnological advances, in 1991, it was possible to clone the Ig genes for
the first time [88]. As a result, today, many formats of antibodies have been generated
from these genes, which can be expressed in eucaryotic and prokaryotic expression vectors.
This technology has enabled the production of recombinant versions of any antibody
with reproducibility at a lower cost and shorter time, which has overcome the production
problems associated with the hybridoma method [89]. The manipulation of the antibodies
and the design of new fragments have broadened the possible medical applications. One
of the most widely used antibody formats in medicine is scFv, which has been used as a
tool in the treatment and diagnosis of cancer and research concerning novel biomarkers.
The scFv has been shown to be mono and multi-specific, with greater functional affinity,
better tissue retention, and effector functions [90].

4.1. Structure and Function

As compared to complete Ig, scFvs are smaller, single polypeptides of 25 kDa that are
formed by joining the VH and VL domains of complete Ig [91]. These antibodies are ideal for
diagnostic and therapeutic applications; however, the weak binding of the variable regions
makes them unstable. Therefore, to improve their stability, flexible peptide sequences
(linkers) have been inserted between the VH and VL regions, enabling the intramolecular
pairing of both domains in order to form a functional antibody-binding site [4] (Figure 3).
The linker length was typically 10–25 amino acids with Glu-Lys sequences to increase
solubility or Gly-Ser to increase flexibility. It was previously reported that the length and
the composition of the linker are essential in the correct folding of the protein; for example,
Gly-Ser linkers had short side chains that provided conformational flexibility and slight
immunogenicity, while serine improved solubility [92].

Figure 3. Structure of scFv. scFv structure is composed of the VH and VL chains of the complete
antibody; both segments are linked with a flexible linker for the conservation of the antigen-binding
site. Image created in BioRender (www.biorender.com, accessed on 20 January 2023).

As compared to complete Ig, scFv are small molecules lacking the Fc region that
maintains an antigen-binding site [93–95]. Another difference between full-length mAbs
and scFv is the presence of one glycosylation site in the CH2 domain of the heavy chain,

www.biorender.com


Biomedicines 2023, 11, 1610 11 of 25

which yielded stability, prevented aggregation, and promoted effector functions [96], while
scFv was not glycosylated; consequently, they were easier and inexpensive to produce
in microbial systems, such as Escherichia coli [97]. It was shown that it was possible to
produce scFv from the mRNA derived from antibody-producing hybridomas; this method
preserved the antigen-binding ability and increased the sensitivity, as compared to the
parental hybrid cell [98–100].

4.2. Mechanisms of Action of scFv in Cancer Therapy

Although the FDA has only approved two scFv for therapeutic purposes, many are still
in the research-and-development phase. To perform an action mechanism against tumor
cells, scFv must be coupled with drugs, antibodies, or immune cells, due to their lack of
the Fc domain. Other disadvantages associated with the effector mechanisms of ScFv have
included their low thermostability and aggregation increased the risk of immunogenicity
and a shorter half-life [101].

4.2.1. T-Cell—Engaging CD3-Bispecific scFv Antibodies

Different strategies have been proposed to enhance the antitumoral activity and
overcome the limitations associated with the use of scFv in therapy. For example, Blinatu-
momab was the first scFv approved by the FDA to treat relapsed or refractory Philadelphia
chromosome-negative B-cell acute lymphoblastic leukemia (LLA R/R). Blinatumomab is
bispecific and consists of the union of two scFv, one targeting CD19 and the other CD3 in T
cells. This scFv stimulated a synapse between the CD3+ T cell and the CD19+ tumoral target
cells, thus, promoting the upregulation of adhesion molecules, the production of cytolytic
proteins, and the release of pro-inflammatory cytokines, which then conveyed the cellular
lysis and the apoptosis of the CD19+ expressing cells (Figure 4A) [102]. Other scFvs under
development have also used a bispecific structure, such as an scFv that recognized CD3+ T
cells and the homolog 4 of B7 (B7-H4), a molecule associated with immune checkpoints
that negatively regulate immune responses and is overexpressed in human cancers, such
as breast cancer [103].

4.2.2. Toxin-Conjugate scFv

Moxetumomab pasudotox was approved for treating hairy cell leukemia. This scFv
was constructed using an anti-CD22 monoclonal antibody fused with a 38 kDa fragment
derived from the exotoxin A PE38 of Pseudomonas. A single molecule of exotoxin could
induce the death of tumor cells, as compared to chemotherapy drugs, in which around
105 molecules would be needed to induce the same effect [104]. The action mechanism
of Moxetumomab consisted of the binding of the scFv to CD22, a surface receptor over-
expressed in malignant B cells; later, the complex Moxetumomab-CD22 could be inter-
nalized by endocytosis. Finally, PE38 catalyzed the ADP-ribosylation of the diphthamide
residue in the elongation factor 2 (EF-2), which promoted a reduction in the levels of the
antiapoptotic protein Mcl-1 (myeloid cell leukemia 1) and increased the apoptotic rate
(Figure 4B) [105].

Though there are only a few cancer treatments based on the use of scFvs approved
by the FDA, numerous therapeutic strategies in different phases of development have
been reported on the website https://clinicaltrials.gov/, accessed on 20 January 2023
(Table 2).

https://clinicaltrials.gov/
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Figure 4. Structure and mechanisms of action of scFv approved by the FDA. (A) Blinatumomab struc-
ture and mechanism of action. It is composed of variable fragments of bivalent bispecific antibodies
linked together. Blinatumomab stimulates a synapse between the CD3+ T cell and the CD19+ tumoral
target cells, promoting the upregulation of adhesion molecules, production of cytolytic proteins, and
the release of pro-inflammatory cytokines that conveyed to cellular lysis and apoptosis of the CD19+
cells. (B) Moxetumomab pasudotox structure and mechanism of action. It involves an anti-CD22
scFv linked to Pseudomonas exotoxin A PE38 by a peptide bond to VH. Moxetumomab binds to
CD22 overexpressed in malignant B cells; later, the complex Moxetumomab-CD22 is internalized by
endocytosis. Finally, PE38 catalyzes the ADP-ribosylation of the diphthamide residue in EF-2, which
promotes a reduction in the levels of the antiapoptotic protein Mcl-1 and increases the apoptotic rate.
Image created in BioRender (www.biorender.com, accessed on 20 January 2023).

Table 2. Types of scFv-based cancer treatments reported at ClinicalTrials.gov, accessed on 20 January 2023.

Kind/Treatment Name Description Clinical Phase Evidence

L19-IL2 is a tumor-directed immunocytokine
consisting of IL2 and scFv directed against the

ED-B domain of fibronectin.
Advanced solid tumors. I/II

Register:
NCT01058538

[106].

Blinatumomab.
Relapsed or refractory B-cell precursor

Philadelphia chromosome-negative acute
lymphoblastic leukemia (R/R ALL).

Approved
Register:

BLA 125557
[102].

CAR-T cells, where the CAR consists of a scFv
directed against CD19, with three intracellular

signaling domains derived from CD3 zeta,
CD28, and 4-1BB.

B cell lymphoma
B cell leukemia. I/II

Register:
NCT02132624

[107].

CAR-T cells targeted to CD19 by a
humanized scFv.

B-cell chronic lymphocytic
leukemia treatment. I/II

Register:
NCT02782351

[108].
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Table 2. Cont.

Kind/Treatment Name Description Clinical Phase Evidence

Moxetumomab pasudotox. Hairy cell leukemia. Approved
Register:

1020748-57-5
[105].

CAR-T cells expressing an anti-CD19 scFv
bound to TCRζ and 4-1BB signaling domains. Multiple myeloma. I

Register:
NCT02135406

[109].

CAR-T cells expressing scFv with 41BB
costimulatory domain and CD3ζ signaling

domain targeting mesothelin or CD19.
Pancreatic cancer. I

Register:
NCT03497819

[110].

CAR-T cells expressing an anti-CD19 scFv.
B-cell acute lymphocytic leukemia

B-cell chronic lymphocytic leukemia
B cell lymphoma.

I
Register:

NCT03685786
[111].

CART-19 cells transduced with a lentiviral
vector to express anti-CD19 scFv.

Patients With B Cell ALL, Relapsed or
Refractory, With no Available Curative

Treatment Options.
II

Register:
NCT02030847

[112].

Combination of radiotherapy with Darleukin,
which is a fusion protein L19-IL2, composed of
two fractions: L19, a scFv, linked by a flexible

linker to IL2.

Stage IV non-small cell lung cancer. II
Register:

NCT03705403
[113].

Autologous T cells expressing anti-CD19 scFv
chimeric antigen receptors.

B cell neoplasms,
B cell lymphoma,

B-cell acute lymphoblastic leukemia.
I

Register:
NCT03559439

[114].

CAR-T cells expressing anti-PD-L1 scFv. Advanced lung cancer. I
Register:

NCT03330834
[115].

CAR-T cells expressing an anti-CD276 scFv. Solid tumors. --
Register:

NCT04691713
[116].

Autologous T cells expressing an anti-BCMA
scFv coupled to TCRζ and 4-1BB signaling

domains.
Multiple myeloma I

Register:
NCT02546167

[117].

CAR T cells expressing anti-BCMA scFv. Multiple myeloma I
Register:

NCT04650724
[118].

CART19 cells transduced with a lentiviral
vector to express anti-CD19 scFv. Leukemia, Acute Lymphoblastic. II

Register:
NCT02935543

[119].

TILs/CAR-TILs with PD1 knockout and
Anti-PD1/CTLA4-scFv Secreting or CARs.

Solid tumors such as liver, breast, lung,
colorectal, and brain. I

Register:
NCT04842812

[120].

CAR-T cells expressing scFv with affinity for
malignant tumors. Malignant tumors in children. I

Register:
NCT04691349

[121].

Autologous T cells expressing scFv with
specificity against GFRα4.

Recurrent or metastatic medullary
thyroid cancer. I

Register:
NCT04877613

[122].

CART-meso cells expressing an
anti-mesothelin scFv fused with TCRζ and

4-1BB costimulatory domains.
Pancreatic cancer. --

Register:
NCT03638193

[123].
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Table 2. Cont.

Kind/Treatment Name Description Clinical Phase Evidence

CAR T cells (huMNC2-CAR44) that bind via a
scFv to the extracellular domain of the cleaved

form of MUC1 (called MUC1*).
Metastatic breast cancer. I

Register:
NCT04020575

[124].

CAR-T cells secreting scFv against OX40.
Lung cancer,

hepatocellular carcinoma and
solid tumor.

I
Register:

NCT04952272
[125].

CAR-T cells that express scFv’s against
PD1/CTLA4/Tigit. Lung cancer. I

Register:
NCT03198052

[126].

CAR-T cells with Ibalizumab-derived anti-CD4
scFv and the intracellular domains of CD28

and 4-1BB coactivators fused with the CD3ζ T
cell activation signaling domain.

T cell lymphoma.
T cell leukemia. I

Register:
NCT03829540

[127].

CAR-T cells expressing an anti-BCMA scFv. Multiple myeloma. I/II
Register:

NCT05066646
[128].

Autologous T cells expressing an anti-PSMA scFv,
CD2 costimulatory domain, and dual-shielded

with a dominant TGFβ receptor-negative domain
and PD1.CD28 switch.

Metastatic prostate cancer. I/II
Register:

NCT05489991
[129].

AR-NK cells that express and secrete
IL7/CCL19 and/or scFv against

PD1/CTLA4/Lag3, targeting Claudin 6.

Stage IV Ovarian Cancer Treatment.
Refractory testicular cancer.

Recurrent endometrial cancer.
I/II

Register:
NCT05410717

[130].

Autologous T cells containing anti CD19 and
anti CD20 scFv coupled to CD3ζ and
co-stimulatory domain 4-1BB (4-1BB).

Non-Hodgkin’s lymphoma.
B cell lymphoma.

Chronic lymphocytic leukemia.
Small lymphocyte lymphoma.

I
Register:

NCT03019055
[131].

Tetravalent IgG(H)-scFv fusion-type of
bi-specific antibody (BsAb).

Solid tumor.
Advanced cancer
metastatic cancer.

Gastric cancer.
Gastroesophageal junction carcinoma

adenocarcinoma of the esophagus.
Pancreatic ductal adenocarcinoma.

I
Register:

NCT04900818
[132].

D2C7-IT is an immunotoxin composed of a
scFv with high affinity for EGFRwt and

EGFRvIII.

Malignant glioma
recurrent brain tumor I

Register:
NCT02303678

[133].

L19TNF is a fully human fusion protein
consisting of human TNF-α fused to the L19

antibody in scFv format, specific for the extra B
domain of fibronectin.

Glioblastoma. I/II
Register:

NCT04573192
[134].

CAR-T cells expressing an anti-GPRC5D scFv. Relapsed/Refractory Multiple Myeloma
Plasma cell leukemia. I

Register:
NCT05219721

[135].

BRITE is a bispecific hooker that has one scFv
binding for the CD3 epsilon subunit while

another scFv is directed against the hEGFRvIII
epitope that is differentially expressed on the

surface of tumor cells.

Malignant glioma
Glioblastoma. I

Register:
NCT04903795

[136].

CAR-T cells expressing an scFv that recognizes
CD19 and dual co-stimulating intracellular

signaling domains (4-1BB and CD3ζ).

Recurrent Non-Hodgkin’s lymphoma.
relapsed adult ALL.

Recurrent Pediatric ALL.
I/II

Register:
NCT03938987

[137].
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Table 2. Cont.

Kind/Treatment Name Description Clinical Phase Evidence

Autologous Lymphoma Ig-derived
scFv-chemokine DNA Vaccine. Lymphoplasmacytic Lymphoma. I

Register:
NCT01209871

[138].

T cells expressing anti-CD123 scFv chimeric
antigen receptors linked to TCRζ and 4-1BB

signaling domains.

Acute myeloid leukemia, relapsed.
Acute myeloid leukemia, pediatric.
Refractory acute myeloid leukemia.

I
Register:

NCT04678336
[139].

4-1BB: Cluster of differentiation 137; TILs: Tumor infiltration lymphocytes; IL2: Interleukin 2; PSMA: Tumor
antigen prostate specific membrane antigen.

Given the success of Moxetumomab, other scFvs coupled to toxins are currently under
development, including an immunotoxin linked to an scFv with high binding affinity for
glioblastoma multiforme (GBM) cells that express EGFRwt and EGFRvIII [133]. In addition
to toxins, other antitumoral drugs have been used, such as lidamycin, composed of enediyne
chromophore with extremely potent cytotoxicity, which is currently in phase II clinical trial [140].

4.2.3. Chimeric Antigen Receptor (CAR) T-Cells

Another promising approach of scFv during cancer treatment was their expression
in T cells as chimeric antigen receptors (CAR). These novel T-cell receptors were geneti-
cally engineered to combine the extracellular antibody binding and intracellular signaling
properties of CD8+ T cells, redirecting their cytotoxic capacity toward tumor cells. One of
the main advantages of this strategy is that modified cells from the patient were reinfused
after the genetic modification of the T-cell receptor (TCR). Afterward, chimeric receptors
were able to bind to their specific ligands in the tumor cells and trigger the signal activa-
tion for activating CD8+ T cells and releasing cytokines, chemokines, and proteases [103]
(Figure 5A). This type of therapy was one of the most promising, with several clinical
trials in development, including for pancreatic cancer [141,142], ovarian cancer [143], and
leukemia, in which CAR T cells were directed against targets such as CD70 [144,145] and
CD19 [146,147] (Table 2).

Figure 5. Mechanisms of action of scFv in cancer therapy. (A) Chimeric antigen receptor (CAR) T-cells.
(B) Nanoparticle-conjugate scFv. (C) Biological activity blocking. IL-2: Interleukin 2, IFN γ: Gamma
Interferon, TNF-α: Tumor Necrosis Factor Alpha.



Biomedicines 2023, 11, 1610 16 of 25

4.2.4. Nanoparticle-Conjugate scFv

Over time, different applications of nanoparticles in cancer, specifically for treatment,
have been explored, considering advantageous characteristics, such as biocompatibility,
reduced toxicity, stability, improved permeability and retention, and precise targeting. As
compared with traditional delivery systems, nanoparticles possessed exceptional phys-
ical properties and a unique design that could efficiently penetrate the hypoxic tumor
microenvironment and promote the effector mechanism in tumor cells [111].

Nanoparticles could be directed to the tumor site by coupling with antibodies or scFv,
which could easily enter the tumor. Many nanoparticles were able to carry drugs due to
their hydrophobic properties, such as liposomes. A relevant application of liposomes in
colorectal cancer was via the joint administration with irinotecan, a chemotherapy drug,
and an anti-FAP (fibroblast activating protein) scFv. The liposomes were modified with
the ligand tripeptide motif Arg-Gly-Asp (RGD) (which binds to integrin receptors on the
surface of tumor cells) and the cationic peptide 9-arginine (R9), which contributes to cell
penetration and lysosomal escape due to its positive charge [148]. Some nanoparticles, such
as quantum dots (QDs), emit photoluminescence and have often been used in imaging
systems for tumor localization. In addition, QDs could be coupled with the scFv target-
ing GRP78 (a membranal protein), internalized by tumor cells, and upregulated by the
phosphorylation of ser473 in AKT, thus inhibiting the tumor growth of breast cancer in a
xenograft model [149] (Figure 5B).

4.2.5. Blockade of Signaling Pathways and Biological Activity

One mechanism of action of therapeutic mAbs that does not require an Fc region is the
blockade of cell surface receptors and molecules involved in activating signaling cascades
associated with malignant progression. In this mechanism of action, the scFv was able to
bind to the target molecule, and performed an antagonistic role, avoiding its interaction
with ligands. For example, the scFv directed against activated the leukocyte cell adhesion
molecule (ALCAM), which is involved in the development of tamoxifen resistance, an
endocrine therapeutic agent that antagonizes the proliferative effect of estrogen in breast
cancer tumor cells and promotes invasion, migration, and metastasis in ER+ cells. The
anti-ALCAM scFv pretreatment enhanced the antiproliferative effects of tamoxifen against
resistant cell lines, thus reducing migration and invasion [150].

In colorectal cancer (CRC), scFv targeted the regenerative protein 3α (Reg3α), a trophic
factor that stimulates proliferation and neogenesis. The scFv was able to bind to Reg3α
and suppress the cellular proliferation [151] (Figure 5C) by blocking the exostosin-like
3 (EXTL3)-PI3K-Akt signaling pathway, where EXTL3 performs a role as a receptor [152].
Additionally, scFv against immune checkpoints, such as PD-L1/PD-1 has been produced
to inhibit these receptors [153].

4.3. In Situ Delivery of scFv Using Vectors

A novel strategy proposed in recent years was the transport of scFv directly to tumor
sites by using transformed vectors, such as bacteria and viruses. In bacteria, there has been
a particular interest due to their innate mobility that enables movement away from the
vasculature in order to penetrate the hypoxic regions of the tumor. In addition, bacteria
could proliferate and produce scFv in situ to solve the problem commonly faced with
chemotherapeutics that could only reach the vascularized outer edges of the tumor but
could not reach the hypoxic core [154]. For example, it was possible to construct plasmids
containing the variable region sequence of the trastuzumab (anti-HER2) mAb for the
transformation of Bifidobacterium strains (a bacterium that could be safely and selectively
accumulated under hypoxic conditions) for the in situ production of Trastuzumab scFv at
the tumor site and the inhibition of HER2-mediated signaling pathways [155] (Figure 6A).
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Figure 6. In situ delivering of scFv to tumor sites by vectors. (A) In situ delivery and production
system of Trastuzumab scFv by Gene-Engineered Bifidobacterium. Bifidobacterium, a strict anaerobic
bacterium, explicitly targets the hypoxic environment of tumors, being a transformed bacterium that
expresses anti-HER2 scFv, and this antibody blocks the HER2-mediated signaling pathways. (B) The
administration system of an anti-p21Ras scFv by transfected CIK cells. Recombinant adenoviruses
loaded with the anti-p21Ras scFv gene can enter CIK cells, replicate, and intracellularly express
anti-p21Ras scFv.

Adenoviruses could transfect cells and guarantee delivery to the patient without
being detected by the immune system. They also have low toxicity, and the intravenous
administration of the adenovirus showed limited antitumoral activity in vivo. To enhance
adenovirus delivery, cytokine-induced killer (CIK) cells have been commonly used as a
secondary vector for transport to the tumor site. The use of this system for the delivery and
release of scFv demonstrated an increase in the antitumoral activity within only a few days
after treatment, during which the adenovirus and scFv could be detected exclusively in
tumoral tissues [156]. An example of this system included the scFv anti-p21 Ras successfully
used in several cancer xenograft models with mutations in the Ras gene, such as colorectal
cancer [157], lung cancer [158], and liver cancer [159] (Figure 6B). Other alternative vector
strategies for delivering scFvs to the tumor cells included “cell-penetrating peptides”
(CPPs), which are natural or synthetic peptides with the ability to interact with cellular
membranes for the internalization of cells and effective intracellular delivery. CPPs had
low cytotoxicity and immunogenicity [160] and have been widely used as vehicles for the
administration of scFv with a Ras-blocking effect in colon cancer [161] and lung cancer [162];
these peptides improved the intracellular administration and orientation, thus favoring the
antitumoral activity of the scFv.

4.4. Advantages and Limitations of scFv

The use of mAbs during immunotherapy in cancer has proved to be highly beneficial
in cancer immunotherapy, as compared to scFv. As a result, there have been more mAbs
approved to be applied in cancer immunotherapy than scFv. This is due to, among other
things, conserving the Fc region, which could induce a series of effector mechanisms that



Biomedicines 2023, 11, 1610 18 of 25

contribute to the eradication of neoplastic cells [3]. However, the conservation of the Fc
region proved to be a challenge for the first monoclonal antibodies produced since its
murine origin provoked an immune response against this region in patients, which then
led to the production of anti-drug antibodies; therefore, murine mAbs failed to kill cancer
cells [163]. A solution to the problem of an anti-murine antibody immune response was to
humanize these molecules, that is, the total or partial replacement of the murine regions by
human sequences [164]. A desirable feature of conventional antibodies in cancer treatment
is that they have long half-lives, allowing them to adequately exert their mechanism of
action. As compared to these, it has been observed that recombinant fragments with a size
of less than 60 kDa, as is the case of scFv, have limitations due to their short half-lives since
they are rapidly eliminated in the kidneys since their size of 25 kDa is below the glomerular
filtration threshold [165]. In general, the reduced size and the lack of the Fc domain of scFv
antibody constructs result in faster pharmacokinetics and potentially more homogeneous
tumor penetration relative to IgG molecules. Despite these potential advantages over
IgG complete, the use of scFv has been limited since the total tumor uptake is low, thus
requiring the administration of a higher dose, which then results in a large accumulation
occurring in these organs and can cause kidney damage [166].

Even though the size of scFv is a limitation in cancer treatment, it turns out to be an
advantage for clinical diagnoses. When performing techniques, such as magnetic resonance
imaging, which requires labeled antibodies that specifically bind to tumor biomarkers,
it is convenient that the labeled antibody is rapidly eliminated from the body when the
label is toxic or harmful. A series of potential scFvs capable of binding to different tumor
antigens in a specific manner that enables the visualization of tumors and cancer cells by
imaging techniques were reported. It has been shown through in vivo experiments that
when comparing the effectiveness of these antibody fragments with conventional mAbs,
scFvs reached the tumor site faster and remained in the body for less time than whole
antibodies [131].

One of the most relevant advantages of scFv, as compared to conventional mAbs, is
their low production cost; given that scFv is easily produced in bacterial systems, this type
of culture is relatively easy, inexpensive, and fast, as compared to the technique based on
the production and cultivation of hybridomas. Therefore, an unlimited source of antibodies
can be obtained at a larger scale [167].

5. Conclusions

The use of monoclonal antibodies and alternative formats, such as scFv, applied to
the diagnosis and treatment of cancer represents a novel alternative. These methods have
overcome limitations in conventional therapies, such as damage to healthy cells, relapse,
and drug resistance. However, it is necessary to explore the characteristics and prop-
erties of each molecule to understand how to apply them in specific cases. Complete
monoclonal antibodies can be used to activate biological functions associated with the
Fc, such as ADCC, CDC, ADCP, and signal blocking, and they can be used for CAR-T
cell therapy or the development of antibody-drug conjugates. scFv are small molecules
that can quickly reach and penetrate the tumor; however, this characteristic is associated
with shorter half-lives since they can be easily eliminated by the kidneys; therefore, a
higher concentration needs to be administrated over short periods. The use of scFv is
not only limited to treatment, as it can also be used for imaging diagnostics. Due to the
lack of the Fc region, scFv cannot perform the effector mechanisms of a conventional
mAb. Thus, this limits their ability to block receptors and signaling pathways, for which
it is necessary to combine them with drug-based therapies or T cells. Still, much re-
search is ongoing to overcome the limitations and enhance the biological functions of both
molecules. However, both are promising biotherapeutics that offer novel insights into
cancer treatments.
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