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Abstract: Proteinopathy and neuroinflammation are two main hallmarks of neurodegenerative
diseases. They also represent rare common events in an exceptionally broad landscape of genetic,
environmental, neuropathologic, and clinical heterogeneity present in patients. Here, we aim to
recount the emerging trends in amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration
(FTD) spectrum disorder. Our review will predominantly focus on neuroinflammation and systemic
immune imbalance in ALS and FTD, which have recently been highlighted as novel therapeutic
targets. A common mechanism of most ALS and ~50% of FTD patients is dysregulation of TAR
DNA-binding protein 43 (TDP-43), an RNA/DNA-binding protein, which becomes depleted from
the nucleus and forms cytoplasmic aggregates in neurons and glia. This, in turn, via both gain and
loss of function events, alters a variety of TDP-43-mediated cellular events. Experimental attempts to
target TDP-43 aggregates or manipulate crosstalk in the context of inflammation will be discussed.
Targeting inflammation, and the immune system in general, is of particular interest because of the
high plasticity of immune cells compared to neurons.

Keywords: amyotrophic lateral sclerosis; frontotemporal degeneration; inflammation; proteinopathy;
neurodegenerative diseases
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1. Introduction

The pathological mechanisms in neurodegenerative diseases are complex and not
completely understood. In amyotrophic lateral sclerosis (ALS), multiple mechanisms
including defects in proteostasis, RNA metabolism, nucleocytoplasmic transport, vesicle
and axonal trafficking, DNA repair, and mitochondrial, oligodendrocyte and immune
functions are proposed to lead to the same outcome of motor neuron death [1]. Such
complexity makes it challenging to develop a single treatment that would effectively halt
or reverse disease progression. Potential therapeutic targets include two main converging
points in neurodegeneration: proteinopathy and inflammation.

One of the most important discoveries on ALS pathophysiology came in 2006, when
TAR DNA-binding protein 43 (TDP-43) was identified as a major component of ubiq-
uitinated inclusions in both ALS and frontotemporal degeneration (FTD) [2,3]. TDP-43
aggregation occurs in neurons and glia of approximately 97% of ALS and ~50% of FTD
patients. These two neurodegenerative diseases were traditionally regarded as distinct
but are now considered as opposite ends of the same clinicopathological spectrum [4,5].
Although ALS primarily affects cortical, bulbar, and spinal motor neurons, half of the
patients develop cognitive defects, with as many as 15% eventually exhibiting a severe
form of FTD. Ever since the first description of TDP-43 aggregation, there has been a
lively ongoing debate on whether the pathological mechanisms following this aggregation
belong to a loss- or (toxic) gain-of-function scenario [6], although these scenarios are not
mutually exclusive [7]. Recently, considerable attention has been focused on mapping
the direct pathways affected by the depletion of nuclear TDP-43 following its cytoplasmic
aggregation (Figure 1). Among these, neuroinflammation is of major interest, since pro-
tein aggregates, mitochondrial damage and/or damaged/dying neurons directly trigger
microglial activation [8].
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Figure 1. Progressive increase in TAR DNA-binding protein 43 (TDP-43) proteinopathy in amy-
otrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) results in pathology in
neurons and glia. Both loss- and gain-of-function TDP-43-mediated events contribute to the pathol-
ogy. During this process, TDP-43 co-aggregates with other cellular proteins and TDP-43 pathology
crosstalks to inflammation. These events are highlighted, and further discussed in the text. Created
by BioRender.com.
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It is now widely accepted that neuroinflammation is likely one of the main causes of
neuronal death, which is rarely cell autonomous [9–11]. Moreover, increasing evidence
pinpoints the critical role of not only local central nervous system (CNS) immune cells
but also the peripheral immune system in regulating ALS and FTD pathogenesis [12],
strongly arguing that ALS and FTD are systemic diseases. However, the exact role played
by inflammation, and the immune system in general is unclear. Currently, there is still
little agreement on whether the immune response causes, worsens, or counteracts neurode-
generation [13]. Therefore, even though immune imbalance, detectable in both the CNS
and in the periphery, is a common feature of all neurodegenerative diseases, and there is a
variety of immunomodulatory therapies at disposal, the missing pieces in the proteinopa-
thy and inflammation crosstalk preclude the translation of the current knowledge into
disease-modifying therapies in ALS and FTD [14]. Here, we will review the underlying
genetics and mechanisms in ALS/FTD spectrum disorder, and summarize its two main
overlapping hallmarks—TDP-43 proteinopathy and immune system imbalance. Finally,
we also provide an overview of currently available biomarkers and emerging therapies.

2. ALS and FTD Genetics, Epigenetics and Mechanisms
2.1. Mendelian Genetic Elements

Although most ALS and FTD cases are sporadic, known Mendelian genetic elements
have been identified in ~20% of ALS [15] and ~30% of FTD patients [16]. There is a strong
genetic overlap between the two diseases—currently most of the confirmed causative
mutations in ALS have also been identified in FTD or ALS/FTD patients. The overlapping
genes include C9ORF72, TBK1, TARDBP, FUS, VCP, OPTN, CHCHD10, SQSTM1, TIA1,
CCNF, and CYLD (Figure 2). Other confirmed genes in ALS are VAPB, EPHA4, UNC13A,
NEK1, SOD1, HNRNPA1, ANXA11, UBQLN2, PFN1, and KIF5A, whereas GRN, MAPT,
and CHMP2B mutations have been found solely in FTD [16]. Importantly, with genome-
wide association studies (GWAS) many genetic variants were found associated with these
diseases. These studies will certainly increase the number of linked genes since some
of the associations are recent and studies confirming the associations or identifying the
functional cause are pending. In this section, we will not detail all the genetic associations
and mechanisms of action identified, which can be found in several online databases [17,18]:
ALSoD (http://alsod.iop.kcl.ac.uk/, accessed on 28 May 2023), ALSGene (http://www.
alsgene.org, accessed on 28 May 2023), and https://www.ebi.ac.uk/gwas/home, accessed
on 28 May 2023. However, we will specifically aim to highlight examples directly linked to
neuroinflammation. As will be argued, these direct links strongly suggest that the immune
system activation is not merely a (late) consequence of proteinopathy and/or neuronal
damage or death. We will also briefly mention genes leading to autophagy failure, which
due to increased proteotoxic stress and/or decreased clearance of inflammatory signaling
machinery can trigger inflammatory responses as well.

A pathogenic (G4C2)n repeat expansion within the first intron of the ORF 72 on chro-
mosome 9 (C9ORF72) gene is the most common mutation identified in both ALS and
FTD [19,20]. Numerous cell-specific functions have been ascribed to the C9orf72 protein,
including the regulation of autophagy and vesicular trafficking in neurons and myeloid
cells [21]. It leads to toxic gain-of-function by two mechanisms: (1) repeat-containing RNAs
transcribed from C9ORF72 expansions sequester functionally important RNA-binding
proteins in RNA foci, and (2) repeat-associated non-AUG (RAN) translation generates
aggregate-prone dipeptide repeat peptides (DPR) [22]. Regarding its role in neuroinflam-
mation, the loss-of-function, due to reduced C9ORF72 gene expression, has been shown
to have more direct consequences than gain-of-function. Loss-of-function occurs as the
expansion in a noncoding part of the gene binds trimethylated histones thereby promoting
heterochromatin formation and reducing transcription [23]. Mice deficient in C9orf72 show
neuroinflammation with aging as well as proinflammatory phenotypes with increased
expression of interleukin (IL)-6 and IL-1β, although they do not show ALS/FTD-like
neuropathology [24]. A molecular mechanism between inflammation and C9ORF72 loss-

http://alsod.iop.kcl.ac.uk/
http://www.alsgene.org
http://www.alsgene.org
https://www.ebi.ac.uk/gwas/home
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of-function has recently been identified in mice with cell-specific depletion of the gene in
myeloid cells. These cells had reduced degradation of an adaptor protein that induces
the secretion of type I interferons and proinflammatory cytokines, stimulator of interferon
genes (STING), due to impairment of the autolysosomal pathways [25,26].
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Figure 2. Amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD): direct and
indirect links between genes and immunity. ALS and FTD, similar to other adult-onset neurodegen-
erative diseases, have both genetic (shown as the tip of the iceberg) and epigenetic (shown as the
bottom of the iceberg) backgrounds. Strong mendelian genes are depicted and divided into those
linked only to ALS, only to FTD or both. The genes directly implicated in immune functions (immune
signaling, reactive oxygen species (ROS) production) are highlighted in red, whereas those linked to
autophagy are highlighted in green; those implicated in both autophagy and immune signaling are
red/green. Although the epigenetics factors such as ageing and diverse environmental risk factors
(smoking, exposure to environmental toxins, and alcohol) play an important role in ALS and FTD
development, their exact impact on disease progression is still unknown. * Multiple genome-wide
association studies (GWAS) studies have also shown linkages whose direct effects need to be clarified.
Created by BioRender.com.

Mutations in the Cu/Zn-binding superoxide dismutase (SOD1), encoding an antiox-
idant enzyme that functions as a homodimer, binding copper and zinc ions, to destroy
superoxide radical (O2–) in the body, were the first to be associated with ALS [27]. Mu-
tations have been described as loss- and gain-of-functions. One common ALS-linked
mutation in SOD1 is the SOD1-G93A missense mutation. Macrophages and microglia
from transgenic mouse models carrying the SOD1-G93A mutation are proinflammatory
and secrete several proinflammatory cytokines such as tumor necrosis factor α (TNF-α),
interferon γ (IFN-γ), and IL-1β, and produce more superoxide. As a result, they are more
toxic to primary cultured neurons than wild-type (WT) cells [28,29].

Evidence of a novel regulator of inflammation has been recently gathered for optineurin,
a protein that regulates multiple cellular processes, including vesicular trafficking, autophagy,
inflammatory, and antiviral signaling [30]. Mutations in OPTN gene are linked to both
ALS and FTD [31,32] and their role in inflammation has recently been reviewed [30,33,34].
Briefly, the mechanisms involved are thought to arise from loss-of-function mutations that
may affect inflammation via the nuclear factor-κB (NF-κB) and/or interferon regulatory
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factor 3 (IRF-3) pathways [31,35,36]. However, the exact pathogenic mechanisms are still
inconclusive due to discrepancies arising from different experimental models [37].

Mutations in the GRN gene have been associated with an increased risk for FTD [38,39].
This gene encodes progranulin, which has been shown to modulate the inflammatory re-
sponse through various mechanisms [40]. Impaired host defense, and neuropathology, have
been observed in progranulin-deficient mice [41]. The spectrum of mutations identified
thus far indicates that haploinsufficiency of progranulin is the predominant mechanism of
contribution to the disease [42].

TANK-binding kinase 1 (TBK1) is a recently identified gene associated with ALS and
FTD [43,44]. Subsequent studies indicated that TBK1 mutations may occur frequently
in patients with ALS/FTD [45]. TBK1 is a kinase involved in many different signaling
pathways [46], among which, of particular interest to ALS/FTD, are those that modulate
inflammation by activation of type I IFNs and proinflammatory cytokines [47] as well
as autophagy [48]. The spectrum of mutations covers the whole range of possibilities.
The haploinsufficiency contributes to the pathology in ALS/FTD due to loss-of-function,
whereas the role of missense mutations and single amino acid deletions has yet to be
determined. Functional characterization of these mutations in the context of inflammation
and autophagy should be focused on to identify their specific mechanisms. These could at
least in part be due to modifications of the protein binding affinity for partners, as was the
case with the TBK1 E696K, which fails to bind optineurin [44].

A rare missense mutation in CYLD, a lysine-63 deubiquitinase, has identified a novel
causative gene for ALS and FTD with links to neuroinflammation [49]. This enzyme acts
as a negative regulator of the NF-κB pathway. ALS/FTD-linked mutation so far seems to
function via a gain-of-function mechanism, as its overexpression in cell lines resulted in
enhanced inhibition NF-κB and impairment of autophagosome fusion to lysosomes.

Notably, a substantial subset of ALS and FTD patients carry mutations in the genes that
encode autophagy related proteins, suggesting that autophagy contributes to proteotoxic
stress in both diseases. These genes include SOD1 and UBQLN2 (in ALS), CHMP2B, MAPT,
GRN and SQSTM1 (in FTD) and OPTN, C9ORF72 and TBK1 in both ALS and FTD (Figure 2,
Table 1). Different mouse and cellular models were designed to better understand how
these mutations disrupt autophagy. In the mice model carrying P497S UBQNL2 mutation,
increased accumulation of SQSTM1/p62 and ubiquitinated proteins was observed [50].
SOD1G93A mice exhibited higher age-dependent accumulation of LC3-II in the spinal cords
compared to WT controls, suggesting an increase in autophagy [51]. Moreover, in Neuro2A
(N2A) and NSC-34 neuroblastoma/motor neuronal cell lines, L341V SQSTM1/p62 muta-
tion caused defective recognition of LC3-II with impaired recruitment of SQSTM/p62 to
autophagosomes [52]. In the spinal cord neurons of OPTN-deficient mice, diminished num-
bers of lower motor neurons, together with neuronal accumulation of CHMP2B positive
cytoplasmic vacuoles were observed, suggesting defective autophagy [53]. Notably, some
of the ALS/FTD overlapping genes (OPTN, TBK1, C9ORF72) play an important role both
in autophagy and immune signaling and mutations in these genes were shown to disrupt
both processes (Figure 2). The crosstalk between these proteins has also been reported:
for example, TBK1, p62, and optineurin partner in the same molecular pathways. TBK1 is
important for the phosphorylation of optineurin and p62 during autophagy, and optineurin
regulates cellular localization and activation of TBK1 during inflammatory/anti-viral sig-
naling [54–57]. The G4C2 expansion of C9ORF72 has been reported to affect autophagy by
at least three different mechanisms—dipeptide repeat aggregation, reduced endolysosomal
trafficking and impaired lysosomal function, and autophagy initiation via ULK1 [58–63].
Besides this, OPTN and TBK1 ALS/FTD-related mutations were shown to disrupt the
selective degradation of mitochondria (mitophagy) [64].
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Table 1. ALS/FTD: genes and mechanisms. Mendelian genes associated with amyotrophic lateral
sclerosis (ALS), frontotemporal degeneration (FTD) and ALS/FTD are shown. Cellular processes
affected by gene dysfunction that are potentially relevant for disease pathogenesis are listed for
each gene.

Disease Genes Affected Processes References

ALS

VAPB autophagy, RNA binding, protein homeostasis, mitochondrial functions,
vesicle trafficking

[65–67]

EPHA4 motor neuron survival [68]

UNC13A neurotransmission [69]

NEK1 RNA metabolism, DNA repair, axonal polarity, neuronal morphology [70]

SOD1 autophagy, mitophagy, RNA metabolism, protein homeostasis, mitochondrial and
immune functions

[71–73]

HNRNPA1 protein folding, stress granule dynamics [74]

ANXA11 calcium homeostasis, stress granule dynamics, axon morphology [71,75]

PFN1 autophagy, RNA metabolism, stress granule dynamics [76,77]

KIF5A trafficking and neuronal homeostasis [78]

UBQLN2 autophagy, RNA metabolism [50,71,79]

ALS/FTD

VCP autophagy, mitochondrial function [80,81]

OPTN autophagy, mitophagy, vesicular trafficking, immune signaling [37]

CHCHD10 mitochondrial function [82]

C9ORF72 autophagy, RNA metabolism, protein homeostasis, nucleocytoplasmic transport [73,83–85]

TBK1 autophagy, mitophagy, protein homeostasis, mitochondrial function [86,87]

TARDBP autophagy, nucleocytoplasmic transport, RNA metabolism, axonal transport [88–90]

CYLD autophagy, immune signaling [10,91]

FUS nucleocytoplasmic transport, DNA damage repair, RNA metabolism [71]

SQSTM1 autophagy [92]

CCNF autophagy, axon morphology [71,93]

TIA1 stress granule dynamics [94]

FTD

GRN immune signaling, lysosomal functions [95]

MAPT vesicular trafficking, lysosomal functions [96]

CHMP2B autophagy [97]

2.2. GWAS Links

The numbers of genetic associations are much higher—the proliferation of GWAS
over the last 15 years resulted in the identification of a series of variants and risk alleles,
whose direct mechanism(s) or connection(s) to the pathology still need to be elucidated.
For example, GWAS have postulated associations for a series of genes: DHX58, TRIM21,
and IRF7 that function within the TBK1/IRF3 immune pathway [98]. Furthermore, inves-
tigation of selected polymorphisms in genes involved in inflammation (IL1B rs1071676)
and oxidative stress (SOD rs4880, CAT rs1001179) have also shown these to be possible
disease modifiers [99]. As recently reviewed, further investigation into loss- and/or gain-
of-function of these will provide insight into their role in the pathology, the design of
therapeutic strategies, and the genetic profiling of patients [100]. One of the more recent
success stories in this regard revolves around the single-nucleotide polymorphisms (SNPs)
identified in UNC13A [101]. This example highlights the importance of analyzing the effect
of SNPs that occur in a background where in most of the cases TDP-43 aggregation has
occurred. Thus, the contribution of SNPs to the pathology may only be evident in a TDP-43
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depleted scenario. This was in fact the case with UNC13A SNPs rs12608932 (A > C) and
rs12973192 (C > G) that was identified via GWAS to be associated with ALS [101,102].
UNC13A functions in several steps involved in neurotransmission [103]. Homozygosity for
the C-allele at rs12608932 has been associated with susceptibility and with shorter survival
of ALS patients [104]. However, it was not until recently that studies have shown how the
absence of functional TDP-43 could result in cryptic exon activation [105,106]. Briefly, the
two UNC13A SNPs were observed to be located within an intron containing a cryptic exon
that was used upon TDP-43 depletion and whose inclusion results in nonsense-mediated
decay of the mRNA, and, consequently, loss of the functional protein. While the SNPs did
not cause cryptic exon inclusion per se, their presence enhanced the effect caused by TDP-43
depletion. Mechanisms such as this one, which exert their action only in combination with
the pathological background state, might also partly explain the effect of the other risk
SNPs on disease progression.

2.3. Environmental Factors and Epigenetics

As mentioned above, clear genetic linkage is present only in a fraction of patients,
whereas sporadic cases comprise ~80% of cases in ALS and 70% in FTD [15]. Although ma-
jor progress has been made in the field of genetic studies in the last years, they present the
tip of the iceberg, with likely a large uncharted area waiting to be mapped concerning the
impact of epigenetics on the development and progression of both ALS and FTD (Figure 2).
So far, several epigenetic risk factors have been associated with ALS, such as intensive phys-
ical activity, exposure to pesticides and toxins, smoking, and brain injury [107]. For FTD,
the most common epigenetic risk factors include alcohol overdose, smoking, exposure to
pesticides and toxins, and long-term use of selenium-containing dietary supplements [108].
For both ALS and FTD, ageing is also one of the most important risk factors [109]. Notably,
most of the risk factors directly affect the immune response. However, little is yet known
about the exact relationship between genetics and epigenetics and their impact on both
ALS and FTD.

Using a different approach, integrating motor neuron epigenetic features with ALS
GWAS data, 690 potential ALS risk genes and 36% of SNP-based heritability have been
identified [110]. Another example regards the flip side of the coin, that is variants that
may be protective against the pathology, as emphasized by a recent example closely
connected to neuroinflammation in the interleukin 18 receptor accessory protein (IL18RAP).
Variants in the 3′UTR of IL18RAP were found to be enriched in non-ALS genomes [111].
Mechanistically, these variants reduced the binding of dsRNA-binding proteins that are
known to stabilize mRNAs. Consequently, IL18RAP expression and NF-κB signaling are
dampened in microglia.

3. Proteinopathy in ALS and FTD

Until a few years ago, the accumulation of aggregated proteins in ALS and FTD associated
with TDP-43 (FTD-TDP) brains was considered to be represented solely by TDP-43. Therefore,
many studies trying to better characterize the proteinopathy in ALS/FTD have focused
on understanding it in terms of gain- or loss-of-function (which may include toxicity of
the aggregates, altered RNA processing and transcriptional pathways, or protein–protein
interaction profiles). This aspect of proteinopathy has already been analyzed in depth by
several previous reviews [112,113], and will therefore not be detailed here. However, a
relatively novel—currently understudied—aspect is the composition of the aggregates and
the way it may affect proteinopathy. In fact, although TDP-43 certainly represents the primary
aggregating protein, it is now very clear that several other cellular factors can be present
in these inclusions [114]. As a result, over time, several proteins that are involved in ALS
pathways and other pathogenic processes have been reported. Notably, TDP-43 pathology is
not limited to ALS and FTD and it can be found in several other neurodegenerative diseases.
The most significant proteins present in the aggregates are listed in Table 2.
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Table 2. Most significant proteins present in the aggregates in ALS/FTD spectrum. Abbreviations:
TDP-43, TAR DNA-binding protein 43; AD, Alzheimer’s disease; CBD, corticobasal degeneration;
MSA, multiple system atrophy; FTD, frontotemporal degeneration; mRNP, messenger ribonucleopro-
tein; ALS, amyotrophic lateral sclerosis; PD, Parkinson’s disease; PSF: protein-associated splicing
factor; VCP: valosin-containing protein.

Co-Aggregating Proteins and Peptides Notes References

Amyloidogenic proteins Using an anti-oligomer antibody, potential hybrid oligomers
composed of amyloid-β, prion protein, α-synuclein, and TDP-43
phosphorylated at serine 409/410 were detected in AD brains.
Colocalization of α-synuclein, tau, and TDP-43 has also been
occasionally reported in patients suffering from CBD and MSA.

[115–117]

ATXN2 ATXN2 and TDP-43 colocalize in cytoplasmic inclusions in FTD.
ATXN2 and TDP-43 associated in a complex that is dependent on
RNA and can act as a powerful disease modifier. In a mouse TDP-43
model, the decrease in ataxin-2 markedly increased survival and
improved motor function.

[118–120]

C9orf72 DPRs TDP-43 has been shown to colocalize with poly-GR and poly-PA
inclusions. No colocalization was observed for poly-GP, poly-GA, or
poly-PR immunoreactive inclusions. In the motor regions of C9 ALS
cases, only poly-GR dendritic aggregations had significant
colocalization with phosphorylated TDP-43.

[121,122]

CDK5 CDK5-positive granules have been shown to overlap with
pSmad2/3, ubiquitin, and phospho-TDP-43 in several AD patients.

[123]

DISC1 Cytosolic TDP-43 and DISC1 co-aggregate in brains of both FTD
mouse models and FTD patients and disrupt the activity-dependent
local translation in dendrites.

[124]

HuD/ELAVL4 ELAVL4 has been found as a neural-specific component of
FUS-positive cytoplasmic aggregates, whereas in sporadic ALS
patients, it colocalized with positive inclusions of
phosphorylated TDP-43.

[125]

ERp57 ERp57 colocalizes with phospho-TDP-43-positive inclusions present
in sporadic ALS patients.

[126]

GPNMB GPNMB aggregates colocalize with TDP-43 in the spinal cord of ALS
patients. In NSC-34 cells, the expression level of GPNMB increased
by overexpression of mutant M337V and A315T TDP-43.

[127]

hnRNP E2 hnRNP E2 immunostaining colocalizes with TDP-43 pathological
changes, but only in patients with semantic dementia and FTD type
C TDP-43 histology.

[128]

HERV-K RT The reverse transcriptase protein of this endogenous retrovirus was
observed to localize to cortical neurons of ALS patients and strongly
correlated with TDP-43 expression.

[129]

IL-10 IL-10 colocalizes with TDP-43-positive cytoplasmic inclusions in
anterior horn motor neurons in ALS patients.

[130]

Nup62 Cytoplasmic NUP62-TDP-43 inclusions are frequently found in
C9orf72 ALS/FTD as well as in sporadic ALS/FTD post-mortem
CNS tissue.

[131]

OPTN Mutations in the OPTN gene have been reported to be causative for
familial ALS and FTD, but mutated optineurin has not been found in
aggregates. In contrast, in sALS cases optineurin has been observed
in cytoplasmic skein-like inclusions colocalizing with ubiquitin,
TDP-43, and possibly FUS; similar optineurin positive inclusions
have been reported in AD, PD, Creutzfeldt-Jakob and Pick disease.

[132,133]
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Table 2. Cont.

Co-Aggregating Proteins and Peptides Notes References

p62/SQSTM1 p62 physiologically binds to TDP-43 and is involved in degradation
of the TDP-43 35-kDa fragment. It also colocalizes with
TDP-43-positive cytoplasmic inclusions, ubiquitin, and UBQLN2 in
patients with FTD/ALS.

[134,135]

PABP-1 This protein colocalizes to mature TDP-43 inclusions (but not to
pre-inclusions) in ALS motor neurons and is more prevalent in
patients bearing C9ORF72 expansions.

[136]

PFN1 Profilin mutations can induce aggregation of TDP-43 and PFN1 in
inclusions positive for phosphorylated TDP-43 in ALS patients.

[137,138]

RBM14, PSF, NONO These paraspeckle markers are found in insoluble TDP-43 artificial
aggregates together with stress granule markers. In a proteomic
study, PSF was found to be enriched in the TDP-43-positive
detergent-insoluble proteome of four post-mortem FTD patients.

[139]

Rab5 In yeast, TDP-43 foci colocalized frequently with endogenous Rab5
foci, suggesting a greater association of TDP-43 with endosomal-like
compartments over autophagic compartments.

[140]

RBM45 RBM45 colocalizes with TDP-43 in inclusion bodies and is especially
present in ALS/FTD patients with C9ORF72 expansions. It was later
shown that RBM45 forms homo-oligomers and physically associates
with TDP-43 and FUS in the nucleus.

[141–143]

RGNEF Mutations in the murine homologue of this protein cause altered
NFL mRNA stability and lead to NF aggregate formation and motor
neuronopathy. This protein can also interact by
immunoprecipitation with FUS and p62. Mutations in RGNEF have
been described in an ALS family.

[144–146]

RANGAP1/NUP205 Aberrant colocalizations of TDP-43 with the nuclear pore complex
proteins RanGAP1 and NUP205 have been observed in motor
neurons of ALS patients.

[147]

Tau Occasional colocalization of TDP-43 with tau has been described in
globular astrocytic inclusions (GAIs) of a Japanese patient affected
by ALS/FTD. A recent survey of more than 200 AD patients has
observed that almost 30% of TDP-positive cases colocalized with
phosphorylated tau (detected using PHF-1 antibody).

[148,149]

TTBK1/TTBK2 These kinases have been observed to colocalize with phosphorylated
TDP-43 in human post-mortem tissues from both FTD and
ALS cases.

[150]

UBQLN2 In autopsy material of human spinal cord samples of UBQLN2
mutation carriers, its skein-like inclusions are positive for UBQLN2,
ubiquitin, p62, TDP-43, FUS, and OPTN, but not SOD1.

[151,152]

VHL/CUL2 E3 complex VHL preferentially recognizes misfolded forms of TDP-43 and
promotes ubiquitin-mediated proteasomal degradation of
fragmented forms of TDP-43. Phosphorylated TDP-43 and VHL are
occasionally colocalized in cytoplasmic inclusions in
oligodendrocytes in ALS.

[153]

VCP In hippocampal dentate gyrus neurons of C9ORF72 patients, VCP
inclusions have been reported to co-aggregate with
phospho-TDP-43.

[63]
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A lot of information is lacking regarding the role played by all these co-aggregating
proteins in disease pathology. Moreover, it is very likely that these proteins represent only
a partial list of cellular proteins that can eventually become “trapped” in the aggregates
together with the primary TDP-43 protein. In keeping with this, a previous proteomic study
of insoluble material obtained from the brain of patients suggested that many proteins can
potentially become recruited or trapped by TDP-43 aggregates: in one study laser capture
microscopy coupled with mass-spectrometry detected altered proteins in hippocampal
dentate granule cells excised from three post-mortem FTD cases. This study identified
Septin 3 and 7 as potential inclusion-associated proteins in addition to TDP-43 in these
samples [154]. Of course, the key issue for all these inclusion-associated proteins remains
whether their function is impaired following their presence in the insoluble brain aggregates.
For TDP-43, the recent discovery of cryptic exon recognition following its aggregation in
neurons has clearly demonstrated a loss-of-function effect [155]. However, for all these
co-aggregating proteins it is still not clear if they are sequestered to a sufficiently high extent
to change their cellular functionality. Intriguingly, altered functionality has been observed
for hnRNP K aggregates in a significant number of FTD-TDP cases [156]. Although these
aggregates did not colocalize with TDP-43 aggregates, this finding suggests that TDP-43
might not totally account for all toxicity of disease-associated aggregates.

Another emerging concept in TDP-43 is represented by the presence of TDP-43 “seeds”
within the aggregates. This is based on the observation that TDP-43 aggregates within
neurons can present themselves in different shapes and their appearance is actually used to
define the major FTD subtypes [157,158]. The observation that they often correlate with
pathology has led to the hypothesis that different types of aggregates may possess different
seeding potential. Until recently, there was little experimental support for this hypothesis,
but a recent report has confirmed that different types of seeds can give rise to different
types of neoaggregates [159]. Together with these types of studies, it is expected that the
new advances in Cryo-EM spectroscopy will be able to shed more light on the different
conformations that TDP-43 fibrils can assume within aggregates both in vitro but especially
in vivo [160]. In keeping with this approach, using this technique the presence of TDP-43
filaments in ALS and FTD that adopt a unique double-spiral-shaped fold has recently been
reported [161].

Finally, a still unanswered question is represented by the exact mechanism by which
TDP-43 aggregates contribute to ALS. Some studies have suggested that the aggregates may
be toxic to cells, especially in the case of larger inclusions or aggregate subtypes [159,162]. At
least in the initial stages of the disease, however, there is still the possibility that aggregates
may represent a protective response to cellular stress [163]. For certain, once the aggregates
become big enough to induce TDP-43 loss-of-function in cells, it is now clear that many
RNA misprocessing events can occur, which have recently been shown to include cryptic
exon inclusion and which would eventually lead to extensive cytotoxicity [73,155,164,165].
Finally, it is also possible that TDP-43 aggregates may be a secondary effect of the disease
rather than a primary cause. As a result, while TDP-43 aggregates are a hallmark feature of
ALS, their exact role in the disease is still a subject of ongoing research and debate in the
scientific community. Based on available data, it appears highly likely that the pathological
aggregation of TDP-43 in the cytoplasm is a significant contributor to the development of
ALS [166]. Thus, researchers are exploring various strategies for developing treatments
targeting TDP-43, as will be discussed below.

4. Immunity in ALS and FTD
4.1. Immune System in Pathogenesis of Neurodegeneration: Brief Overview of Key Evidence

Prior to the above-discussed genetic evidence linking inflammation to neurodegen-
eration, multiple lines of evidence showed that the immune system is important in two
opposing roles: precluding and facilitating neurodegeneration [167,168]. The primary
role of the innate immune system is to rapidly protect an organism from external and
internal stressors. This is carried out by microglia in the CNS and macrophages at the
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neuromuscular junction (NMJ). However, the protective functions break down during
chronic stimulation, resulting in proinflammatory skewing. Seminal studies from the
1990s have found microglial activation, T cell infiltration and antibody accumulation in the
CNS autopsies of patients with ALS, AD, and several other neurodegenerative diseases
(Figure 3) [169–174]. The level of neuroinflammation, measured as microgliosis and as-
trocytosis, can now also be monitored to a certain extent in living patients, although still
without precision [14,175]. Further insights came from immune targeting experiments in
transgenic animal ALS models carrying mutated human SOD1 (mSOD1). Depending on
the disease stage, activated glia can exert various anti-inflammatory (secrete cytokines IL-10
and IL-4, phagocytose debris, increase damage sensor expression) and proinflammatory
functions (secrete cytokines, such as tumor necrosis factor (TNF), IL-β, IL-6, chemokines
CCL2 and IL-8, increase damage sensor expressions, generate ROS and nitric oxide) (re-
viewed in [9,10]). These models also showed that glial and myeloid cell-specific transgene
deletion or replacement of transgene-carrying microglia and macrophages with WT cells
increased survival [176–179]. In contrast, T cell deficiency decreased survival in mSOD1
models, which could be recovered by the adoptive transfers of CD4 T cells, and more specif-
ically, regulatory cells (Tregs) [180–182]. The latter was particularly informative because
it showed that an adaptive arm of the immune system, which is present within the brain
parenchyma in minute quantities, could nevertheless exert protective functions in the CNS.
Follow-up studies in ALS patients showed that fast progression was linked to decreased
and dysfunctional Tregs [183,184], and profiling of T cells in ALS patients’ cerebrospinal
fluid (CSF) and blood has linked activated Treg numbers to longer survival [185]. These
findings led to a major paradigm shift from the prevailing view that any T cell action
beyond the blood–brain barrier is uniformly noxious. Moreover, it paved the way for ex-
ploring Treg therapies in ALS [186–188], which will be discussed below. In contrast to Tregs,
the presence of activated effector CD4 T cells, cytotoxic functions and Th1 skewing were
linked to poorer prognosis [185], corroborating previous findings in animal models [189].
It is of note that numerous other immune perturbations have been linked to the rate of
progression in both animal models and ALS patients, such as natural killer (NK), monocyte,
and CD8 T cell entry to CSF or CNS parenchyma (Figure 3) (reviewed in [14]). However,
the patient immune profiling is still a limiting factor and at times conflicting because acti-
vation of the immune system is influenced by genetic and environmental factors, and it
dynamically changes over the course of the disease. Notably though, the heterogeneity is
very prominent in ALS in which survival may range from months to decades following an
initial diagnosis, with approximately 10–20% of patients developing rapidly progressive
disease and dying within the first year. Therefore, there is an urgent need for early detection
of potentially unique molecular signatures associated with the more aggressive forms of
the disease.
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Figure 3. ALS is a systemic disorder. Immune system dysregulation in amyotrophic lateral sclerosis
(ALS) is present at multiple levels: (A) central nervous system (CNS), seen as activated microglia and
astrocytes; increased IgG, T cell memory (Tm) and natural killer (NK) cell entry, and decreased Treg
entry; remark: the extent of monocyte recruitment is still controversial, (B) peripheral immune system
is represented here in the blood (various blood markers have been highlighted including an increase
in classical monocytes, neutrophils, Th1, and Th17 CD4+ T cells; decrease in Treg, especially in fast
progressors; however, no major increase in proinflammatory cytokines was pinpointed, whereas
some studies found decreased inflammatory and metabolic factors), and (C) neuromuscular junction
(NMJ), where an increase in activated macrophages and mast cells, and neutrophil infiltration are
observed. * Findings correlated to fast disease progression. Created by BioRender.com.

4.2. ALS as a Systemic Immune Disorder: Crosstalk between Immune Signaling and Metabolism

In addition to changes in the CNS, multiple studies have shown functional alterations
of peripheral myeloid cells (NMJ macrophages, peripheral blood monocytes, etc.) in ALS
(Figure 3) [190–197]. The gene profiling studies performed on blood monocytes from ALS
patients revealed a molecular signature of chronic activation through the lipopolysaccharide
(LPS)-Toll-like receptor (TLR)2/4 signaling pathway, suggesting a systemic deregulation of
the innate immune response [192], although without an overt increase in blood proinflam-
matory markers [198,199]. Furthermore, recent studies associated altered immune profiles
of myeloid cells and peripheral blood monocytes with ALS clinical features including
disease severity and progression [200]. In keeping with this view, Yildiz and colleagues
intriguingly showed that higher levels of activated CD11b+ myeloid cells in blood were
linked to increased survival of ALS patients [201]. An open question is what are the
underlying mechanisms that may link changes in peripheral immunity and the clinical
outcome of the disease. Recently, an unbiased screening approach of 62 immune factors
from the plasma of sporadic ALS patients and controls was applied to assess the effect
of deregulated peripheral immunity on disease progression in ALS [198]. Surprisingly,
several immune mediators (leukemia inhibitory factor (LIF), tissue inhibitor of metallo-
proteinase 1 (TIMP-1), tissue inhibitor of metalloproteinase 2 (TIMP-2), serum amyloid
A (SAA), macrophage inflammatory protein-1 beta (MIP-1β), IFN-γ, TNF-α and mono-
cyte chemoattractant protein (MCP-1)) were decreased in the plasma of ALS patients,
coupled with a decrease in the metabolic sensor leptin. A similar molecular profile was
observed in the plasma of mSOD1(G93A) mice. Therefore, data from both humans and
mice suggest the presence of a shutdown of peripheral (blood) innate immune responses
associated with a marked downregulation of leptin. Of note, in fast progressing patients,
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a differential increase in sTNF-RII and CCL16 plasma levels was associated with a more
prominent decrease in plasma leptin. Similarly, ALS patients’ plasma and/or sTNF-RII
led to AMP-activated protein kinase (AMPK) phosphorylation and subsequent decrease
in leptin production by human adipocytes, which was more pronounced upon exposure
to plasma from fast progressing patients [198]. Plasma leptin, primarily derived from
adipocytes, is increased in obesity to favor satiety and energy consumption. Its role in
ALS is not completely understood, but some reports have suggested that it is inversely
associated with the risk of developing disease [202]. In addition, recent studies on the
TDP-43 (A315T) mouse model revealed a reduction in leptin levels at the end-stage of the
disease, whereas recombinant leptin supplementation improved motor performance and
delayed weight loss [203,204]. Taken together, there is increasing evidence that chronic
and systemic deregulation of immune response may represent one of the key elements in
the pathobiology of ALS [9,10]. Importantly, distinct plasma immune profiles in sporadic
disease may be associated with different clinical outcomes. Finally, increasing evidence also
suggests that there is a “pathogenic crosstalk” between the immune system and metabolic
signaling in sporadic ALS, but more research is needed to assess whether targeting leptin
and/or the immune-metabolic axis has therapeutic potential.

4.3. The Trilemma on the Origin of Immune Imbalance

Although various aspects of inflammation are detectable in all ALS and FTD patients,
particularly at late disease stages, the immune-mediated pathology has been difficult to
classify. A healthy immune system responds proportionally to the degree of challenge
and in the best case reverts the system back to homeostasis. In disease, three different
scenarios can preclude a healthy return to homeostasis: excessive inflammatory response,
immunodeficiency, and autoimmunity (Figure 4).

4.3.1. Excessive Inflammatory Response

The mechanisms that link TDP-43 proteinopathy to excessive inflammation have been
discussed in several recent reviews [9,10,205]. In brief, protein aggregates arising from
aggregate-prone genetic mutations or defects in proteasomal or autophagic protein disposal
(age- or stress-related or linked to genetic mutations) can directly stimulate inflammation
by engaging various shared receptors for damage- and pathogen-associated molecular
patterns (DAMP/PAMP). This leads to proinflammatory skewing and/or inflammasome
activation [206]. Interestingly, TDP-43 can also directly activate key inflammatory signaling
pathways via binding RelA/p65 subunit of the transcription factor NF-κB [207,208]. In
contrast, experimental TDP-43 deletion in microglia enhances phagocytosis in an AD
model, thereby decreasing amyloid beta (Aβ) load but also increasing synaptic loss [209].
Notably, an interaction between proteinopathy and inflammation is bidirectional, since LPS
increases TDP-43 aggregation microglia [210]. Excessive inflammatory responses are also
enhanced during ageing because of immunosenescence, which profoundly affects ratios of
adaptive immune cells subsets (decreases regulatory and increases effector/memory cells),
and inflammageing, a proinflammatory skewing of innate immunity [211].

4.3.2. Immunodeficiency

Immunodeficiency or inefficient immune response has been proposed as a disease mech-
anism in neurodegeneration based on findings from experimental animal models [212,213],
and more recently since ALS- and FTD-linked mutations have been found in several genes
that directly regulate the innate immunity and/or are predominantly expressed in im-
mune cells [10], as discussed above. However, due to the multifunctional properties of
several of these genes, it is still hard to say if immunodeficiency is the primary trigger
for neurodegeneration or whether it acts in concert with dysfunctionality in other disease
mechanisms, such as, for example, autophagy for TBK1, OPTN, and C9ORF72. It is notable
though that inefficient immune response, due to the inability to efficiently clean up the
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damage, eventually leads to excessive inflammation, thus resulting in the same outcome as
proteinopathy itself.
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Figure 4. Causes of immune imbalance in amyotrophic lateral sclerosis (ALS) and frontotemporal
degeneration (FTD). The excessive inflammatory response is a direct consequence of the protracted
inability to efficiently clean up protein aggregates or neuronal debris, representing the outcome that
is commonly linked to ALS and FTD. The resulting inflammatory response can, in turn, become
the major cause of neuronal death, and further increase TAR DNA-binding protein (TDP-43) pro-
teinopathy, resulting in a vicious cycle. Two other emerging scenarios are immunodeficiency and
autoimmunity. They are linked to specific genetic mutations exemplified by the role of C9ORF72
and senataxin (SETX) in autoimmunity, and TBK1, OPTN, and CYLD in immunodeficiency. Au-
toimmunity and immunodeficiency could also be triggered by ageing and other environmental risk
factors in sporadic ALS patients. Sporadic ALS patients show a complex immune profile that can
include a decrease in several inflammatory markers. Excessive inflammation linked to autoimmunity
and immunodeficiency could potentially be a primary disease trigger, thus representing an early
step in disease pathogenesis. * Clues from genome-wide association studies (GWAS) studies link
autoimmune diseases to FTD but not to ALS; ** Given that TBK1 and OPTN are multifunctional
proteins, their mutations could affect non-immune functions as well. Created by BioRender.com.

4.3.3. Autoimmunity

Although several epidemiologic studies have suggested an increased ALS risk in
patients suffering from several autoimmune diseases [214], autoimmunity was considered
as the least likely scenario in ALS, since contrary to multiple sclerosis (MS), there is much
lower infiltration of peripheral immune cells, much more subtle breakdown of the blood–
brain barrier, and ill-defined relevance of autoantibodies to CNS antigens [215,216]. In
addition, GWAS studies showed no overlap between ALS and five autoimmune diseases
(Crohn’s disease, ulcerative colitis, type 1 diabetes, celiac disease, and psoriasis), and
minimal overlap with rheumatoid arthritis [217]. It is interesting to note that the same
GWAS study showed that FTD, despite a substantial genetic and pathological overlap
with ALS, had a strong genetic enrichment with all of these autoimmune diseases, in
particular in the human leukocyte antigen (HLA) locus [217]. This observation could
perhaps suggest that differential immune system activation may explain genetic pleiotropy,
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i.e., the development of either ALS or FTD in carriers of the same mutations. Nonetheless,
a recent Mendelian randomization study has corroborated the finding of the absence of
causality between autoimmune disorders and ALS [218], proposing that the previously
found positive and negative linkage by Li et al. [219] could simply be due to genetic
pleiotropy. However, although autoimmunity is unlikely to occur for most ALS cases, it
has been evoked as a possibility in certain mutation carriers such as those with alterations
in C9ORF72 and senataxin (SETX) genes. Specifically, SETX mutations have been reported
to cause juvenile-onset slow-progressing ALS 4 subtype [220]. It is notable that the latter
has also been linked to clonally expanded effector memory CD8+ T cells in the peripheral
blood, something that has previously not been reported for ALS but has been linked to AD
and Parkinson’s disease (PD).

5. Clinical Studies, Biomarkers and Emerging Therapies in ALS/FTD

As already described, ALS and FTD share similar pathogenic events, from the patho-
logical deposition of misfolded proteins to progressive neuronal damage associated with
altered neuroinflammatory response [221]. These shared mechanisms are of great interest
since they can be exploited to develop biomarkers and therapies that act on the same
patterns in different neurodegenerative diseases.

5.1. Biomarkers

Searching for disease-specific biomarkers is a pivotal step for facilitating earlier patient
recruitment and selection for clinical trials. In fact, specific patient subgroups could be
more likely to show a common biological effect and demonstrate target engagement, which
can be used as a surrogate outcome [222]. In the last years, neurofilaments (neurofilament
light chain, NFL, and phosphorylated neurofilament heavy chain, pNFH) were under the
spotlight for their performance as diagnostic and prognostic biomarkers in the ALS/FTD
spectrum (Table 3). Being a structural component of axons, an increase in neurofilament
levels in CSF and blood likely reflects ongoing axonal injury [223]. NFLs in CSF and
plasma are higher in ALS/FTD spectrum compared to controls [224]. Furthermore, in both
ALS and FTD, NFL level rises months before disease onset, and tends to reach a plateau
over time [225–227]. Recently, NFLs were used in clinical trials as markers of response to
treatment. For example, in the phase three clinical trial of the antisense oligonucleotide
tofersen for SOD1-ALS (see below), a reduction in plasma NFL levels preceded a significant
clinical efficacy at 12-month extension, although no improvement in the primary outcome
at 6 months was observed [228]. This result supports the idea that the use of biomarkers
as surrogate outcomes might help in detecting biological effects. Moreover, since NFLs
rise months before symptom onset, they may be useful in shortening the diagnostic delay
in ALS and facilitating an early inclusion in clinical trials [226,229]. Another common
neurodegenerative marker, albeit with less evidence, is microtubule-associated protein
2 (MAP2) that has recently been shown to be elevated in ALS CSF [230]. In FTD, recent
reports showed that glial fibrillary acidic protein (GFAP), a marker of astrogliosis, was
increased only in specific subgroups of FTD patients, discriminating FTD associated with
tau (FTD-tau) to FTD-TDP [231] and in symptomatic GRN mutation carriers [232].

Since dysregulation of neuroinflammatory mechanisms is crucial in ALS/FTD patho-
physiology [14,233], different immune factors, cells, and pathways are under evaluation as
potential biomarkers. For example, many fluid biomarkers of glial activation have been
measured, such as soluble triggering receptor expressed on myeloid cells 2 (TREM2) and
macrophage-derived chitinases, including chitotriosidase (CHIT1), and YKL-40 (other-
wise known as chitinase-3-like protein 1 or CHI3L1). Notably, their role in FTD is still
unclear, but in some studies, the chitinase proteins are increased in the CSF of ALS/FTD
patients [234–236]. Moreover, cytokines and chemokines produced by glial cells have been
measured in FTD cohorts, with contrasting results. For example, MCP-1, a proinflammatory
cytokine, increased in the CSF of FTD, but RANTES, another proinflammatory cytokine,
was reduced in the same cohort [237]. In addition, in ALS, the results are often conflicting,
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probably related to a rapid change in the inflammatory balance in the different disease
phases [14]. Another interesting recent study reported systemic differences in subgroups of
ALS patients, with systemic elevation of senescent and late-memory T and B lymphocytes
in ALS fast progressors and bulbar patients [201]. In addition, several recent studies have
tried to define a protein-profiling characterization aiming to identify disease-specific pro-
tein alteration or specific pathology-based mechanisms [238]. For example, with regard
to synaptic and neurotransmitter function, none of the synaptic proteins were altered in
FTD patients compared to controls [239]. However, a recent study evaluated neuronal
pentraxin as a synaptic-dysfunction marker and reported a decrement in the neuronal
pentraxin-2 (NPTX2) in GRN and C9ORF72 mutation carriers but not in MAPT mutation
carriers [234] In conclusion, it is clear from these studies that multiple biomarker panels
will presumably be necessary to explore the specific pathogenesis of ALS/FTD and to
provide a personalized approach to outcome measures in trials.

The growing role of Stathmin-2 (STMN-2) in ALS should be described, resulting in
one of the missing pieces to the puzzle of TDP-43 proteinopathy. In fact, two independent
groups [240,241] recently found that STMN-2 is one of the most abundant transcripts in
induced pluripotent stem cell (iPSC)-derived motor neurons, and its expression is regulated
by TDP-43. Lower levels of STMN-2 were reported in ALS patients, except for patients
mutated for SOD1 [242]. Currently, STMN-2 is still not used as a disease marker in ALS
clinical practice, but further investigations are ongoing in this direction. Similar results were
obtained for FTD, where truncated STMN2 seems to be a marker for TDP-43 dysfunction
in FTD (but not for other pathological phenotypes, such as FTLD-tau) [243].

Finally, TDP-43 as a biomarker deserves a dedicated comment. In fact, since TDP-43
pathology accounts for the majority of ALS and for around 45% of FTD, recently a real-time
quaking-induced conversion reaction (RT-QuIC) was proposed, disclosing good diagnostic
performance to detect TDP-43 aggregates in CSF [244,245]. A recent meta-analysis [246]
evaluated the usefulness of CSF TDP-43 as a biomarker of ALS by analyzing 7 studies and
including roughly 250 ALS patients. The study reported that CSF TDP-43 was significantly
increased in ALS patients compared with controls (Cohen effect: 0.66). However, currently,
the included studies were highly heterogenous for sample size, the analytical assays, and
patients’ inclusion and exclusion criteria [246]. Therefore, a biomarker directly reflecting
TDP-43 dysfunction might be useful to prove target engagement, as well as to facilitate
early recruitment in clinical trials, since this event occurs before clinical onset [247], but
more studies are required in this regard.

5.2. Experimental Therapies and Clinical Trials

The wide heterogeneity in ALS/FTD clinical and pathogenic mechanisms has led
to testing several therapeutic approaches, including those that act on oxidative stress,
excitotoxicity, nucleocytoplasmic transport, and neuroinflammation [71]. However, recent
evidence has underlined that a single therapeutic approach can hardly be effective in
ALS patients [248]. In this context, for ALS, riluzole remains the only approved disease-
modifying drug in most European countries. This drug has antiglutamatergic effects and
prolongs mean patient survival by 6–19 months [249,250]. After years of failed clinical
trials, in 2017, a phase III randomized, double-blind study of intravenous edaravone
60 mg/day showed, in selected ALS patients, a slower reduction in ALSFRS-R after six
months of treatment [251]. However, this study has been criticized for its small size,
duration, possible adverse events, and lack of data on survival [252]. For these reasons,
edaravone has currently been approved for ALS treatment only in the United States,
Canada, Japan, South Korea, and Switzerland, but not in the European Union. More
recently, the CENTAUR trial [253] demonstrated the efficacy of the sodium phenylbutyrate-
taurursodiol (PB-TURSO) in slowing down ALS progression. Sodium phenylbutyrate is
a histone deacetylase inhibitor that is involved in targeting signals in mitochondria and
endoplasmic reticulum, while taurursodiol (also known as ursodoxicoltaurine) appears to
decrease apoptosis. The PB-TURSO, a combination of both agents, reduces neuronal cell
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death. This agent combination was conditionally approved for use in Canada in June 2022
and approved by the United States Food and Drug Administration (FDA) for all patients
with ALS in September 2022. Another promising ongoing clinical trial is for masitinib,
a tyrosine kinase inhibitor targeting macrophages, mast cells, and microglia cells, which
has immunomodulatory properties. In a double-blind study randomly assigning roughly
400 ALS patients, masitinib showed a 27% in slowing down functional decline compared to
placebo [254], and a confirmatory phase III study is ongoing (NCT03127267). A clinical trial
with reldesemtiv was recently suspended due to ineffectiveness. Reldesemtiv is a second
generation fast skeletal muscle troponin activator with limited penetration of the blood–
brain barrier to minimize off-target effects. In a phase II, double-blind, randomized, dose-
ranging trial in a large cohort of ALS patients, it did not reach statistical significance [255].
However, a post hoc analysis pooling all active reldesemtiv-treated patients showed trends
favoring reldesemtiv as providing some benefit in functional and respiratory functions [256].
For this reason, a phase III trial (COURAGE-ALS, NCT04944784) was started. However,
in April 2023, Cytokinetics decided to discontinue the trial evaluating reldesemtiv due
to futility.

Table 3. The most significant biomarkers under study for ALS and FTD. The table shows the main
biomarkers that can be used in the ALS/FTD spectrum. Although none are yet used in clinical
practice, of these, only neurofilaments are currently used as biomarkers in major clinical trials.
Abbreviations: CSF, cerebrospinal fluids, GRN, progranulin.

Biomarker Patients Notes References

Neurofilaments ALS/FTD Correlation with axonal injury, pathophysiology,
and disease progression rate (their levels correlate
with shorter survival and more aggressive disease
phenotypes); possible diagnostic and treatment
markers (i.e., outcome in VALOR trial for
SOD1 patients)

[222–229]

MAP2 ALS Increased CSF levels; possible motor neuron
degeneration and disease-characterization marker

[230]

GFAP FTD Raised concentrations in GRN-related FTD;
identification of different subgroups of FTD patients;
astrogliosis marker; potential marker of proximity
to onset

[231,232]

TREM2, CHIT1,
YKL-40

ALS/FTD Increase in FTD forms associated with ALS; possible
neurodegeneration and neuroinflammation markers
in FTD

[234–236]

NPTX2 GRN and C9orf72 mutation carriers Reduced levels in patients [234]

STMN-2 ALS/FTD Lower levels reported in post-mortem brain and spinal
cord tissues of familial and sporadic ALS patients;
possible diagnostic marker (not yet used as a marker in
clinical trials)

[240–243]

TDP-43 ALS/FTD increased CSF levels; possible target engagement
marker (not yet used as a marker in clinical trials)

[246,247]

Regarding emerging experimental therapies targeted at specific genetic mutations,
antisense oligonucleotide (ASO) therapy has been used for genetic forms of ALS; in a
phase III trial, a total of 72 participants predicted to have faster progression received
tofersen or placebo. Tofersen reduced concentrations of SOD1 in CSF and of neurofilament
light chains in plasma than placebo, even without strong clinical benefit in a short follow-
up [228]. Based on these biological effects, the tofersen eligibility has been expanded for
an early access program to all people with SOD1-ALS, in countries where such programs
are permitted by local regulations and access may be secured (https://www.biogen.com/
science-and-innovation/access-programs.html, accessed on 22 April 2023). Furthermore,

https://www.biogen.com/science-and-innovation/access-programs.html
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currently, a phase three ATLAS study is ongoing to evaluate whether tofersen can delay
clinical onset when initiated in presymptomatic individuals with a SOD1 genetic mutation
and biomarker evidence of disease activity (NCT04856982). In contrast to promising results
in SOD1 mutation carriers, ASO therapy in C9ORF72 ALS (BIIB078) did not meet any
secondary efficacy endpoints or demonstrate clinical benefit (NCT04288856), so the open
label extension trial was stopped. For FUS-ALS patients, an ongoing clinical trial aims to
investigate the clinical efficacy of ION363 on clinical function and survival (NCT04768972).

Conversely, in regard to treatment with immunomodulatory drugs, a recent concluded
trial has tested the effects of low-dose interleukin-2 in ALS patients, identifying a dose-
dependent increase in Treg markers at the end of the treatment period, with concomitant
alteration and inhibition of inflammatory pathways [257]. Similar interesting results were
also obtained by the Appel group, which demonstrated how Treg/IL-2 treatments were
safe and well tolerated and, in a subgroup of patients, also able to slow down disease
progression [188].

The stem cell treatment for ALS has always been a “hot topic”, albeit with contrasting
results over the years. Recently, we discussed the results of a large clinical trial using bone
marrow-derived mesenchymal stem cells (MSCs) in ALS. In detail, in a phase II study,
these cells were induced into MSCs secreting neurotrophic factors (MSC-NTF) cells to
secrete high levels of multiple NTF. Aside from its safety endpoint, the rate of disease
progression (ALS functional rating scale-revised slope) had improved at early time points
only in fast progressing patients [258]. Although this result may be encouraging, there are
still many doubts related to this therapy, such as the cell type, the route and number of
administrations, and the appropriate disease stage. A recent post hoc analysis on the long-
term effects of MSC transplantation in the CNS of ALS patients described a significantly
longer survival in ALS transplanted patients compared to what is expected through the
use of the ENCALS model [259]. From a methodological point of view, the result is of
great scientific interest, emphasizing a possible long-term effect rather than the immediate
post-transplant effect and the possibility of reinvesting in new cell clinical trials.

As discussed for biomarkers, various strategies for developing treatments targeting
TDP-43 are underway. Some researchers are exploring compounds that can prevent the
formation of TDP-43 inclusions and subsequent motor neuron death [260]. Others are
investigating ways to promote the clearance of abnormal TDP-43 aggregates from affected
neurons. This may involve using compounds that stimulate the autophagy [261], the
ubiquitin proteasome system [262], and/or the endosomal-lysosomal pathway [140]. Other
research has been conducted to stabilize TDP-43 structure and thus, prevent its aggregation.
One example is molecular chaperones, which can stabilize the structure of TDP-43 and
prevent its misfolding [263]. Gene therapy approaches are being explored to restore normal
TDP-43 expression or reduce the protein level of TDP-43 protein [264]. Some recent studies
have also focused on immunotherapy, using antibodies or other immune-based approaches
to target and clear abnormal TDP-43 aggregates [265].

For FTD, currently, there are no effective disease-modifying treatments. Therefore,
pharmacologic and nonpharmacologic interventions are aimed at ameliorating mainly
the behavioral symptoms of FTD. Nowadays, most therapeutic trials target autosomal
dominant forms of FTD, including C9ORF72 repeat expansions, GRN mutations, or MAPT
mutations. Worthy of mention is the ongoing trial INFRONT-3, a phase three double-blind,
placebo-controlled study evaluating the AL001 efficacy and safety in participants at risk for
or with FTD due to heterozygous mutations in the progranulin gene (NCT04374136). Few
trials are targeting sporadic forms of FTD with tau pathology, acting on different mecha-
nisms, including the enhancement of tau clearance, suppression of toxic tau molecules or its
production, alteration of mRNA splicing, and augmentation of tau post-translational modi-
fications [266]. Tau can be targeted with different strategies, such as anti-tau antibodies, tau
vaccine, or aggregation inhibition. The studies are still very preliminary and without solid
results [267]. Regarding stem cells, although already preliminary tested in AD (with posi-
tive results, including improvement in cognitive function and hippocampal tropism) [268],
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MSCs are not yet tested in FTD. This may depend on multiple factors, including this
disorder’s recent proper clinical classification, rarity, and phenotypic variability.

6. Conclusions

With current neuron-centered therapies, only modest progress has been made in ALS
and no progress in FTD. In addition, if we consider that the overwhelming majority of
cases are sporadic, specific gene-targeting therapies (if successful) will be limited to a mi-
nority of cases. It is thus important to target the converging pathways. Proteinopathy and
neuroinflammation are common early denominators of a broad array of neurodegenerative
diseases, regardless of their etiology, which is exceptionally complex and results from still
insufficiently understood interactions between inherited and environmental factors. The
breadth of distinct immunopathologies and lack of confirmed (immune)biomarkers is still
precluding a straightforward classification of immune defects. For obvious reasons, this
also hampers the design of targeted therapies. Nonetheless, the information provided in
this work supports the view that the immune component could be crucial in both sporadic
and familial disease cases. Interestingly, recent data, such as GWAS enrichment in FTD and
immune-linked mutations in ALS/FTD, support the view that dysregulation of the immune
system could act not just as a disease modifier, but also as a disease trigger. Importantly,
although in ALS the major clinical symptoms arise from the neurodegeneration of motor
neurons, and the role of CNS-resident microglia in the ALS pathogenesis has been well
established, recent evidence also clearly shows that immune alterations are not limited
to CNS. Finally, with so many shared genetic and environmental factors across a wide
spectrum of neurodegenerative diseases, it is puzzling why some individuals may develop
either ALS, AD, or PD. This all leads us to conclude that genetic, epidemiological, neurobi-
ology, and toxicology studies aimed at identifying risk factors, mechanisms, and treatments
may initially target one disease, but may also collectively advance the understanding of
other neurodegenerative diseases. Nevertheless, although common targets are of particular
interest, detailed patient profiling is essential since therapeutic approaches will likely have
to be carefully customized to underlying genetics, neuropathology, immunopathology, and
the disease stage.
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Abbreviations

Amyloid beta (Aβ); Alzheimer’s disease (AD); amyotrophic lateral sclerosis (ALS); AMP-
activated protein kinase (AMPK); antisense oligonucleotide (ASO); corticobasal degeneration (CBD);
chitotriosidase (CHIT1); central nervous system (CNS); cerebrospinal fluid (CSF); damage- and
pathogen-associated molecular patterns (DAMP/PAMP); dipeptide repeat proteins (DRP); fron-
totemporal degeneration (FTD); frontotemporal degeneration associated with tau (FTD-tau); glial
fibrillary acidic protein (GFAP); genome-wide association studies (GWAS); human leukocyte antigen
(HLA); interferon γ (IFN-γ); interleukin (IL); interleukin 18 receptor accessory protein (IL18RAP);
induced pluripotent stem cell (iPSC); interferon regulatory factor 3 (IRF-3); leukemia inhibitory factor
(LIF); lipopolysaccharide (LPS); microtubule-associated protein 2 (MAP2); monocyte chemoattractant
protein (MCP-1); macrophage inflammatory protein-1 beta (MIP-1β); messenger ribonucleoprotein
(mRNP); multiple system atrophy (MSA); mesenchymal stem cells (MSCs); MSCs secreting neu-
rotrophic factors (MSC-NTF); mutated human SOD1 (mSOD1); Neuro2A (N2A); nuclear factor-κB
(NF-κB); natural killer (NK); neurofilament light chain (NfL); neuromuscular junction (NMJ); neu-
ronal pentraxin-2 (NPTX2); phenylbutyrate-taurursodiol (PB-TURSO); Parkinson’s disease (PD);
phosphorylated neurofilament heavy chain (pNfH); protein-associated splicing factor (PSF); repeat-
associated non-AUG (RAN); reactive oxygen species (ROS); real-time quaking-induced conversion
reaction (RT-QuIC); serum amyloid A (SAA); senataxin (SETX); single-nucleotide polymorphisms
(SNPs); superoxide dismutase (SOD1); stimulator of interferon genes (STING); Stathmin-2 (STMN-2);
TANK binding kinase 1 (TBK1); TAR DNA-binding protein 43 (TDP-43); tissue inhibitor of metal-
loproteinase 1 (TIMP-1); tissue inhibitor of metalloproteinase 2 (TIMP-2); Toll-like receptors (TLR);
tumor necrosis factor α (TNF-α); soluble triggering receptor expressed on myeloid cells 2 (TREM2);
valosin-containing protein (VCP); wild-type (WT).
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