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Abstract: Mitochondrial dysfunction is an important cellular hallmark of aging and neurodegenera-
tion. Platelets are a useful model to study the systemic manifestations of mitochondrial dysfunction.
To evaluate the age dependence of mitochondrial parameters, citrate synthase activity, respiratory
chain complex activity, and oxygen consumption kinetics were assessed. The effect of cognitive
impairment was examined by comparing the age dependence of mitochondrial parameters in healthy
individuals and those with neuropsychiatric disease. The study found a significant negative slope
of age-dependence for both the activity of individual mitochondrial enzymes (citrate synthase and
complex II) and parameters of mitochondrial respiration in intact platelets (routine respiration, maxi-
mum capacity of electron transport system, and respiratory rate after complex I inhibition). However,
there was no significant difference in the age-related changes of mitochondrial parameters between
individuals with and without cognitive impairment. These findings highlight the potential of mea-
suring mitochondrial respiration in intact platelets as a means to assess age-related mitochondrial
dysfunction. The results indicate that drugs and interventions targeting mitochondrial respiration
may have the potential to slow down or eliminate certain aging and neurodegenerative processes.
Mitochondrial respiration in platelets holds promise as a biomarker of aging, irrespective of the
degree of cognitive impairment.

Keywords: aging; platelet; mitochondria; respiratory chain complex; mitochondrial respiration;
cognitive decline; neurodegenerative disease; neuroinflammation; neuroplasticity; oxidative stress

1. Introduction

The biology of aging is associated with metabolic and oxidative stress, inflammation,
and DNA mutations, in which a number of cellular mechanisms are involved [1]. Twelve
molecular cellular hallmarks for aging are proposed and discussed, which are intercon-
nected among each other, and which include mitochondrial dysfunction [2]. Mitochondria
are organelles that play a key role in bioenergetics and the maintenance and regulation
of all brain functions, including neuroinflammation, neuroplasticity, oxidative stress, and
apoptosis [3]. In aging, there is evidence of decreased mitochondrial function, increased
oxidative stress, increased mitochondrial DNA (mtDNA) mutations, and miRNA dysreg-
ulation [4]. Due to the high energy demands of brain cells, mitochondrial dysfunction is
associated not only with aging [5], but also with neurodegenerative diseases [6,7]. Age-
related neurodegeneration involves complex interplay and synergy of various genetic and
environmental factors [8], including mitochondrial impairment as a common motif in the
pathophysiology of neuropsychiatric diseases [9]. Mitochondrial dysfunction is associated
with decreasing neuroplasticity and weakening functional resilience [10], neuroinflam-
mation [11], oxidative stress and apoptosis [12], excitotoxicity, neurotoxicity of protein
agglomerates, and deficiencies in mitochondrial proteostasis and the protease-mediated
quality control system [13].
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Impaired mitochondrial function can be caused by genetic mutations and epigenetic
modifications, environmental stressors, cellular senescence, and disturbed mitophagy.
Mitochondrial dysfunction leading to reduced ATP production, increased ROS production,
activation of the intrinsic apoptotic pathway, and impaired calcium buffering ultimately
result in brain cell death, neurodegeneration, and cognitive decline [6,14].

The main current strategies for preventing or reversing processes associated with
aging and neurodegeneration are aimed at mitochondrial quality control mechanisms to
increase mitochondrial functions and include regulation of the OXPHOS system, gener-
ation of ATP through the electron transport system (ETS), reduction of oxidative stress
with antioxidants, inhibition of apoptosis, autophagy enhancement, and stimulation of
mitochondrial biogenesis by metabolic modulators, drugs, diet (caloric restriction), and
exercise [15,16].

The mitochondrial hypothesis is based on the key role of mitochondria in the pro-
duction of ATP through oxidative phosphorylation (OXPHOS) [17], the production of
reactive oxygen species (ROS), the buffering of free calcium in the cytosol, the release of pro-
apoptotic factors and the initiation of the intrinsic pathway of apoptosis, and the production
of heat. According to the free radical theory of aging [18–20], aging and age-related diseases
are associated with the generation of ROS, mainly from mitochondria, and subsequent
damage to cellular proteins, lipids, and nucleic acids. Oxidative stress is accepted as a
key modulator of the biological processes of aging and neurodegeneration [21], but useful
endogenous mechanisms that can be initiated by ROS must also be taken into account in
therapeutic interventions on cellular redox processes [22]. Attention is therefore paid to the
role of other manifestations of mitochondrial dysfunction, such as inflammation, mtDNA,
mitophagy, and retrograde signaling from the mitochondria to the nucleus [23–26].

The mitochondrial hypothesis of aging suggests that mitochondrial dysfunction over
time leads to a decrease in cellular energy production, increased oxidative stress, calcium
dysregulation, accumulation of mutations in mitochondrial DNA (mtDNA), apoptosis,
alterations in mitochondrial dynamics (fusion and fission), accumulation of cellular waste
products, disturbed mitophagy, and changes in cellular metabolism [27–30]. This, in
turn, may be the biological basis for the development of age-related diseases, including
neurodegenerative diseases, and the possibility of their treatment [31–34].

Mitochondrial dysfunctions are implicated in the pathophysiology of neurodegener-
ative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease, and Huntington’s
disease [6,31,35]. Common features in their pathogenesis are mitochondrial dysfunction,
progressive neurodegeneration, and cognitive decline leading to dementia. The main risk
factors for the onset and development of AD are age, genetics and epigenetics, environmen-
tal factors, amyloidosis, tauopathy, and mitochondrial dysfunction. Neurodegenerative
mechanisms in AD include early changes in mitochondria-associated endoplasmic reticu-
lum membranes [36]. In the integrative hypothesis of Alzheimer’s disease, interlinking and
mutual synergistic connections between amyloid beta pathology, tau pathology, mitochon-
drial dysfunction, dysfunction of neurotransmitter systems, and disturbed neuroplasticity
are assumed [37].

Mitochondrial dysfunction is also thought to contribute to the pathophysiology of
psychiatric diseases such as major depressive disorder (MDD) [38] and bipolar disorder
(BD) [39–42] through several pathways, including oxidative stress, neuroinflammation,
genetics, and disturbed neuroplasticity. Affective disorders are a common comorbidity
in neurodegenerative diseases [43]. Cognitive deficit is a principal component in MDD,
especially in late-life depression [44,45]. Cognitive impairment in BD patients is associated
with metabolic factors, gene polymorphisms, brain structural and functional changes, and
neuroinflammation [46]. Emotions can improve or impair cognitive performance [47], and
it is important to understand the functional interplay between the central and autonomic
nervous systems and to elucidate how emotions are integrated into executive functions in
neuropsychiatric diseases [48,49]. This is crucial for regulating physiological processes and
maintaining homeostasis, with the prefrontal cortex playing a key role [50,51].
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There are several assays to measure mitochondrial dysfunction in aging and neu-
rodegeneration [7,52–54], and they use different biological models. It was proved that
platelets are a suitable biological model for research on mitochondrial dysfunction [55–57].
Platelets are small blood components (nonnucleated cells) in mammals derived from the
megakaryocytes. Average life span of circulating platelets is 8 to 9 days [58]; therefore,
they reflect current systemic changes. Platelets contribute to hemostasis, innate immunity,
and inflammatory response [59]. It was shown that platelet bioenergetics reflect muscle
energetics and platelet mitochondrial function is altered in older adults [60]. Moreover,
platelets are considered peripheral elements reflecting a variety of brain functions and
neurochemical changes, including those leading to neurodegeneration [61–63]. Platelets
can be easily separated from blood as platelet rich plasma (PRP) and mitochondrial function
can be measured under physiological conditions [57]. Since platelets share many properties
with brain cells [64], they appear to be a suitable biological model for monitoring processes
of brain aging and neurodegeneration.

Age dependence of mitochondrial function in various organs and brain regions in rats
has been described [65–67]; the results did not confirm the concept of a general pattern
of age-dependent mitochondrial dysfunction. No such data are available in humans;
measurements in humans are usually performed using skeletal muscle biopsies, fibroblasts,
and circulating blood cells [68].

Due to intracellular homeostatic mechanisms, it is appropriate to monitor changes
in both the activity of individual mitochondrial proteins and enzyme complexes, as well
as complex mitochondrial functions characterizing a real physiological state. Frequently
used methods for measuring mitochondrial function include measuring the rate of oxygen
consumption, ATP production, hydrogen peroxide production, free calcium buffering in
the cytosol, and the release of proapoptotic factors. In this study, the measurement of the
activity of citrate synthase (CS), complexes I, II, III, and IV of the respiratory chain, and
the parameters of mitochondrial respiration in the platelets of healthy individuals and
individuals with neuropsychiatric disease is used to evaluate the age-dependent changes
of mitochondrial dysfunction.

2. Materials and Methods

Commonly used mitochondrial function assays include oxygen consumption (complex
I- and II-linked respiration, respiratory control ratio, uncoupling) [57,69], ATP produc-
tion [70], hydrogen peroxide production [71,72], membrane potential [73,74], mitochondrial
permeability transition, swelling, and calcium retention capacity [75,76], monoamine ox-
idase [77], release of pro-apoptotic factors (by ELISA and chromatography), membrane
fluidity [78], mtDNA mutations [79], mitochondrial morphology and dynamics [80], mito-
chondrial biogenesis, and mitophagy [81].

Age-dependent changes in mitochondrial function were measured in people of dif-
ferent ages using spectrophotometric and high-resolution respirometry methods. Activity
of CS, complex I, II, III, and IV and mitochondrial respiratory rate was measured in blood
platelets of healthy subjects (CONTROL) and patients with Alzheimer’s disease (AD),
vascular dementia (VD), major depressive disorder (MDD), or bipolar disorder (BAD).
For the analysis of the age dependence of measured mitochondrial parameters, data from
control subjects included in our earlier analyses and publications on platelet mitochondrial
parameters were used. Data from patients with AD, VD, MDD, or BAD were used to
evaluate changes in age dependence of platelet mitochondrial parameters in people with
cognitive impairment. The material and methods used have been published previously, so
they are presented here only very briefly with the corresponding references.

2.1. Subjects and Their Clinical Evaluation

The subjects and their clinical evaluation have been described previously for AD
patients [82–85], VD patients [83], MDD patients [86,87], and BAD patients [87,88]. Patients
with AD, VD, MDD, or BAD were diagnosed and recruited from the Department of
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Psychiatry of the First Faculty of Medicine, Charles University and General University
Hospital in Prague, Czech Republic. In each individual study, the number of participants
was determined to ensure adequate statistical power required to detect differences between
groups of healthy subjects and neuropsychiatric patients.

Patients with probable AD or probable VD over 60 years of age were recruited. Cri-
teria to diagnose AD and VD included the International Classification of Diseases, Tenth
Edition (ICD-10), NINDS-AIREN VD criteria [89], the NINCDS-ADRDA Alzheimer’s crite-
ria [90,91], and the Hachinski Ischemic Score [92]. Depressive symptoms in AD patients
were assessed by the Geriatric Depression Scale (GDS) [93]. Disease severity was assessed
by the Addenbrooke’s Cognitive Examination-Revised [94] inclusive of the Mini-Mental
State Examination (MMSE) questionnaire. Other causes of dementia than AD or VD were
excluded. Patients with a BAD diagnosis were clinically evaluated using diagnostic scales
and questionnaires, including the Young Mania Rating Scale (YMRS), Clinical Global
Impression—Severity Scale (CGI-01), and Brief Psychiatric Rating Scale (BPRS). The sever-
ity of depression in MDD patients was evaluated using the Hamilton Depressive Rating
Scale, 21-item (HDRS-21) and the Clinical Global Impression—severity scale (CGI-01).

The controls included healthy volunteers, who underwent a psychiatric examination
that was equivalent to that of neuropsychiatric patients, and they were without cognitive
decline. The participants did not take mitochondria-targeting compounds.

Cognitive decline (decline in memory, attention, language, and executive function) is
a common feature of aging and neuropsychiatric diseases. The Mini-Mental State Examina-
tion (MMSE) total score has been used to assess the progression of cognitive impairment
as follows: no cognitive impairment with MMSE 24–30; mild cognitive impairment with
MMSE 19–23; moderate cognitive impairment with MMSE 10–18; and severe cognitive
impairment with MMSE ≤ 9 [95].

2.2. Chemicals and Solutions and Measurement Methods

The chemicals, solutions, and measurement methods are described in our earlier
publications. Activities of CS and respiratory chain complexes were measured spec-
trophotometrically [84,96–98]; mitochondrial respiration in platelets was measured by
high-resolution respirometry using the Oxygraph-2k (Oroboros Instruments Corp, Inns-
bruck, Austria) [57,99]. All chemicals were purchased from Sigma-Aldrich Co. (St. Louis,
MO, USA)

Studies were conducted in accordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki), and the study protocols were approved by the Ethical
Review Board of the First Faculty of Medicine, Charles University and General University
Hospital in Prague. Written informed consent was obtained from participants.

2.3. Data Analysis

Statistical analyses were performed using the STATISTICA data analysis software
system (TIBCO Software Inc., Palo Alto, CA, USA). The relation between the measured
platelet parameters and age was determined using the Pearson product-moment correlation
coefficient. Simple regression was used to quantify the age dependence of all measured
mitochondrial parameters.

DatLab software (Oroboros Instruments Corp, Innsbruck, Austria) was used for
respirometry data acquisition and analysis. Oxygen consumption rates were normalized
for platelet concentration (pmol O2 per sec per 106 platelets). Activities of mitochondrial
complexes I, II, III, and IV were normalized for CS activity.

3. Results

The age dependence of the mitochondrial parameters measured in platelets isolated
from peripheral blood was evaluated. The following parameters were measured in platelets
of healthy subjects (CONTROL) and patients with AD, VD, MDD, or BAD: (1) CS activity;
(2) complex I activity normalized for CS (CI/CS); (3) complex II activity normalized for
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CS (CII/CS); (4) complex III activity normalized for CS (CIII/CS); (5) complex IV activity
normalized for CS (CIV/CS); (6) oxygen consumption rate in various respiratory states.
Mitochondrial respiration in intact platelets was determined as (i) routine (basal) respira-
tion (ROUT_i); (ii) oligomycin-induced respiration independent of ADP phosphorylation
(LEAK_i); (iii) maximum capacity of electron transport system (ETSC_i); (iv) respiratory
rate after complex I inhibition (ROT_i); and (v) using a derived parameter called respiration
reserve capacity (RES_i) and calculated as ‘ETSC_i-ROUT_i’.

A total of 637 blood samples from people aged 20 to 94 were included in the evaluation,
including 162 samples of control subjects aged 20 to 80 years without serious somatic and
neuropsychiatric diseases, 196 samples of AD patients aged 50 to 94 years, 120 samples
of subjects with MDD aged 20 to 74 years, 127 subjects with BAD aged 20 to 73 years,
and 32 people with VD aged 65 to 85 years. The age dependence of the mitochondrial
parameters was calculated using correlation and regression analysis.

Correlation coefficients (Pearson r) between age and the mitochondrial parameters
are summarized in Table 1. In the group of healthy controls, there is a significant negative
correlation between age and CS, CII/CS, ROUT_i, ETSC_I, ROT_i, and RES_i; there is a
significant positive correlation between age and CIV/CS.

Table 1. Correlation coefficients (Pearson r) between age and platelet mitochondrial variables.

Parameter CONTROL AD MDD BAD VD All

CS
−0.2317 −0.0104 −0.1735 −0.0149 – −0.0817
N = 100 N = 86 N = 111 N = 98 N = 0 N = 395
p = 0.020 p = 0.924 p = 0.069 p = 0.884 p = − p = 0.105

CI/CS
0.0435 0.1380 0.1283 −0.0321 −− −0.0728
N = 93 N = 81 N = 107 N = 97 N = 0 N = 378

p = 0.679 p = 0.219 p = 0.188 p = 0.755 p = − p = 0.158

CII/CS
−0.2529 −0.0625 −0.0211 0.0603 −− 0.0135
N = 93 N = 82 N = 107 N = 96 N = 0 N = 378

p = 0.014 p = 0.577 p = 0.829 p = 0.559 p = − p = 0.794

CIII/CS
0.2142 −0.2139 −0.0533 −− −− 0.3205
N = 31 N = 22 N = 15 N = 0 N = 0 N = 68

p = 0.247 p = 0.339 p = 0.850 p = − p = − p = 0.008

CIV/CS
0.4072 −0.1393 0.0791 0.0023 −− 0.1360
N = 93 N = 83 N = 107 N = 98 N = 0 N = 381

p < 0.001 p = 0.209 p = 0.418 p = 0.982 p = − p = 0.008

ROUT_i
−0.2048 −0.0326 −0.0860 −0.0943 −0.1567 −0.1617
N = 101 N = 132 N = 42 N = 113 N = 29 N = 417
p = 0.040 p = 0.710 p = 0.588 p = 0.320 p = 0.417 p = 0.001

LEAK_i
0.0919 −0.0224 −0.3418 0.0091 −0.0806 0.1150

N = 101 N = 132 N = 42 N = 113 N = 29 N = 417
p = 0.361 p = 0.799 p = 0.027 p = 0.923 p = 0.678 p = 0.019

ETSC_i
−0.2812 0.0360 0.1013 −0.0602 −0.1964 −0.2663
N = 101 N = 132 N = 42 N = 113 N = 29 N = 417
p = 0.004 p = 0.682 p = 0.523 p = 0.527 p = 0.307 p < 0.001

ROT_i
−0.3688 0.0810 0.2249 0.0851 −0.0810 −0.0881
N = 101 N = 132 N = 42 N = 113 N = 29 N = 417
p = 0.000 p = 0.356 p = 0.152 p = 0.370 p = 0.676 p = 0.072

RES_i
−0.2137 0.0967 0.2001 0.0151 −0.1811 −0.2187
N = 101 N = 132 N = 42 N = 113 N = 29 N = 417
p = 0.032 p = 0.270 p = 0.204 p = 0.874 p = 0.347 p = 0.000

Mitochondrial parameters were measured in platelets of healthy subjects (CONTROL) and patients with
Alzheimer’s disease (AD), vascular dementia (VD), major depressive disorder (MDD), or bipolar disorder (BAD).
Statistically significant correlation coefficients are in bold. CS, citrate synthase activity (nmol·min−1·mg−1); CI/CS,
complex I activity normalized for CS; CII/CS, complex II activity normalized for CS; CIII/CS, complex III activity
normalized for CS; CIV/CS, complex IV activity normalized for CS; ROUT_i, routine (basal) respiration; LEAK_i,
oligomycin-induced respiration independent of ADP phosphorylation; ETSC_i, maximum capacity of electron
transport system; ROT_i, respiratory rate after complex I inhibition by rotenone; and RES_i, respiration reserve
capacity calculated as ‘ETSC_i-ROUT_i’ (all respiration parameters in pmol O2·10−6 platelets·sec−1).
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The age dependence of the measured parameters (ROUT_i, LEAL_i, ETSC_i, ROT_i,
and RES_i) was quantified using the slopes of regression lines. For control group members,
but not for AD, MDD, and BAD patients, a significant dependence on age was found for CS,
CII/CS, and CIV/CS (Table 2, Figure 1), ROUT_i, ETSC_i, ROT_i, and RES_i (Tables 3–7).
The greatest statistically significant decrease with age is shown in the mitochondrial respi-
ratory parameter ETSC_i (Figure 2). Information was added to the results that the slope
(linear regression result) for the age dependence of platelet count normalized for CS is not
significantly different from zero.

Table 2. Age dependence of platelet concentration and mitochondrial enzyme activities.

Sample Parameter Slope 95% CI p Age range N

CONTROL

PRP −794 (−2400, 813) 0.331 20–80 162
CS * −0.152 (−0.280, −0.024) 0.020 20–77 100

CI/CS 0.00055 (−0.00209, 0.00320) 0.679 20–77 93
CII/CS * −0.00067 (−0.00120, −0.00014) 0.014 20–77 93
CIII/CS 0.00153 (−0.00112, 0.00418) 0.247 23–77 31
CIV/CS *** 0.00132 (0.00070, 0.00194) 0.000 20–77 93

AD

PRP −2009 (−4306, 288) 0.086 50–94 196
CS −0.020 (−0.426, 0.387) 0.924 56–91 86

CI/CS 0.00482 (−0.00293, 0.01258) 0.219 56–91 81
CII/CS −0.00036 (−0.00166, 0.00093) 0.577 56–91 82
CIII/CS −0.00375 (−0.01175, 0.00424) 0.339 56–88 22
CIV/CS −0.00174 (−0.00448, 0.00100) 0.209 56–91 83

MDD

PRP −728 (−2531, 1075) 0.426 20–74 120
CS −0.217 (−0.452, 0.017) 0.069 20–74 111

CI/CS 0.00178 (−0.00088, 0.00445) 0.188 20–74 107
CII/CS −0.00006 (−0.00060, 0.00048) 0.829 20–74 107
CIII/CS −0.00038 (−0.00470, 0.00393) 0.850 29–74 15
CIV/CS 0.00044 (−0.00063, 0.00152) 0.418 20–74 107

BAD

PRP −686 (−2808, 1437) 0.524 20–73 127
CS −0.021 (−0.305, 0.263) 0.884 21–66 98

CI/CS −0.00180 (−0.01321, 0.00962) 0.755 21–66 97
CII/CS 0.00044 (−0.00105, 0.00193) 0.559 21–66 96
CIII/CS ND ND ND ND 0
CIV/CS 0.00002 (−0.00179, 0.00183) 0.982 21–66 98

VD PRP 5408 (−12379, 1561) 0.123 65–85 32

All

PRP *** −1606 (−2205, −1006) <0.001 20–94 637
CS −0.073 (−0.162, 0.015) 0.105 20–91 395

CI/CS −0.00172 (−0.00412, 0.00067) 0.158 20–91 378
CII/CS 0.00004 (−0.00027, 0.00036) 0.794 20–91 378
CIII/CS ** 0.00233 (0.00064, 0.00402) 0.008 23–88 68
CIV/CS ** 0.00064 (0.00017, 0.00111) 0.008 20–91 381

Analyzed with simple regression. Statistically significant differences compared with controls is presented as
* p < 0.05, ** p < 0.01, and *** p < 0.001. Statistically significant values are in bold. 95% CI, 95% confidence interval;
PRP, platelet rich plasma. The meaning of the abbreviations is the same as in Table 1.

To assess the effect of depression on the age dependence of mitochondrial respira-
tion, regression slopes were calculated for the subgroup of AD patients with depression
(AD + DEP) and without depression (AD − DEP). Depression in AD was diagnosed for
a Geriatric Depression Score > 6 [93]. A significant negative slope was found for the age
dependence of ROUT_i and ROT_i in AD + DEP but not in AD − DEP (Tables 3 and 6).
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Table 3. Age dependence of mitochondrial respiration parameter ROUT_i.

Sample Slope (95% CI) p Age Range Valid N

CONTROL * −0.309 (−0.604, −0.014) 0.040 22–80 101
AD −0.087 (−0.547, 0.374) 0.710 50–94 132

MDD −0.013 (−0.308, 0.281) 0.927 20–74 42
BAD −0.175 (−0.522, 0.172) 0.320 21–66 113
VD −0.617 (−2.153, 0.919) 0.417 65–85 29
All *** −0.212 (−0.328, −0.095) 0.000 20–94 417

AD + DEP * −1.067 (−2.129, −0.005) 0.049 60–85 37
AD − DEP 0.023 (−0.474, 0.520) 0.927 50–94 95
MMSE > 23 * −0.151 (−0.295, −0.006) 0.041 20–91 328

MMSE <19,23> −0.399 (−1.461, 0.663) 0.451 59–88 37
MMSE < 19 −0.100 (−1.049, 0.850) 0.834 67–94 52

Analyzed with simple regression. Statistically significant differences compared with controls is presented as
* p < 0.05 and *** p < 0.001. Statistically significant values are in bold. DEP, depression; MMSE, Mini-Mental State
Examination. The meaning of the other abbreviations is the same as in Tables 1 and 2. Slope is given in fmol
O2·10−6 platelets·sec−1·year−1.

Table 4. Age dependence of mitochondrial respiration parameter LEAK_i.

Sample Slope (95% CI) p Age Range Valid N

CONTROL 0.038 (−0.044, 0.121) 0.361 22–80 101
AD −0.013 (−0.118, 0.091) 0.799 50–94 132

MDD * −0.117 (−0.219, −0.014) 0.027 20–74 42
BAD 0.004 (−0.071, 0.078) 0.923 21–66 113
VD −0.076 (−0.448, 0.296) 0.678 65–85 29
All * 0.033 (0.005, 0.060) 0.019 20–94 417

AD + DEP −0.009 (−0.221, 0.203) 0.933 60–85 37
AD − DEP −0.013 (−0.138, 0.113) 0.841 50–94 95
MMSE > 23 0.033 (−0.001, 0.067) 0.058 20–91 328

MMSE <19,23> −0.047 (−0.298, 0.205) 0.707 59–88 37
MMSE < 19 0.008 (−0.214, 0.231) 0.941 67–94 52

Analyzed with simple regression. Statistically significant differences compared with controls is presented as
* p < 0.05. Statistically significant values are in bold. The meaning of the abbreviations is the same as in Tables 1–3.
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Table 5. Age dependence of mitochondrial respiration parameter ETSC_i.

Sample Slope (95% CI) p Age Range Valid N

CONTROL ** −0.523 (−0.879, −0.167) 0.004 22–80 101
AD 0.106 (−0.404, 0.616) 0.682 50–94 132

MDD 0.163 (−0.347, 0.673) 0.523 20–74 42
BAD −0.155 (−0.640, 0.329) 0.527 21–66 113
VD −1.057 (−3.139, 1.026) 0.307 65–85 29
All *** −0.412 (−0.555, −0.268) 0.000 20–94 417

AD + DEP −0.502 (−1.639, 0.636) 0.377 60–85 37
AD − DEP 0.041 (−0.503, 0.585) 0.881 50–94 95
MMSE > 23 ** −0.300 (−0.483, −0.116) 0.001 20–91 328

MMSE <19,23> −0.213 (−1.302, 0.876) 0.694 59–88 37
MMSE < 19 0.276 (−0.674, 1.226) 0.562 67–94 52

Analyzed with simple regression. Statistically significant differences compared with controls is presented as
** p < 0.01 and *** p < 0.001. Statistically significant values are in bold. The meaning of the abbreviations is the
same as in Tables 1–3.

Table 6. Age dependence of mitochondrial respiration parameter ROT_i.

Sample Slope (95% CI) p Age Range Valid N

CONTROL *** −0.154 (−0.231, −0.076) 0.000 22–80 101
AD 0.059 (−0.067, 0.185) 0.356 50–94 132

MDD 0.080 (−0.031, 0.191) 0.152 20–74 42
BAD 0.026 (−0.032, 0.085) 0.370 21–66 113
VD −0.082 (−0.481, 0.317) 0.676 65–85 29
All −0.028 (−0.058, 0.003) 0.072 20–94 417

AD + DEP ** 0.346 (0.108, 0.584) 0.006 60–85 37
AD − DEP −0.026 (−0.176, 0.123) 0.728 50–94 95
MMSE > 23 * −0.042 (−0.078, −0.006) 0.023 20–91 328

MMSE <19,23> −0.145 (−0.487, 0.197) 0.394 59–88 37
MMSE < 19 0.032 (−0.260, 0.324) 0.827 67–94 52

Analyzed with simple regression. Statistically significant differences compared with controls is presented as
* p < 0.05, ** p < 0.01, and *** p < 0.001. Statistically significant values are in bold. The meaning of the abbreviations
is the same as in Tables 1–3.

Table 7. Age dependence of mitochondrial respiration parameter RES_i.

Sample Slope (95% CI) p Age Range Valid N

CONTROL * −0.214 (−0.409, −0.019) 0.032 22–80 101
AD 0.193 (−0.151, 0.536) 0.270 50–94 132

MDD 0.197 (−0.127, 0.522) 0.226 20–74 42
BAD 0.020 (−0.224, 0.263) 0.874 21–66 113
VD −0.440 (−1.382, 0.503) 0.347 65–85 29
All *** −0.201 (−0.285, −0.117) 0.000 20–94 417

AD + DEP 0.565 (−0.192, 1.322) 0.139 60–85 37
AD − DEP 0.018 (−0.374, 0.410) 0.928 50–94 95
MMSE > 23 ** −0.148 (−0.249, −0.046) 0.004 20–91 328

MMSE <19,23> 0.186 (−0.636, 1.008) 0.649 59–88 37
MMSE < 19 0.376 (−0.363, 1.115) 0.312 67–94 52

Analyzed with simple regression. Statistically significant differences compared with controls is presented as
* p < 0.05, ** p < 0.01, and *** p < 0.001. Statistically significant values are in bold. The meaning of the abbreviations
is the same as in Tables 1–3.

The effect of cognitive impairment on the age dependence of mitochondrial respiration
was determined by dividing all included controls and neuropsychiatric patients into three
groups according to their MMSE score: (1) no cognitive impairment with MMSE > 23
(N = 328), (2) mild cognitive impairment with MMSE in the interval <19,23> (N = 37), and
(3) moderate or severe cognitive impairment with MMSE < 19 (N = 52). A significant
negative slope was found for ROUT_i, ETSC_i, ROT_i, and RES_i in persons without
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significant cognitive impairment but not in persons with cognitive impairment (Tables 3–7,
Figure 3).
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Figure 2. Age dependence of maximal capacity of electron transport system in intact platelets
(ETSC_i) in healthy controls.
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4. Discussion

The age dependence of the mitochondrial parameters was assessed for citrate synthase
activity, activity of respiratory chain complexes, and kinetics of mitochondrial oxygen
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consumption in platelets. The effect of cognitive impairment on the age dependence of the
mitochondrial parameters was evaluated by comparing healthy individuals and individuals
with neuropsychiatric disease (AD, VD, MDD, and BAD). Because it is not known whether
the progression of mitochondrial dysfunction is different in neuropsychiatric diseases,
we separately evaluated data for controls, AD, VD, MDD, and BAD, as well as pooled
data. The progression of changes in mitochondrial respiration was evaluated using simple
regression. We chose the significance and magnitude of the slope of the regression line as a
criterion for evaluating the effect of age on the value of the mitochondrial parameter.

The significant correlation between age and measured mitochondrial parameters
was negative in subjects without neuropsychiatric disease, except for complex IV activity
normalized for CS (Table 1), whereas unnormalized complex IV activity did not change
significantly with age. Because (i) CS activity normalized for platelet count does not show
a significant correlation with age and (ii) CS and complex I activities are associated with
mitochondrial content, while complex IV activity is associated with OXPHOS capacity [100],
our data indicate that the reduction of mitochondrial content with age is due to a reduced
number of platelets, rather than a reduced content of mitochondria in platelets. Regression
analysis quantified the results by correlations (Tables 2–7). This indicates that the activ-
ity of individual mitochondrial enzymes and enzyme complexes involved in OXPHOS
system, as well as the complex parameters of mitochondrial respiration, decrease with
age. The increase in complex IV activity of the respiratory chain with age may be part of a
compensatory mechanism to maintain cellular homeostasis. Non-significant correlations
between age and measured mitochondrial parameters in persons with neuropsychiatric
diseases (Table 1) indicate a small influence of these diseases on mitochondrial dysfunction
associated with aging.

Our results indicate that the values of the mitochondrial respiration parameters
ROUT_i, ETSC_i, LEAK_i, and RES_i decrease significantly with age, while the time
course is not significantly different in controls and in neuropsychiatric diseases such as AD,
VD, BAD, and MDD.

Depressive disorder is a frequent comorbidity in AD [101,102] and significantly re-
duces mitochondrial respiration in intact platelets. Therefore, age dependence was assessed
separately in the subgroup of AD patients with and without depression. It can be specu-
lated that the significant negative slope for ROUT_i, ETSC_i, ROT_i in AD patients with
depression (Tables 5 and 6) is associated with comorbid depressive disorder.

The impairment of mitochondrial respiration in intact platelets was previously de-
scribed in AD but was not associated with disease progression [82]. A significant negative
slope for the age dependence of the respiratory parameters ROUT_i, ETSC_i, ROT_i, and
RES_i in persons without cognitive impairment and statistically insignificant changes in
slopes in persons with cognitive impairment (Tables 3–7) indicate that mitochondrial dys-
function (manifested by changes in mitochondrial oxygen consumption in intact platelets)
is probably not a measure of cognitive impairment in AD. A certain limitation for this
conclusion is the inclusion of a relatively low number of persons with severe cognitive
impairment in the analysis.

The age dependence of mitochondrial respiration on cognitive impairment supports
the hypothesis that progressive neurodegeneration in AD is associated with specific neu-
rotoxicity of amyloid beta oligomers and tau protein, rather than direct consequences of
mitochondrial dysfunction. However, age-related neuropsychiatric diseases can be initiated
and regulated by mitochondrial dysfunction [37].

The results support a possible role of mitochondrial dysfunction in the regulation of
aging processes. The progression of mitochondrial dysfunction (determined from measure-
ments of mitochondrial respiration in intact platelets) does not appear to be significantly
altered. Assuming that mitochondrial respiration in intact platelets reflects mitochondrial
changes in the brain, the reduction of mitochondrial respiration does not appear to be the
primary cause of neurodegeneration associated with aging but is only part of complex
processes associated with impaired brain neuroplasticity.
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In summary, a significant decrease with age was found for both the activity of mito-
chondrial enzymes (CS and CII) and the parameters of mitochondrial respiration measured
in intact platelets (ROUT_i, ETSC_i, ROT_i, and RES_i). Compared to the large interindi-
vidual differences in these parameters, the rate of their reduction is not too large with age,
and it can be expected that in healthy aging mitochondrial dysfunction can be regulated to
a certain extent by lifestyle, primarily by exercise and diet [103–105].

Age-related neuropsychiatric diseases, such as AD, are associated with a decrease
in mitochondrial respiration in intact platelets [82,84], but no significant change in age
dependence of respiratory parameters was observed in platelets from AD patients com-
pared to healthy controls (Figure 3). This supports the notion that the direct contribution
of mitochondrial dysfunction to neurodegeneration is similar in aging and in AD, and
that AD progression is driven more by amyloid beta and tau pathology. Mitochondrial
dysfunction remains a promising candidate as an initial trigger and/or synergistic pro-
moter of this specific pathophysiology [37]. For pathology of neurodegenerative diseases
that have already begun, the therapeutic strategy should therefore include, in addition to
dietary restriction and exercise (discussed under healthy aging), targeted pharmacological
regulation of the causes of the development of specific disease pathology. To confirm the
role of mitochondrial dysfunction in neurodegeneration associated with healthy aging and
age-related neuropsychiatric diseases, repeated measurements of appropriate mitochon-
drial variables must be performed in the same persons over long periods of time. Suitable
variables could be parameters of mitochondrial respiration in intact platelets.

4.1. Study Limitations

A limitation of mitochondrial dysfunction research in aging and neurodegeneration
is the difficult identification of specific mitochondrial mechanisms and interactions with
other cellular causes of aging and neurodegeneration. Mitochondrial biomarkers of aging
and neurodegeneration are therefore still being sought. Some limitations in the study
of age-dependent mitochondrial dysfunction include lack of standardized methods for
measuring mitochondrial dysfunction. The development of standardized methods for
measuring mitochondrial respiration is currently being intensively addressed. Most mea-
surements have been conducted using animal models and cell lines. However, the use
of intact platelets from peripheral blood [57] used in this study may solve the limited
availability of human tissue samples to measure mitochondrial dysfunction. Although
this is a good model for monitoring changes in a number of biochemical parameters in the
brain that manifest themselves systemically, we must be aware that this is a model of brain
changes. For comprehensive assessment of mitochondrial dysfunction during aging, a com-
bination of commonly used methods should be used, including mitochondrial respiration,
ROS production, mtDNA mutations, mitochondrial membrane potential, mitochondrial
morphology and dynamics, mitochondrial biogenesis and mitophagy (see Introduction).

In this study, mitochondrial respiration was normalized for platelet concentration,
and activities of mitochondrial complexes were normalized for CS activity. CS activity
can be used as a marker for mitochondrial dysfunction, and a decline in CS activity has
been linked to a decrease in the number of mitochondria and changes in mitochondrial
morphology [100]. CS activity in the muscles may decrease with aging [106,107]. Thus, CS
activity may be used to normalize other mitochondrial parameters, such as the activity
of respiratory chain complexes [108] and mitochondrial respiration. However, using CS
activity to normalize mitochondrial data means additional measurements and a possible
source of error. Due to the good correlation between CS activity and platelet count in PRP,
the normalization of mitochondrial respiration for platelet count appears to be suitable for
measurements in intact platelets [82]. In the case of evaluating the overall activity of the
OXPHOS system (measured by mitochondrial respiration), we consider normalization to
the platelet count in the sample to be more accurate and simpler.
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4.2. Clinical Significance

There are several treatment strategies to prevent or to slow down cognitive decline
due to age or neurodegenerative disease. This is not only about medication (such as
cholinesterase inhibitors, NMDA receptor antagonists, or targeting glutamatergic, nora-
drenergic, and endocannabinoid systems) [109], but also about exercise, diet, cognitive
training, and social engagement.

Mitochondrial dysfunctions measured as disruption of mitochondrial respiration in
intact platelets are common features of aging and neurodegenerative diseases, such as AD.
Our study showed that the progression of mitochondrial respiration reduction with age
does not appear to be significantly affected by neurodegenerative disease. The strategy of
improving mitochondrial function in aging and neurodegeneration may include regulation
of the OXPHOS system at the level of stimulation of mitochondrial biogenesis, activity of
individual mitochondrial enzymes of the citrate cycle and respiratory chain complexes,
and changing the availability of substrates of the electron transport system.

The research on age-dependent mitochondrial dysfunction has both theoretical im-
plications and translational applications. Theoretical implications of age-dependent mi-
tochondrial dysfunction research include understanding the mechanisms of aging and
neurodegeneration. Translational applications of this research include finding new biomark-
ers for the diagnosis of age-related diseases and for finding molecular targets of new drugs
effective in preventing or mitigating cognitive decline and neurodegeneration. Under-
standing the mechanism of onset and progression of mitochondrial dysfunction in aging
and neurodegeneration can lead to the development of new therapies that target specific
mitochondrial processes and are able to slow down the onset of age-related diseases.

4.3. Research Perspectives

Both aging and mitochondrial dysfunction are complex processes regulated by a
variety of factors, including lifestyle and genetic, epigenetic, and internal and external
environmental factors. The perspective in the research on mitochondrial dysfunction
during aging and neurodegeneration therefore consists in a multidisciplinary approach
combining genetic, biochemical, and physiological measurements with clinical evaluation
of neurodegeneration and cognitive impairment. In addition, it is necessary to consider
other biological processes that contribute to the process of aging and neurodegeneration,
including neuroinflammation, apoptosis, and neurotoxicity. More accurate and detailed as-
sessment of mitochondrial dysfunction in aging and neurodegeneration will be provided by
advances in technologies for measuring mitochondrial function, further development of an-
imal models of age-related diseases, development of methods for measuring mitochondrial
biomarkers in peripheral blood, and application of omics technologies.

The regulation of mitochondrial function, neuroplasticity, and neurotransmission are
means of prospective prevention and treatment of neurodegenerative diseases. However,
careful monitoring of side and adverse effects of potential drugs is necessary, as stimulation
of mitochondrial functions can also lead to negative neuroplasticity. Finally, there are large
interindividual differences in mitochondrial dysfunction during aging and neurodegenera-
tion, and treatment/regulation should therefore be based on a personalized approach.

5. Conclusions

Study of mitochondrial dysfunction during aging and neurodegeneration is an impor-
tant area of research with the perspective of potential therapeutic use of new knowledge.
The findings showed the potential of measuring mitochondrial respiration in intact platelets
to assess age-related mitochondrial dysfunction and support the role of mitochondrial
dysfunction in the aging process. Mitochondrial respiration in platelets may serve as a
biomarker for aging and cognitive decline and it can be expected that interventions that
improve mitochondrial function may prevent or slow cognitive decline in aging and age-
related diseases. Mitochondrial respiration in platelets appears to be a potential biomarker
of aging, regardless of the degree of cognitive impairment.
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