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Abstract: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with distinct
phenotypes, each having distinct treatment needs. Eosinophilic airway inflammation is present in a
subset of COPD patients in whom it can act as a driver of exacerbations. Blood eosinophil counts are
a reliable way to identify patients with an eosinophilic phenotype, and these measurements have
proven to be successful in guiding the use of corticosteroids in moderate and severe COPD exacerba-
tions. Antibiotic use in COPD patients induces a risk of Clostridium difficile infection, diarrhea, and
antibiotic resistance. Procalcitonin could possibly guide antibiotic treatment in patients admitted with
AECOPD. Current studies in COPD patients were successful in reducing exposure to antibiotics with
no changes in mortality or length of stay. Daily monitoring of blood eosinophils is a safe and effective
way to reduce oral corticosteroid exposure and side effects for acute exacerbations. No evidence
on time-updated treatment guidance for stable COPD exists yet, but a current trial is testing an
eosinophil-guided approach on inhaled corticosteroid use. Procalcitonin-guided antibiotic treatment
in AECOPD shows promising results in safely and substantially reducing antibiotic exposure both in
time-independent and time-updated algorithms.

Keywords: COPD; corticosteroids; eosinophils; biomarkers; procalcitonin; respiratory tract infections;
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is a common disease worldwide with
a substantial impact on quality of life and mortality, making it an important contributor
to the global burden of disease [1,2]. It is characterized by chronic airway inflammation
leading to respiratory symptoms and airway obstruction [1].

COPD is a heterogeneous disease in which the presence of emphysema, airway obstruc-
tion, excess mucus production, vascular dysfunction, and inflammation varies considerably
among patients and none of these factors are particularly good predictors of symptom bur-
den or disease development [3–5]. The disease occurs at the intersection of airborne insults
to the lung tissue such as cigarette smoke, pollutants, allergens, genetic predisposition,
pathogens, and altered immune response [4,6,7]. Therefore, the understanding of COPD
has shifted from viewing the disease as a single entity to viewing it as a combination of
distinct phenotypes that may differ in natural history and treatment needs. This under-
standing of COPD opens the door to individualized treatment. However, there is still a
need for the better identification of treatable phenotypes.

Furthermore, patient phenotypes are not necessarily constant [8,9]. Even within the
same phenotype, disease activity will vary based on factors such as airborne exposure to
smoke, allergens, and pathogens, the control of co-morbidity, and the treatment of the lung
disease [10–12]. Thus, it is perhaps still reductive to consider the patient as belonging to
a single phenotype, and the concept should be adapted to consider the time-dependent
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variation in the disease. This approach could lead to the earlier identification of patients
that are insufficiently treated and could act as a potential method to reduce unnecessary
treatment, thus reducing drug side effects. Time-updated phenotypic guidance of therapy
takes this idea and applies it in practice by continually monitoring the phenotypic state of
the patient and adapting treatment as needed. Biomarkers predicting treatment response
have been identified in COPD with blood eosinophils as a proven tool for corticosteroid
treatment, per the growing body of high-quality evidence, acting as a model for phenotypic
guided therapy [13,14]. Furthermore, procalcitonin (PCT) has shown promising potential
to guide antibiotic therapy in respiratory tract infections [15], though evidence in COPD
patients is still limited [16]. Other biomarkers are in the process of being used for the
diagnosis and treatment of COPD exacerbation [17].

The aim of this paper is to review current evidence for time-updated phenotypic
guidance of corticosteroid therapy and antibiotic-guided therapy in COPD.

2. Blood Eosinophils as a Treatment Response Marker

The inflammatory response in COPD involves both the innate and adaptive immune
system and is mediated by neutrophils, macrophages, and CD8+ T-cells (Tc1) as well as
CD4+ T-cells (Th1 and Th17) [18,19]. The presence of pro-inflammatory factors such as
cigarette smoke, bacteria, or viruses in the airways stimulates the epithelium to release cy-
tokines, causing the recruitment and activation of immune cells. This neutrophil-dominated
type of inflammation responds poorly to corticosteroids [20].

Eosinophilic inflammation is characterized by elevated eosinophil counts in the blood
and sputum and the activation of Th2 T-cells. This inflammatory phenotype is associated
with atopic diseases such as allergies and asthma [21] and tends to respond well to treatment
with corticosteroids [22,23]. However, some COPD patients exhibit increased eosinophilic
inflammation, which can be a major driver of COPD. The prevalence of eosinophilic COPD
varies depending on whether or not eosinophilia is measured in sputum or blood as well
as does the definition used for when eosinophils are elevated. Sputum eosinophil counts of
>3% are present in 28–32% [24,25] of COPD patients while blood eosinophil counts of >300
cells/µL are present in 14–24% [26,27]. Patients with a degree of eosinophilic COPD have
been shown to have more frequent exacerbations [28–31], a higher risk of readmission [32]
and better responses to treatment with inhaled corticosteroids (ICS) [28,33–35]. Sputum
eosinophils have a closer association with clinical outcomes such as FEV1 or the exacerba-
tion rate compared to blood eosinophils, though blood eosinophils are well-correlated with
sputum eosinophils [36,37]. However, there are a range of challenges that come with using
sputum eosinophils in clinical practice. Some patients may not be able to spontaneously
produce sputum and will need induction with hypertonic saline. This process may cause
bronchoconstriction in some patients and is thus unsuited to patients with severe airway
obstructions such as during acute exacerbations [38]. Further, sputum induction requires a
high degree of clinical training of health personnel, which makes it less feasible in many
settings. Since COPD patients with eosinophilic inflammation exhibit a combination of
more severe disease and better responses to treatment, this supports the earlier addition
of inhaled corticosteroids to the maintenance therapy of stable COPD. This is reflected in
the GOLD guidelines that favor the use of ICS when blood eosinophil counts are greater
than 300 cells/µL and that favor the withdrawal of ICS when blood eosinophil counts are
below 100 cells/µL [39]. However, an important consideration to be made when using
eosinophils as a biomarker is that they vary over time. In stable COPD, 30–40% of pa-
tients were shown to have eosinophil counts that varied across the 300 cells/µL decision
boundary over time [25,27,40]. Thus, serial eosinophil measurements may give a better
picture of the inflammatory state for this subset of patients, and this opens the door to
the time-updated phenotypic guidance of corticosteroid therapy and thus individualized
reduction in exposure to the suspected unnecessary use of ICS.



Biomedicines 2023, 11, 1395 3 of 13

3. Eosinophil-Guided OCS for Acute Exacerbations

In the treatment of acute exacerbations of COPD (AECOPD), oral corticosteroid (OCS)
plays an important role. In a large meta-analysis of 16 studies (n = 1787), OCS has been
shown to reduce the rate of treatment failure and the rate of relapse and to improve lung
function and breathlessness [41]. However, no effect was seen on 30-day mortality, and
OCS has numerous and severe side effects including an increased risk of infections, mus-
cle weakness, osteoporosis, metabolic dysregulation, diabetes, cataracts, glaucoma, and
gastrointestinal bleeding [42]. Therefore, some randomized trials have been conducted,
examining whether or not blood eosinophils can be used to reduce OCS usage and pre-
vent side effects (Table 1). In one trial, COPD patients with moderate or severe acute
exacerbations were randomized to either receive a course of 30 mg prednisolone once
daily for 14 days or to receive an eosinophil-directed therapy in which the prednisolone
course was only given to patients with blood eosinophil counts of ≥2% at the time of
exacerbation [43]. The eosinophil-guided regimen was found to be non-inferior to the
usual standard of care and reduced corticosteroid use by approximately 50%. The STARR2
trial, which is as of now not published, but presented at the European Respiratory Society
congress in 2022, examined whether or not point-of-care eosinophil measurements can
be used to determine whether or not prednisolone is needed for exacerbations in general
practice. In this study, patients in the intervention group received a placebo instead of
prednisolone for their exacerbations if their blood eosinophil counts were below 2%, while
the control group received prednisolone for 14 days irrespective of their eosinophil count.
The study found no difference in antibiotic or steroid needs after 30 days [44]. The eo-Drive
trial (NCT04234360) is currently ongoing with a design that randomizes patients to receive
either 40 mg prednisolone once daily for 5 days or a placebo. Patients will subsequently
be grouped by blood eosinophil counts with a 2% cutoff in the analysis [45]. Another
ongoing trial (NCT05059873) will randomize patients with blood eosinophil counts of >2%
or >300 cells/µL to a placebo or 40 mg/day oral prednisolone for 5 days in addition to
standard treatment.

Table 1. Overview of trials examining eosinophil-guided therapy in COPD patients with acute exacerbations.

First Author, Year n Population Design Results

Bafadhel, 2012 [43] 164 Patients admitted with
AECOPD.

Double-blinded. Usual care
compared with corticosteroids
given only to patients having

blood eosinophil counts of >2%
at admission.

Only 49% of exacerbations in the
eosinophil-guided group

received corticosteroids. Similar
rates of treatment failure in the

two groups.

Ramakrishnan, 2022
(conference paper) [44] 203 Patients with AECOPD

treated in general practice.

Double-blinded. Usual care
compared with corticosteroids
given only to patients having

blood eosinophil counts of >2%
at the start of treatment.

A total of 34 of the 102 patients
in the eosinophil-guided group

received a placebo. No
differences in rates of treatment

failure.

Sivapalan, 2019 [46] 318 Patients admitted with
AECOPD

Open-label. Usual care
compared with eosinophil

guided using daily
measurements and a

300 cells/µL cutoff for initiating
or terminating treatment

Mean antibiotic exposure
duration was reduced from 5 to
2 days with eosinophil-guided
therapy. No difference in days

alive and out of hospital within
14 days or in 30-day mortality.

The aforementioned studies all look at eosinophils at the beginning of the exacerbation.
This approach is limited by the fact that corticosteroid exposure may cause large changes to
airway inflammation after beginning treatment, and as such, it may be individual, which
patients need, e.g., in the case of 1, 2, or more days of OCS during an exacerbation. The
CORTICO-COP trial accounted for this by using a true time-updated design in which the
blood eosinophilia of study participants in the intervention arm was repeatedly monitored
and treatment was adjusted daily, depending on whether or not blood eosinophil counts
were ≥300 cells/µL [46]. No difference was observed in the primary outcome, days alive
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and out of hospital within 14 days, or the secondary outcome of 30-day mortality. However,
the investigators found a reduced median time with corticosteroid exposure from 5 days to
2 days and a corresponding substantial reduction in the accumulated use of corticosteroids.
This resulted in reduced steroid side effects such as a lower risk of worsening pre-existing
diabetes and a trend towards fewer infections after 90 days.

4. Eosinophil-Guided ICS for Stable COPD

COPD in its stable form is treated with either long-acting beta-adrenergic agonists
(LABA), long-acting muscarine antagonists (LAMA), or both [39]. For some patients, this
regime is insufficient, and they still have frequent exacerbations, so the addition of ICS is
necessary. While ICS is generally safe, ICS can increase exacerbations if patients are not
properly selected [47]. A significant side effect of ICS is an increase in the risk of acute
pneumonia and other respiratory infections such as infection with Pseudomonas aeruginosa
and Hemophilus influenzae [48–51]. COPD patients with Pseudomonas infection have
a highly increased risk of death [49]. Other side effects known from OCS have been
proposed to occur through the systemic uptake of ICS such as in the case of diabetes [52],
cataracts [53], and psychiatric effects [54,55], though the evidence is less conclusive.

While post hoc data from several large trials support the notion that ICS should be
preferentially given to patients with high blood eosinophil counts [28,34,56], there is no
prospective trial evidence. A 2007 trial of 82 patients used a protocol in which patients
were randomized to either receive treatment according to the guidelines of the British
Thoracic Society (BTS) at the time [57] or an algorithm in which bronchodilator treatment
was determined by symptom severity, while corticosteroid therapy was determined by
sputum eosinophil counts. Treatment was adjusted monthly for the first 6 months and
then every two months for the following 6 months. This protocol led to a reduction in
the frequency of severe exacerbations from 0.5 per year to 0.2 per year in the eosinophil-
guided group compared to the control group. However, there was no reduction in oral
corticosteroid use and no significant difference in the mean change in the daily ICS dose
from the baseline [58]. As the guidelines followed in the control group did not consider
eosinophils when assigning ICS treatment, it is not possible to compare the effects of
time-updated therapy compared to the effect of simply assigning ICS to patients with an
eosinophilic phenotype.

5. Future Perspectives of Eosinophil-Guided Treatment

While eosinophil-guided treatment has been shown to be a safe way to reduce cor-
ticosteroid exposure, very few of the current studies consider the significant variability
of blood eosinophils over time [27]. Most have relied on a single measurement to deter-
mine the inflammatory endotype and thus treatment. While this approach is effective, it
is likely that time-updated treatment guidance can further improve patient selection for
corticosteroids. The currently ongoing COPERNICOS trial (NCT04481555) is the first trial
of blood eosinophils as a treatment response marker for ICS with a time-updated design.
It uses a protocol in which patients in the control group will receive usual treatment with
ICS/LAMA/LABA while patients in the intervention group will have their ICS switched
on or off every three months based on a blood eosinophil count cutoff value of 300 cells/µL
with the aim of reducing corticosteroid exposure and side-effects while being non-inferior
to current treatment guidelines [59].

6. Procalcitonin as a Biomarker in Respiratory Infections

Procalcitonin (PCT) is a 116 amino acid peptide that was first discovered as the
precursor to the peptide hormone calcitonin [60,61]. In its endocrine function, PCT is
synthesized in the parafollicular C cells of the thyroid as a response to high calcium levels
where it undergoes enzymatic processing and is secreted in the form of calcitonin acting
on calcium homeostasis (Figure 1) [62]. Practically all PCT synthesized in the thyroid is
converted to calcitonin, consequently leading to low levels of circulating PCT in the order
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of 0.01–0.05 ng/mL in the absence of disease [63]. However, during bacterial infections,
PCT was found to be elevated in blood with no effect on calcitonin and declined rapidly
once the infection was cleared with antibiotic therapy [64]. The mechanism of this increase
in blood PCT is not entirely clear but sepsis was found to induce transcription of PCT
mRNA in a range of tissues including the brain, colon, pancreas, white blood cells, spleen,
and adipose tissue [65]. Patients who have undergone thyroidectomy still show an increase
in PCT [66]. This led to a hypothesis that infection-related PCT does not follow the thyroid–
calcitonin pathway but is instead synthesized through a distinct pathway [63]. A study
on humans found that injection of endotoxin causes an increase in PCT levels [67] and
experiments in cultured human mononuclear white blood cells found that interleukin
1 beta (IL1-β), IL6, tumor necrosis factor-α, and IL2, all caused an expression of PCT [68].
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and in its endocrine function as a precursor to calcitonin. In its endocrine function, procalcitonin is
created by C-cells of the thyroid as a response to high calcium levels and immediately processed into
calcitonin. During infection, procalcitonin is created in a range of tissues and directly secreted into
the bloodstream.

C-reactive protein (CRP) is a widely used biomarker for the detection and evaluation
of treatment response during infections [69]. However, this biomarker has many drawbacks.
It is not specific to bacterial infection and is instead more of a general inflammatory marker
which can be elevated due to viral infection as well as a range of non-infectious causes such
as autoimmune disease, trauma, malignancy, and necrosis [70]. CRP responds relatively
quickly with a peak at about 24–72 h after stimulation but is poorly suited to evaluating
when to terminate antibiotic treatment as there is a significant delay of several days from
the end of the acute phase until CRP normalizes [71]. PCT has several advantages to
CRP in this regard. A meta-analysis found a specificity of PCT for bacterial infection of
81% (95% CI, 67–90%) compared to that of 67% (95% CI, 56–77%) for CRP and found a
sensitivity of PCT of 88% (95% CI 80–93%) compared to that of 75% (95% CI, 62–84%) for
CRP. Furthermore, PCT was also more sensitive at discerning viral infections from bacterial
infections, though specificities were comparable [72]. A PCT increase is detectable after
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only 3–4 h with a peak after 24 h and due to its short half-life of 24 h, it rapidly decreases
when the infection is controlled [73]. In the context of COPD, it is also relevant that PCT is
unaffected by corticosteroid treatment, while there is some evidence that CRP levels are
suppressed [74,75]. This makes PCT a promising candidate for time-updated phenotypic
guidance. PCT was initially tried in the context of sepsis and critical illness, but the
evidence is also promising in the context of lower respiratory tract infections and COPD [76].
In COPD especially, there is a strong demand for a good biomarker to guide antibiotic
treatment, as it can be difficult to discern causes of exacerbation. Better identification of
bacterial exacerbations would both benefit patients by ensuring proper antibiotic treatment
when needed, but also reduce antibiotic exposure, side effects, and resistance.

7. Procalcitonin Guidance to Reduce Antibiotic Exposure in Acute Exacerbations
of COPD

Antibiotics are generously used for patients hospitalized with AECOPD, and often,
antibiotic exposure exceeds guidelines [77]. Antibiotics should be used with caution, as it
is associated with an increased risk of infections such as Clostridium difficile [78] infection
and adds to the global threat of microbial resistance [79]. For this reason, there has been
great interest in using PCT as a biomarker to reduce antibiotic exposure when treating
respiratory infections (Table 2).

The randomized controlled trial proHOSP included 1359 patients with acute lower
respiratory tract infections, of which 533 (39.2%) had COPD. They measured PCT on days
1, 3, and 7 of the admission and adjusted antibiotics based on whether PCT was above or
below 0.25 µg/L. There were no differences in mortality, rehospitalization, or intensive care
admissions, neither in the total population, nor in the subset of COPD patients. However,
antibiotic prescriptions for COPD exacerbations were reduced from 69.9% to 48.7% and the
mean duration of intravenous therapy was reduced from 1.9 to 1.3 days. The trial had high
adherence to the protocol, which was overruled in only 10.4% of COPD exacerbations [80].
The proACT trial (n = 1656) used a similar design with the same thresholds for PCT, also
measuring on days 1, 3, and 7 [81]. It also found no difference in adverse outcomes, but
unlike proHOSP, there was no reduction in antibiotic exposure. A possible explanation
of these differences could be that the protocol’s adherence was much lower in proACT
compared to proHOSP. The adherence was close to 100% when the protocol recommended
antibiotic treatment, but when the algorithm recommended against antibiotic treatment
the adherence was generally around 60%. That was the case even with PCT <0.1, and the
algorithm thus strongly recommends against antibiotics. The overall adherence for the
treatment of COPD was 49.2%. The adherence was particularly low on days 3, 5, and 7.
Furthermore, only 45.8% of patients in the PCT-guided group were admitted to the hospital.
Only admitted patients received serial PCT monitoring, which also reduced the subset
of patients for which the algorithm was used to terminate antibiotic treatment. In the
proHOSP trial, days 3, 5, and 7 accounted for a large part of the difference in antibiotic
exposure between the PCT-guided group and controls. Due to the low number of patients
in proACT receiving serial measurements and the low protocol adherence among those,
only a small subset of patients could benefit from PCT-guided antibiotic termination and
the trial may thus have been insufficiently powered to show the changes among this small
subset, despite the large number of patients included overall.

Several other trials have explored this type of design in COPD patients [82–85]. Most
have used a threshold of 0.25 µg/L, such as the proHOSP trial, repeatedly measuring
PCT and encouraging antibiotics above the threshold and discouraging it below. A few
trials additionally strongly favored antibiotics for PCT >0.5 and strongly discouraged it
for PCT <0.1 [80,82,83]. Some trials included only COPD patients, while others included a
broader population of patients with respiratory tract infections but presented analyses in the
subset of COPD patients. All trials were either open-label or single-blinded. Generally, this
approach was successful in reducing antibiotic exposure with no effect on hospitalization
or mortality. In one PCT-guided RCT of 120 patients hospitalized with AECOPD, there was
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a median reduction in antibiotic exposure of 5 days (3.5 days vs. 8.5 days) using a point-
of-care PCT test and a treatment algorithm with four cut-offs [83]. However, adherence
to the protocol varied across trials. One trial followed the protocol recommendations in
only 61% of patients in the PCT-guided group [83]. The situation of physicians prescribing
antibiotics against the algorithm is especially important, as these patients could have
experienced adverse outcomes had the recommendation been followed. A 2017 meta-
analysis of eight studies in COPD patients (n = 1062), including the aforementioned, found
that PCT guidance reduced antibiotic exposure by 3.8 days (95% CI 4.32–3.35) with no
differences in mortality, re-exacerbation, or readmission [16]. However, the overall quality
of the evidence was low to moderate. A French trial published after this meta-analysis
included 302 patients admitted to the ICU for AECOPD and found that PCT-guided therapy
increased mortality from 12% in the control group to the increase of 31% in the PCT-guided
group, with p = 0.015, indicating that PCT guidance is less appropriate for severely ill
patients [86].

Two randomized trials in COPD patients used a design in which PCT was assessed
only at the beginning of the exacerbation. One trial (n = 457) found no effect of antibiotics
versus no antibiotics for patients with AECOPD and PCT < 0.1 µg/L, though the study
excluded febrile patients and patients with pneumonia [87]. Another study in (n = 210)
patients with suspected respiratory infections, 89 of which had COPD, used a threshold
of 0.25 µg/L to decide whether or not to use antibiotics [88]. They found no differences
in clinical outcomes and a reduction in antibiotic exposure of 40% among the COPD
patients. However, sequential PCT measurements should be preferred as measuring PCT at
admission does not aid decision-making on when to terminate antibiotic treatment, which
is particularly relevant in the setting of infections as patient responses to treatment can
vary greatly, necessitating different treatment durations.

In addition to the evidence in COPD-patients, there is strong evidence of the benefits
of PCT-guided therapy when treating respiratory infections in a more general population
of whom only some have COPD. A patient-level meta-analysis of 26 trials with a total
of 6708 patients included examined PCT-guided antibiotics for respiratory infections in
a general population of whom only some had COPD. This analysis found a significant
reduction in mortality at 30 days (9% died with PCT-guided therapy vs. 10% of the controls
who died; adjusted odds ratio: 0.83; 95% CI: 0.70 to 0.99) and a reduction in antibiotic
exposure from 8.1 days to 5.7 days (95% CI: −2.71 to −2.15) with PCT-guided therapy [89].

A limitation of PCT is that it, like CRP, can respond to non-infectious causes such as
trauma, malignancy, or kidney disease. Consequently, some patients have higher baseline
levels and respond differently to infections, making it difficult to create universal cut-off
levels [90]. This consideration is also present in COPD patients which may have chronic
inflammation and sometimes bacterial colonization, potentially influencing baseline PCT
levels [91]. Furthermore, a sub-study of a clinical trial examining the addition of doxycycline
to prednisolone in the treatment of AECOPD found that patients with PCT <0.1 ug/L still
experienced beneficial effects with antibiotics [92]. Thus, there is still some uncertainty
as to how well the results from the selected populations and controlled circumstances of
clinical trials will translate to day-to-day practice.

Table 2. Overview of trials examining PCT-guided therapy in COPD patients.

First Author, Year n with COPD Population Intervention Design Results among COPD Patients with
PCT-Guided Therapy

Christ-Crain, 2004 [82] 60/243
Emergency department patients

with suspected lower
respiratory tract infections.

Open-label. PCT measured at
admission and after 6–24 h. PCT

cut-offs at 0.1, 0.25, and 0.5 µg/L. *

A 56% reduction in antibiotics
prescription. No difference in risk of

death, readmission, or future
exacerbations.
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Table 2. Cont.

First Author, Year n with COPD Population Intervention Design Results among COPD Patients with
PCT-Guided Therapy

Corti, 2016 [83] 120 Patients admitted with
AECOPD.

Open-label. PCT measured
sequentially at admission and on

days 3, 5, and 7. PCT cut-offs at 0.1,
0.25, and 0.5 µg/L. *

Antibiotic exposure reduced from
8.5 days (IQR 1–11) to 3.5 days

(IQR 1–10). No difference in
composite endpoint of death,

rehospitalization and ICU admission
within 28 days.

Daubin, 2018 [86] 302 COPD patients admitted to ICU
with AECOPD

Open-label. PCT measured
sequentially at admission and on
days 3 and 5. PCT cut-offs at 0.1,

0.25, and 0.5 µg/L. *

PCT-guided therapy increased
mortality from 12% in the control

group to 31% in the
PCT-guided group.

Huang, 2018 [81] 524/1656
Emergency department patients

with suspected lower
respiratory tract infections.

Open-label. PCT measured
sequentially at admission and on

days 3, 5, 7. PCT cut-offs at 0.1, 0.25,
and 0.5 µg/L. *

No difference in antibiotic
prescriptions. No differences in

composite outcome of death,
ICU admission and readmission.

Kristoffersen, 2009 [88] 89/120
Patients admitted with

suspected lower respiratory
tract infections.

Open-label. PCT measured at
admission. PCT cut-off at

0.25 µg/L. **

Antibiotic exposure reduced from
6.8 (95% CI 5.9–7.7) days to

5.1 (4.4–6.0) days among all patients
included. No difference in ICU

admission or death.

Schuetz, 2009 [80] 533/1359
Emergency department patients

with suspected lower
respiratory tract infections.

Open-label. PCT measured at
admission, discharge and on days 3,
5 and 7. PCT cut-offs at 0.1, 0.25, and

0.5 µg/L. *

Antibiotic prescription rates reduced
from 69.9% to 48.7%. No difference

in composite outcome of death,
ICU admission, reinfection, abscess

formation, and empyema within
30 days.

Stoltz, 2007 [84] 226 Patients admitted with
AECOPD.

Open label. PCT measured at
admission. Antibiotics discouraged

at PCT of <0.1 µg/L and encouraged
at PCT of >0.25 µg/L.

Antibiotic prescription rate reduced
from 72% to 40%. No difference in

composite of self-reported
symptoms and death.

Verduri, 2015 [85] 183 Patients admitted with
AECOPD.

Open-label. PCT measured on days
1,2 and 3. Antibiotics stopped on
day 3 if all measurements were

<0.1 µg/L, or if all measurements
were <0.25 and the patient was

clinically stable.

In total, 45 of 88 patients in the
PCT-guided group received

treatment for 3 days rather than 10.
No difference in re-exacerbation rate.

Wang, 2016 [87] 194
Patients admitted with
AECOPD and PCT of

<0.1 µg/L.

Open-label. PCT of <0.1 was a
criterium for inclusion. Randomized
to either antibiotics or no antibiotics.

No differences in self-reported
symptoms, length of stay,

ICU admission, mortality or
rehospitalization.

* Antibiotics strongly discouraged at PCT < 0.1, discouraged at PCT < 0.25, encouraged at PCT > 0.25, and strongly
encouraged at PCT > 0.5. ** Antibiotics discouraged at PCT < 0.25, and encouraged at PCT > 0.25.

8. Conclusions

There is an increasing body of evidence that supports that time-updated phenotypical
treatment guidance can carry some pronounced benefits for patients and societies. Procalci-
tonin is a promising candidate for guiding the antibiotic therapy of AECOPD with evidence
from several large well-designed trials using a time-updated design. Blood eosinophil
measurements have proven to be successful in guiding the use of oral corticosteroids in
moderate and severe COPD exacerbations, and post hoc analyses from large trials indicate
that it could be a viable biomarker to use to guide ICS treatment as well. However, unlike
procalcitonin, few studies account for the temporal variability of eosinophils levels. The
CORTICO-COP trial has shown that daily monitoring of blood eosinophils is a safe and
effective way to reduce OCS exposure and side effects for acute exacerbations. No time-
updated studies have been completed for treatment with ICS in the stable phase of COPD,
but an ongoing trial is testing this approach.
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