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Abstract: Background: Hepatic fibrosis is a major health problem all over the world, and there is
no effective treatment to cure it. Hence, the current study sought to assess the anti-fibrotic efficacy
of apigenin against CCls-induced hepatic fibrosis in mice. Methods: Forty-eight mice were put
into six groups. G1: Normal Control, G2: CCly Control, G3: Silymarin (100 mg/kg), G4 and G5:
Apigenin (2 &20 mg/Kg), G6: Apigenin alone (20 mg/Kg). Groups 2, 3, 4, and 5 were given CCly
(0.5 mL/kg. i.p.) twice/week for six weeks. The level of AST, ALT, TC, TG, and TB in serum and
IL-1B, IL-6, and TNF-o in tissue homogenates were assessed. Histological studies by H&E staining
and Immunostaining of liver tissues were also performed. Results: The CCly-challenged group
showed increased serum AST (4-fold), ALT (6-fold), and TB (5-fold). Both silymarin and apigenin
treatments significantly improved these hepatic biomarkers. The CCly-challenged group showed
reduced levels of CAT (89%), GSH (53%), and increased MDA (3-fold). Both silymarin and apigenin
treatments significantly altered these oxidative markers in tissue homogenates. The CCly-treated
group showed a two-fold increase in IL-1@3, IL-6, and TNF-« levels. Silymarin and apigenin treatment
considerably decreased the IL-1§3, IL-6, and TNF-« levels. Apigenin treatment inhibited angiogenic
activity, as evidenced by a decrease in VEGF (vascular endothelial growth factor) expression in liver
tissues, and a decline in vascular endothelial cell antigen expression (CD34). Conclusions: Finally,
these data collectively imply that apigenin may have antifibrotic properties, which may be explained
by its anti-inflammatory, antioxidant, and antiangiogenic activities.

Keywords: liver; fibrosis; Apigenin; oxidative stress; inflammation; angiogenesis; VEGF

1. Introduction

Hepatic fibrosis is a healing mechanism of the liver that manifests after a sustained
liver injury. The extracellular matrix (ECM) accumulates in place of hepatocytes during
this phase of healing [1,2]. Over two million people die from liver disease each year in
the world, including one million who die from cirrhosis complications, one million from
viral hepatitis, and one million from hepatocellular carcinoma. Together, cirrhosis and liver
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cancer cause 3.5% of all deaths globally, ranking as the 11th and 16th most frequent causes
of death worldwide, respectively [3]. Liver diseases are classified as fatty liver (hepatic
steatosis), fibrosis, cirrhosis, or cancer based on the pattern of hepatocellular injury [4]. One
of the most prevalent chronic liver diseases is fatty liver, commonly referred to as hepatic
steatosis, which affects around one-fourth of the world’s population. By 2030, it is expected
to become the main reason people need liver transplants, overtaking other liver diseases.
This will have a big effect on the health of the whole world. Approximately 40% of patients
with hepatic steatosis disease will develop liver fibrosis [5]. In addition, if advanced
fibrosis is not treated, it can lead to irreversible cirrhosis, which can cause hepatic failure or
cancer [6]. Liver cirrhosis is characterized by a high risk of mortality, and transplantation
is the only viable treatment [7]. Hepatic fibrosis is a pathological process of healing from
chronic liver damage and is characterized by abnormal connective tissue growth in the
liver induced by many pathogenic components. Hepatic fibrosis was once thought to be
irreversible due to the accumulation of collagen and the collapse of the parenchyma. In
reality, hepatic fibrosis is reversible, and liver damage frequently includes an HF process
as the liver heals and repairs itself. Li et al. (2022) reported that hepatic fibrosis will lead
to permanent cirrhosis or even liver cancer if the causes of damage are not eliminated
over a long period of time [8]. Recent research has indicated that the early phases of liver
diseases, steatosis and fibrosis, can be cured [9,10]. Both oxidative stress and inflammation
are linked to fibrotic diseases [11]. A healthy liver can eliminate various oxidants through
both enzyme- and non-enzyme-based reactions. Oxidative stress has a significant impact
on liver fibrosis and liver damage. A discrepancy among the pro-oxidant and antioxidant
cellular components is directly associated with the generation of reactive nitrogen species
and reactive oxygen species. However, oxidative stress reduces the antioxidant capacity of
the liver [12]. Consequently, reactive free radicals destroy essential biological molecules
and activate an inflammatory response, which ultimately causes cell necrosis [13].

Hepatocytes, hepatic stellate cells (HSC), Kupffer cells, and hepatic sinusoidal en-
dothelial cells are some of the cells that contribute to the initiation and development of
fibrosis. Hepatic stellate cells are primarily responsible for fibrogenesis. Apoptotic bod-
ies and other tissue factors released by damaged hepatocytes activate macrophages and
chemokines. Furthermore, Kupffer cells, liver-specific macrophages, will produce pro-
inflammatory cytokines. Non-alcoholic fatty liver disease is primarily caused by the release
of pro-inflammatory cytokines from Kupffer cells, like TNF-«, IL-1$3, and IL-6 [14,15].
These cytokines have a relationship with the activation and growth of HSCs, the main
fibrogenic cells in hepatic fibrosis [16,17]. Moreover, ECM proteins can trigger cytokines
and chemokines, amplifying inflammatory activity [18]. Pathological angiogenesis is a
crucial component of chronic wound healing in the body [19]. Many investigations have
confirmed the link between angiogenesis, hypoxia, and liver fibrosis [20,21]. Due to the
high disposition of ECM in the fibrotic liver, venous resistance exceeds compensatory
capability and restricts oxygen supply (hypoxia). Recent studies have shown that hypoxia
greatly accelerates the progression of liver fibrosis. Hypoxia activates the transcription of
proangiogenic genes like vascular endothelial growth factors [22,23]. Consequently, VEGF
binds to receptors on endothelial cells (EC) to regulate the formation and proliferation of
vascular tissues [24]. Nevertheless, persistent hypoxia enhances collagen synthesis and
fibrosis by overproducing proangiogenic factors [21]. Antifibrotic treatments with mild side
effects are not yet available for clinical use. The natural products are safer, more effective
hepatoprotective drugs [25,26].

Apigenin is a flavone with anti-inflammatory and antioxidant properties [27-29].
Notably, apigenin suppresses angiogenesis in diverse disease models by inhibiting VEGF
expression [30,31]. It has an excellent safety profile and no significant toxicities even at
high doses [32]. Remarkably, apigenin is reported to experimentally reduce induced liver
fibrosis by inhibiting angiogenesis [33].

Overall, fibrosis and subsequent organ failure account for at least one-third of all
disease-related mortality worldwide. Hence, deciphering the molecular mechanism of liver
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fibrosis and determining crucial treatment targets are critical issues that must be addressed
promptly. The development and progression of liver fibrosis are greatly influenced by
oxidative stress, inflammation, and angiogenesis. This study evaluated the anti-fibrotic
potential of the dietary flavonoid “apigenin” to address this problem. A mouse model of
carbon tetrachloride (CCly)-induced hepatic fibrosis has been widely used to produce liver
fibrosis and is one of the most useful models for studying the underlying molecular causes
of liver fibrosis. Therefore, this study was designed to explore the anti-fibrotic efficacy
using the CCly model and the specific molecular mechanism of apigenin with respect to
the modulation of oxidative stress, inflammation, and fibrogenesis. To better understand
the angiogenesis pathway, immunohistochemical detection of vascular endothelial growth
factor (VEGF) and vascular endothelial cell antigen (CD34) has been assessed.

2. Materials and Methods
2.1. The Chemicals and Drugs

Merck® (St Louis, MO, USA) supplied all drugs and chemicals, including apigenin
(Cat. #: 178278), silymarin (Cat. #: 50292), CCly (Cat. #: 270652), and propylene glycol (PG)
(Cat. #: PHR1051). The rest of the chemicals were of the purest and best quality obtained
from commercial companies.

2.2. Animals

Swiss albino (SWR) male mice weighing 30 £+ 5 g were obtained from the animal
breeding house at the KFMRC (King Fahad Medical Research Centre) of King Abdulaziz
University, Jeddah, Saudi Arabia (KSA). Mice were kept at 25 °C in an air-conditioned room
with a persistent light/dark cycle. Mice received unlimited clean water and standard feed.
The experimental plan was approved by the institutional Ethical Committee for Research
at KAU (Approval No. 518-18).

2.3. Experimental Protocol

Forty-eight mice were acclimatized and arbitrarily segregated into six groups with
eight mice in each. Mice were treated for six weeks as per the following schedule. Group
1 (Normal Control Group): The mice received 2 mL/kg of corn oil by intraperitoneal
route two times weekly on alternating days, and 7 mL/kg of propylene glycol (PG) via
oral gavage (0.g.) three times weekly. Group 2 (toxic control group): The mice received
0.5 mL/kg of CCly and a corn oil (1:4) mixture by intraperitoneal route two times per week,
and PG (7 mL/kg via oral gavage (0.g.)) three times weekly, alternating with CCly. Group 3
(CCly + silymarin-treated group): The mice received 0.5 mL/kg of CCly and a corn oil (1:4)
mixture by intraperitoneal route two times per week, and silymarin (100 mg/kg) dissolved
in PG via oral gavage (0.g.) three times weekly, alternating with CCly. Group 4 (CCly +
treated with low dose of apigenin): The mice received 0.5 mL/kg of CCly and a corn oil (1:4)
mixture by intraperitoneal route two times per week, and apigenin (2 mg/kg) dissolved in
PG via oral gavage (0.g.) three times weekly on alternate days with CCly. Group 5 (CCly
+ treated with high dose of apigenin): The mice received 0.5 mL/kg of CCly and a corn
oil (1:4) mixture by intraperitoneal route two times per week, and apigenin (20 mg/kg)
dissolved in PG via oral gavage (0.g.) three times weekly on alternate days with CCly.
Group 6 (apigenin-alone treated group): Mice were given apigenin (20 mg/kg, o.g.) three
times weekly, alternated with corn oil (2 mL/kg, i.p.) two times weekly. Injections of CCly
(0.5-0.7 mL/kg, i.p.) dissolved in a corn oil mixture at a ratio of 1:4, given twice weekly for
six weeks, could cause liver fibrosis in mice [34]. Using the body surface area index, the low
dose of apigenin (2 mg/kg) was found to be the same as the daily recommended amount
of flavonoids for humans. Ullah et al., 2020, reported that flavonoids have anticancer,
antioxidant, anti-inflammatory, and immune-modulating effects [35]. In an acute toxicity
study on male Swiss mice, apigenin was found to impair liver function and likely be
hepatotoxic at doses higher than 50 mg/kg, which is far higher than the doses selected
in this investigation [36]. Nevertheless, silymarin (100 mg/kg) was similar to what was
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described in the published literature on experimentally induced liver fibrosis [37,38]. As
reported in previous studies, there was no toxicity or hepatoprotection from the given
volume of propylene glycol (10 mL/kg) [39,40]. At the termination of the study, mice
were anesthetized by ether inhalation, and blood samples were taken from the retro-orbital
plexus, carefully centrifuged, and kept at —30 °C. Afterwards, all mice were then sacrificed
by a simple cervical dislocation technique, and their liver samples were carefully harvested.
A part of the liver samples from each group was then properly preserved in formalin
buffered saline (10%) for immuno-histochemical and histopathological analyses. The
remaining liver tissues were minced into small pieces and thoroughly rinsed in ice-cold
phosphate buffered solution (PBS) (pH 7.4) to get rid of any excessive blood. The liver
tissues were then weighed and homogenized with a suitable amount of PBS in an ice-cold
IKA T-25 tissue homogenizer to produce a 1:10 homogenate. The homogenates are then
centrifuged for a duration of five minutes at 5000 g to obtain the supernatant liquid,
which is subsequently kept at —80 °C for use in future biochemical investigations.

2.4. Evaluation of Biomarkers of Liver Functions

The serum levels of aspartate aminotransferase (AST) and alanine aminotransferase
(ALT), total cholesterol (TC), triglycerides (TG), and total bilirubin (TB) were determined us-
ing biochemical kits obtained from Bio-diagnostic® for the assessment of the liver functions
(Giza, Egypt).

2.5. Histopathological Assessment of the Liver Tissues

The tissue fixation, staining, and histological examination of liver tissues were done
according to the standard procedure [41]. Briefly, the samples of liver tissue were preserved
in a 10% buffered formalin solution. The paraffin blocks of preserved liver tissues were
prepared. The cutting of the paraffin-embedded liver tissues was carried out with a micro-
tome. The four-micron (4 um) thick sections were prepared, and these liver sections were
transferred onto clean glass slides and then properly stained using different types of stain-
ing, such as haematoxylin-eosin (H&E) for routine histopathology and Masson'’s Trichrome
staining to confirm the magnitude of the collagen fibers in the liver tissues. Finally, the
stained slides were carefully examined and photographed under X100 magnification using
a light microscope (NikonEclipse 50i, Nikon Corporation, Tokyo, Japan).

2.6. Assessment of Oxidative Stress Biomarkers

A liver piece was thoroughly homogenized in a phosphate buffer solution (0.1 M;
pH 7.4) and then centrifuged for a duration of fifteen minutes at 10,000 rpm while main-
taining a 4 °C temperature. The clear supernatant was separated, and it was used for
the estimation of antioxidant enzymes like reduced glutathione (GSH), catalase (CAT),
and hepatic concentration of malondialdehyde (MDA) as a marker of lipid peroxidation
(LPO) by the method of Amir et al., 2016 [42]. The activities of these antioxidant enzymes
were determined in the supernatant with the help of biochemical commercial kits obtained
from Bio Diagnostic® (Giza, Egypt). The obtained results were finally expressed per mg of
tissue protein.

2.7. The Assessment of Inflammatory Biomarkers

The hepatic concentration of inflammatory biomarkers like Interleukin-1f (IL-1f3),
Interleukin-6 (IL-6), and Tumor Necrosis Factor Alpha (TNF-«) in tissue homogenates was
determined by Enzyme linked immunosorbent assay (ELISA) kits (Elabscience®, Houston,
TX, USA) by following the manufacturer’s instructions. The obtained data were precisely
expressed per mg of tissue protein.

2.8. Immunohistochemical Assessment of Angiogenic Biomarkers

Immunostaining was carried out according to Buchwalow and Bocker (2010) to detect
the constituents of rabbit polyclonal antibodies for both VEGF (Cat. #: ab53465, Abcam
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plc., Cambridge, UK) and CD34 (Cat. #: ab185732, Abcam plc., Cambridge, UK) [43].
First, four-micron-thick sections were sliced from the paraffin blocks, deparaffinized, and
rehydrated using xylene then ethanol solutions. Then, a heat-induced epitope retrieval
method was used to retrieve the antigen. Slides were then blocked in a normal serum (10%)
containing 1% bovine serum albumin (BSA) in tris-buffered saline for two hours after being
rinsed in TBS plus (0.025%) triton X-100 for 10 min with gentle agitation.

In the following step, slides were immunostained with one of the targeted rabbit
polyclonal antibodies at 1 pug/mL concentration, which was diluted in TBS with 1% BSA
and then incubated for an overnight period at the temperature of 4 °C. The following day,
the slides were gently agitated for 10 min while being properly washed with TBS plus
(0.025%) Triton X-100. Slides were then exposed to goat anti-rabbit HRP-linked secondary
antibody (Cat. #: ab205718), and the slides were yet again incubated at normal room
temperature for a period of one hour. After a quick second wash, a substrate solution
(0.02%) of diaminobenzidine (DAB) containing (0.01%) hydrogen peroxide (H,O,) was
added to the slides and incubated for 5 min, producing a brown product at the site of the
desired antigen. Then, haematoxylin was used as a counterstain, and slides were then
dehydrated, cleared, and covered with a glass slip. Finally, positive slides were visualized
under an X-100 magnification light microscope (Nikon Eclipse 50i, Nikon Corporation,
Tokyo, Japan). Quantitative analysis was carried out as Optical Density (OD), using Image]J
software (1.48a, NIH, Bethesda, MA, USA).

2.9. Protein Determination

The total protein content of tissue homogenates was assessed by the bicinchoninic acid
(BCA) method using commercial kits (Thermo Scientific™ Pierce™, Cat. #:23225, Rockford,
IL, USA).

2.10. Statistical Analysis

The one-way analysis of variance (ANOVA) and Tukey’s post-hoc tests were used to
conduct the statistical analysis. The obtained data were presented as mean + S.D., and
a p-value < 0.05 was then considered as statistical significance. The statistical analyses
were accomplished with the help of the GraphPad Instat® software package (Version-3.06).
Graphs were created using GraphPad-Prism® software (GraphPad-Software, LLC, San
Diego, CA, USA, Version-8).

3. Results
3.1. Assessment of Liver Functions

There was a substantial increase in the levels of serum AST (4-fold) and ALT (6-fold)
in the CCly-challenged group in comparison to the normal control group. In addition, TC
and TG were also significantly elevated by almost twofold and TB by more than fivefold
in the CCly-challenged group in comparison with the normal control group. In contrast,
treatment with silymarin significantly reduced the elevated serum levels of ALT, AST, TC,
and TG as compared to the CCly-challenged group. Interestingly, the effect of silymarin on
almost all liver function biomarkers was found to be significantly superior to the apigenin-
treated groups. Both doses of apigenin (2 mg/kg and 20 mg/kg) exhibited significant
dose-dependent effects on the level of serum AST and ALT activities as compared with
the CCly-intoxicated group. However, the apigenin (2 mg/kg) did not significantly alter
the level of serum TC and TG levels as compared with the CCls-intoxicated group, while
it significantly decreased TB concentrations by 38% compared with the CCly-challenged
group. Nevertheless, apigenin at 20 mg/kg significantly reduced the serum levels of TC,
TG, and TB as compared to the CCly-challenged group. Remarkably, apigenin-alone-treated
animals revealed no statistically significant differences from the normal control group in
any biomarkers (Table 1).
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Table 1. Effect of apigenin on serum alanine aminotransferase (ALT) and serum aspartate amino-
transferase (AST) activities, level of serum total cholesterol (TC), serum triglycerides (TG), and serum

total bilirubin (TB) levels in CCly-induced hepatic fibrosis in mice.

Groups Treatments ALT AST TC TG B
P (U/L) (U/L) (mg/dL) (mg/dL) (mg/dL)
Group-1 Normal Control 19.83 +2.76 33.92 4+ 5.67 82.17 + 7.64 97.27 + 5.93 0.31 4 0.04
Group-2 CCly Control 120672 4894  148.08°+9.85 15922 +10.02 2041241248 1722 +0.14
CCly +
Group-3 Silymarin 35162 +£549  56.322P +576  9255P +750 12072 +£65 059" +0.08
(100 mg/kg)

_ CCly + Apigenin 86.03 b 4 97.98 abe 4 ac ac aby
Group-4 (2 mg/Kg) 562 605 158.152€ +7.62  20242¢+102  1.06 *P< £ 0.09
_ CCly + Apigenin ab 73.55 ¥bc 4 111.6 ¥ + 157.8 #bc + abc
Group-5 (20 mg/Kg) 46.15 20 +4.97 =g 865 7 68 0.76 #¢ 4 0.10
Group-6 Apigenin Alone o) 3ybe 397 3p50bc £ 663 8025P+ 404  9842D<+835  0.31° 4004

(20 mg/Kg)

Data are displayed as Mean + S.D. (1 = 8); a: significantly different from the corresponding control at p < 0.05; b:
significantly different from the corresponding CCly-challenged group at p < 0.05; c: Significantly different from
the corresponding silymarin-treated group at p < 0.05; CCly; carbon tetrachloride.

3.2. Findings of Histopathological Analysis
3.2.1. Haematoxylin and Eosin (H&E)

To further confirm the induction of hepatotoxicity and the effects of various treatments
on hepatotoxicity, as shown in Figure 1, histopathological evaluation of the hepatic tissues
of all treated groups was performed. The normal control group’s liver sections showed
normal hepatocellular structural architecture, vesicular nuclei, and eosinophilic cytoplasm
(Figure 1A). Conversely, sections from the CCly-challenged group displayed a clear dilated
central vein with cell degeneration and vacuolization. Moreover, the area around the portal
vein also displayed significant inflammatory cell infiltration (Figure 1B). However, the
CCly-challenged rats treated with silymarin showed minor alterations to the hepatic tissue
and no infiltration of inflammatory cells (Figure 1C), while the group treated with low
doses of apigenin (2 mg/kg) showed moderate centrilobular degeneration (Figure 1D).
Furthermore, only minor alterations and no inflammatory cell infiltration were visible in
the liver tissue of the CCly-challenged rats treated with high doses of apigenin (20 mg/kg)
(Figure 1E). The group that was just given apigenin did not exhibit any changes to the
typical hepatocellular architecture (Figure 1F).

3.2.2. Masson’s Trichrome

This type of staining was used for the histological evaluation of liver fibrosis, as
collagen fibers appeared in blue (Figure 2). In the control group sections, there were normal
levels of collagen fibers throughout the hepatic tissue (Figure 2A). In contrast, the CCly-
challenged group revealed extensive interlobular collagen deposition. In addition, intense
blue-stained content was appearing around the central vein (Figure 2B). CCly-intoxicated
animals treated with silymarin or low-dose apigenin (2 mg/kg) demonstrated a moderate
degree of collagen fibers surrounding the central vein (Figure 2C,D). In contrast, the animals
treated with large doses of apigenin (20 mg/kg) showed minimal collagen fiber content in
the tissue (Figure 2E), while the apigenin-only treated group exhibited a normal degree of
collagen fibers in the hepatic tissue, the same as the control group (Figure 2F).
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12 pm

Figure 1. Representative photomicrographs of liver sections stained by H&E (X100). (A) Control
group showing normal hepatocellular architecture; (B) CCly-challenged group showing dilated
central vein (Dil. CV) with cell degeneration (Deg.), vacuolization, and inflammatory cell infiltration
around the portal vein (yellow arrows), (C) CCly + silymarin-treated group showing minimal changes
in hepatic tissue, (D) CCly + Low-dose apigenin-treated group showing moderate centrilobular
degeneration, (E) CCly + High-dose apigenin-treated group showing minimal changes in cellular
architecture with no infiltration of inflammatory cells, (F) Apigenin-alone-treated group showing
normal hepatocellular architecture.
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Figure 2. Representative photomicrographs of liver sections stained by Masson’s trichome (x100).
Collagen can be visualized by the blue color of stains: (A) Control group showing normal degree
(+) of collagen fibers; (B) CCly-challenged group showing extensive interlobular collagen deposition
around the portal vein, appearing as intense (++++) blue-stained content in the tissue (arrows);
(C) CCly + silymarin-treated group showing moderate (+++) collagen fibers surrounding the central
vein (arrows), (D) CCly + low-dose apigenin-treated group shows a moderate degree (+++) of
collagen fibers; (E) CCl+high-dose apigenin-treated group shows minimal (++) collagen fiber content;
(F) apigenin-alone-treated group shows a normal degree (+) of collagen fibers.

3.3. Evaluation of Oxidative Stress Biomarkers

MDA concentrations, GSH content, and CAT activity were all analyzed to determine
the level of oxidative stress (Figure 3). The administration of CCly markedly reduced CAT
activity and GSH content by 89% and 53%, respectively. Moreover, the administration of
CCly also increased the MDA concentration by approximately threefold in comparison
with the normal control group. Conversely, silymarin treatment was able to restore GSH
and MDA levels that did not differ significantly from the normal control group. Moreover,
CAT activity was 22% higher in the silymarin treatment group of rats in comparison with
the animals in the normal control group. Similarly, treatment with apigenin (2 mg/kg
and 20 mg/kg) substantially increased GSH, MDA, and CAT depending on the dose in
comparison to the CCly-challenged group. Moreover, apigenin treatment (20 mg/kg) was
effective in enhancing all measured oxidative biomarkers to the point that they did not
statistically differ from the values of the normal control group. Surprisingly, apigenin-
alone-treated animals demonstrated statistically significant increases in GSH content by
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(22%) and CAT activity by 29% compared to the normal control group. However, apigenin
alone had no discernible impact on MDA levels in comparison with the normal control

group.
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Figure 3. The effect of apigenin on markers of oxidative stress: GSH (Panel (A)), MDA (Panel (B)), and
CAT (Panel (C)) in mice with CCl4-induced fibrosis of the liver. The data are presented as Mean + S.D.
(n = 8). a: significantly different from the corresponding control at p < 0.05; b: significantly different
from the corresponding CCly-challenged group at p < 0.05; CCly; carbon tetrachloride, Sil.; Silymarin,
Api.; Apigenin.

3.4. Assessment of Inflammatory Biomarkers

Pro-inflammatory biomarkers such as IL-1f3, IL-6, and TNF-« in liver homogenates
were determined by using ELISA (Figure 4). The exposure to CCly caused a nearly two-fold
rise in IL-13 and IL-6 concentrations (Figure 4A,B). In contrast, the silymarin treatment im-
proved the IL-1f3 and IL-6 concentrations by about 30% as compared to the CCly-intoxicated
rats, whereas the treatment with a low dose of Apigenin (2 mg/kg) significantly reduced
the IL-6 level (25%) in comparison with the CCls-challenged group, while failing to signif-
icantly reduce the IL-1f3 concentration. However, the high dose of apigenin (20 mg/kg)
had no significant effect on either interleukin concentration compared to the corresponding
control group. CCly intoxication significantly increased TNF-a levels by 60% in comparison
with the normal control group. Furthermore, silymarin therapy failed to attenuate this
CCly effect because the concentrations of TNF-« in the treated animals were (36%) higher
than those in the normal control group, a substantial increase. Remarkably, animals given
apigenin (2 and 20 mg/kg) showed a marked reduction in TNE-o concentrations in hepatic
homogenates to the point where they did not differ significantly from the normal control
group. Likewise, apigenin alone did not cause a statistically significant alteration in any
evaluated inflammatory cytokine concentrations in comparison to the normal control group
(Figure 4C).
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Figure 4. Effect of Apigenin on Inflammatory Markers: IL-13 (Panel (A)), IL-6 (Panel (B)), and
TNF-« (Panel (C)) in CCly-induced hepatic fibrosis in mice. The data are presented as mean standard
deviation (n = 8). Statistical analysis was carried out using one-way ANOVA followed by Tukey’s
as a post-hoc test. CCly; carbon tetrachloride, Sil.; Silymarin, Api.; Apigenin, pr; protein, conc.;
concentration. a: significantly different from the corresponding control at p < 0.05; b: significantly
different from the corresponding CCly-challenged group at p < 0.05.

3.5. Immunohistochemical Assessment of Angiogenic Markers
3.5.1. Tissue Expression of VEGF

The expression of VEGF protein was estimated using immunohistochemical staining
(Figure 5). As demonstrated in Figure 5A, the control group showed minimal expression for
VEGF antigen throughout the hepatic tissue. On the other hand, the CCly-challenged group
exhibited extensive VEGF protein expression, appearing as intense, brown-stained content
around the central vein and in between hepatic lobules (Figure 5B), with a significant
increase of OD as compared to the control (Figure 5G). Animals treated with silymarin
or low-dose apigenin (2 mg/kg) presented with moderate VEGF expression in hepatic
sections (Figure 5C,D). Both showed a significant reduction in OD in comparison to the CCly-
challenged group (Figure 4G), while with high dose apigenin (20 mg/kg), the expression of
VEGEF was significantly diminished (Figure 5E,G) compared to both CCly-challenged and
silymarin-treated groups. Moreover, apigenin treatment alone had no effect on the hepatic
tissue’s expression of VEGEF, and the staining pattern almost resembled that of the normal
control group (Figure 5F).

3.5.2. Tissue Expression of CD34

Vascular endothelial cell antigen (CD34) expression was also assessed by immuno-
histochemical staining of liver sections (Figure 6). In Figure 6A, the immune response to
the sections of liver tissue of the normal control group shows a low level of CD34 antigen
expression. On the other hand, tissue sections from the CCly-challenged group showed
a lot of brown staining around the central vein and between the lobules, which showed
that CD34 was more significantly expressed compared to the control group (Figure 6B,G).
The silymarin and high-dose apigenin (20 mg/kg) treatment groups both showed low
levels of CD34 expression that were not significantly different from the control group
(Figure 6C,E,G), although the apigenin group (2 mg/kg) demonstrated only moderate
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CD34 expression (Figure 6D), and the group that received only apigenin treatment resem-
bled normal hepatic tissues (Figure 6F).

12 pm

VEGF expression
(OD)

Figure 5. Expression of vascular endothelial growth factors (VEGF) antigen by immunohistochemical
staining (x100). VEGF protein can be visualized by its brown color. (A) Control group showing
minimal expression (+) through the hepatic tissue; (B) CCly-exposed group showing extensive (++++)
interlobular VEGF protein deposition and pericentral vein, appearing as intense brown staining
(yellow arrows). (C) Silymarin-treated group showing moderate (+++) VEGF expression, (D) Low-
dose apigenin-treated group showing a moderate degree of VEGF protein deposition (+++); (E) High-
dose apigenin-treated group showing minimal VEGF expression (++); (F) Apigenin-alone-treated
group showing minimal expression in the hepatic tissue similar to the control (+). (G) Quantitative
analysis of VEGF expression as Optical Density (OD). Statistical analysis was carried out using
one-way ANOVA followed by Tukey’s as a post-hoc test. a: significantly different from the control at
p < 0.05; b: significantly different from the CCly-challenged group at p < 0.05; c: significantly different
from the CCly + silymarin-treated group at p < 0.05.
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Figure 6. Expression of hematopoietic progenitor cell (CD34) antigen by immunohistochemical
staining (x100). CD34 can be visualized by the brown color: (A) Control group showing minimal
expression (+) through the hepatic tissue; (B) CCly-exposed group showing intense expression
(++++) of CD34 pericentral and interlobular (yellow arrows); (C) Silymarin-treated group showing
mild CD34 expression (++); (D) Low-dose apigenin-treated group showing a moderate degree of
expression (+++); (E) CCl4 + High-dose apigenin-treated group showing mild expression (++); (F)
Apigenin-alone-treated group showing minimal expression (+) of CD34. (G) Quantitative analysis
of CD34 expression as Optical Density (OD). Statistical analysis was carried out using one-way
ANOVA followed by Tukey’s as a post-hoc test. a: significantly different from the control at p < 0.05;
b: significantly different from the CCly-challenged group at p < 0.05; c: significantly different from
the CCly + silymarin-treated group at p < 0.05.

4. Discussion

Hepatic fibrosis is a complex fibrogenic and inflammatory process that develops due
to the excessive accumulation of extracellular matrix proteins, including collagen. Hepatic
fibrosis occurs in the majority of chronic liver disorders. It is well recognized now that
hepatic fibrosis and steatosis might be reversible, if the hepatic architecture has not un-
dergone significant alterations [2,8,9]. Due to liver fibrosis, there may be an increased risk
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of cirrhosis and possibly hepatocellular carcinoma. Untreated liver fibrosis will progress
to irreversible cirrhosis that is characterized by a high risk of mortality, and transplanta-
tion is the only viable treatment [7,44]. The objectives of the present investigation were
to ascertain whether apigenin might have anti-fibrotic properties against CCly-induced
hepatic fibrosis in mice and to examine potential molecular mechanisms underlying the
inhibition of angiogenesis. Carbon tetrachloride (CCly) is a frequently used hepatotoxic
chemical for the induction of liver fibrosis in animal models [45,46]. In the liver, CCly causes
inflammation, oxidative damage, fatty tissue degradation, and fibrosis. The liver serves
as the primary location for CCl4 metabolism. The primary site of CCly metabolism is the
liver, where cytochrome P450 enzymes convert it to a toxic metabolite. Metabolism of CCly
by liver microsomal enzymes yields tri-chloromethyl radicals (CCl3 ™). These generated
CCl3 radicals then react with vital intracellular molecules, which ultimately leads to lipid
peroxidation and oxidative damage, finally impairing key physiological processes and
resulting in altered cell functions. Consequently, generalized hepatic damage occurs, and
fibrosis develops as a part of the healing process for this chronic injury [47]. In the current
investigation, we have used silymarin as a standard reference drug. Several preclinical and
clinical studies have shown that silymarin possesses well-established antioxidant, antifi-
brotic, anti-inflammatory, and hepatoprotective effects. The protective effects of silymarin
on liver cells are multifaceted. Silymarin functions as a free radical scavenger and modifies
the activity of enzymes that cause cellular degeneration, fibrosis, and cirrhosis. In addition,
silymarin’s antifibrogenic effect has been demonstrated in non-human primates exposed
to alcohol for a prolonged period of time in an animal model of alcohol-induced hepatic
fibrosis [48]. In the current investigation, CCly clearly induced liver injury, which was con-
firmed by the hepatotoxicity biomarkers and histological analysis. However, treatment with
silymarin or apigenin (2 and 20 mg/kg) considerably decreased the serum concentrations
of AST and ALT. Furthermore, the apigenin (20 mg/kg) significantly improved the serum
concentrations of TC, TG, and TB, which ultimately markedly improved the metabolic
function. Moreover, as evidenced by the microscopic imaging, the investigated treatments
were able to preserve the hepatocellular architecture and lower collagen deposition to
levels similar to those in the normal control group. The efficacy of apigenin is comparable
with the standard drug silymarin. Our outcomes were consistent with the previous studies
that demonstrated the hepato-protective potential of apigenin against chemically induced
hepatotoxicity by different chemicals. According to Ali et al. (2014), apigenin protected the
liver from N-nitrosodiethylamine (NDEA)-induced hepatotoxicity [49]. Serum levels of
liver enzymes were found to have dropped significantly, and the microscopic structure of
the liver was found to have improved. A similar conclusion was reported by Zhou et al.
(2017), who discovered that apigenin could mitigate liver toxicity experimentally induced
by the administration of D-galactosamine and lipopolysaccharide [50]. In a fibrotic liver,
the accumulation of reactive free radicals can damage vital biological molecules. As an illus-
tration, the production of lipid peroxides by the oxidation of unsaturated fatty acids results
in an increase in the concentration of MDA. In addition, reactive radicals would increase in-
flammatory mediators and initiate an inflammatory response. The eventual effect would be
damaged mitochondria and nuclei, impaired cellular functions, and finally cell necrosis [13].
A healthy liver has a strong capacity to eliminate different oxidants. For instance, the CAT
enzyme breaks down free radical hydrogen peroxide molecules into water and oxygen.
Moreover, electron receptor molecules like GSH interact with free radicals to neutralize
their harmful effects [51,52]. In the current investigation, chronic CCly exposure diminished
GSH content, decreased CAT enzyme activity, and increased MDA concentrations, which
is strong evidence of oxidative stress. Silymarin treatment significantly reduced the MDA
concentration and increased the GSH content and CAT activity. Nevertheless, apigenin
treatment (2 and 20 mg/kg) markedly decreased CCly-induced oxidative stress. This was
manifested by a dose-related enhancement of GSH content and CAT activity, accompanied
by a reduction in MDA concentration. The apigenin (20 mg/kg) treatment brought all
oxidative stress markers back to normal in CCly-toxicated mice. Intriguingly, apigenin (20
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mg/kg) treatment dramatically increased GSH and CAT concentrations in normal control
mice. These results provided evidence that apigenin can prevent the oxidative stress that
leads to inflammation and worsens fibrosis from progressing. Importantly, this antioxidant
activity was consistent with earlier research by Goudarzi et al., 2021, who discovered that
apigenin significantly inhibited lipid peroxidation and boosted the antioxidant defense
mechanisms in experimental hepatocellular carcinogenesis [53]. Moreover, apigenin was
believed to be effective in the prevention of human diseases caused by oxidative stress and
the generation of free radicals [54]. Furthermore, the results of our study are consistent
with earlier research that supported the role of various natural flavonoids as antioxidants
for the prevention of CCly-induced hepatic fibrosis [55]. Morin, Xiaochaihutang, and Hy-
peroside are a few examples of flavonoids as antioxidants that showed protective effects
against CCly-induced liver toxicity [56-58]. Repeated and persistent liver damage leads to
liver fibrosis.

Inflammation has a vital role in the pathology of hepatic fibrosis. Injured hepato-
cytes will stimulate the innate immune system, leading to the activation of macrophages
and chemokines. Nitric oxide and inflammatory cytokines are produced by monocytes
and macrophages, which play a role in inflammation [59,60]. Moreover, Kupffer cells re-
lease powerful fibrosis promoters’ inflammation mediatory cytokines, for example TNF-«,
IL-1B, and IL-6 (Batusic et al., 2011). As a result, hepatic stellate cells (HSCs) will act
as myofibroblasts and proliferate to produce extracellular matrix (ECM) proteins. It is
now understood that the ECM contains powerful damage-associated molecular patterns
(DAMPs) with immune-active peptides. In addition, a variety of cytokines, chemokines,
and growth factors that can all influence immune responses are anchored by the ECM.
Moreover, the ECM creates a favorable pro-fibrogenic loop that increases the production
of cytokines and chemokines and intensifies inflammatory activity [21,61]. The current
investigation found that CCly exposure considerably augmented the levels of IL-6, TNF-c,
and IL-1p in tissue homogenates, indicating an intensive inflammatory response after
chronic damage. As expected, silymarin treatment improved IL-1{3 and IL-6 concentrations
by about 30% as compared to the CCly-intoxicated rats. Surprisingly, silymarin therapy
failed to attenuate this CCly effect because the concentrations of TNF-« in the treated
animals were (36%) higher than those in the normal control group, a substantial increase.
Conversely, apigenin treatment (20 mg/kg) significantly reduces the levels of IL-6, TNF-c,
and IL-1f3 as compared to the normal control group, which indicates the anti-inflammatory
effect of apigenin against CCL4-induced inflammation, hepatotoxicity, and fibrosis. It
is noteworthy that several previous investigations also revealed the anti-inflammatory
effect of apigenin [29,31,62]. These studies revealed that apigenin inhibits the production
of pro-inflammatory mediators such as IL-13, TNF-«, and IL-6, which suggests the anti-
inflammatory properties of apigenin. In addition, apigenin is regarded as an effective agent
to treat and prevent osteoarthritis and other inflammatory conditions. Furthermore, the
present findings are consistent with previous studies that showed anti-inflammatory agents
were effective in preventing liver fibrosis. Natural flavonoids such as quercetin, pinocem-
brin, naringenin, and oroxylin A are some examples that have an anti-inflammatory effect
against CCly-induced liver toxicity [63-67].

As previously noted, the accumulation of the ECM will cause tissue hypoxia and acti-
vate proangiogenic factors, which lead to the formation of new vessels. These newly formed
vessels, however, are too immature to resolve tissue hypoxia and would facilitate more ex-
pression of inflammatory cells, resulting in further deterioration of hepatic damage [23,68].
A transmembrane phosphoglycoprotein marker of vascular endothelial progenitor cells
called CD34 has been shown to be useful in the detection of angiogenesis [69,70]. On the
other hand, Park et al. (2015) reported that VEGF is a major contributor to fibrogenesis
and portal hypertension because its overexpression accelerates the process of ECM deposi-
tion [33]. In the present investigation, immuno-histochemical analysis revealed massive
expression of both VEGF and CD34 in CCly-intoxicated samples, indicating the presence of
angiogenesis. Mice treated with silymarin showed a low level of VEGF and CD34 expres-
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sion in hepatic tissues as compared with the CCly-intoxicated group. Contrarily, apigenin
treatment (2 and 20 mg/kg) decreases these expressions in a dose-related manner. These
outcomes are in line with those of Fu et al., 2022, who discovered that apigenin can inhibit
VEGF expression, HIF-1x expression, and suppress angiogenesis in vivo for several cancer
cells [71]. Furthermore, anti-angiogenic agents have also been demonstrated to prevent the
development of experimental hepatic fibrosis [21,72].

5. Conclusions

Finally, the current investigation has demonstrated that apigenin has hepatoprotective
and antifibrotic properties. Mechanistically, apigenin attenuated oxidative stress by restor-
ing GSH content and CAT activity as well as normalizing lipid peroxidation. In addition,
it mitigated liver inflammation by reducing the expression of proinflammatory cytokines
IL-6, IL-1B, and TNF-x. Moreover, it inhibited the proangiogenic factor VEGF and CD34,
preventing pathological angiogenesis. These proposed mechanisms have been summarized
as shown in Figure 7. However, studying the molecular pathways underlying apigenin’s
antifibrotic effects is necessary because hepatic fibrosis is an extremely complex condition.
Besides, more studies are required to confirm the clinical use of apigenin treatment in
hepatic fibrogenesis patients. The obtained experimental effects of apigenin in improving
liver fibrosis need further studies in clinical settings to judge its safety and efficacy.

Liver fibrosis in Swiss Albino mice:
CCl, (0.5 mL/kg of CCl, and corn oil (1:4)
mixture i.p., twice week for 6 weeks) +
Lycorine (2 & 20 mg/kg/p.o. 3 times weekly
for 6 weeks)

}Hepatic Fibrosis )

" Angiogenesis ALT & AST
1 IHC) Apigenin T Tl b
( g issue improved on staining by
VEGF H&E and MT
J
N\ CD34

‘Oxidative stress

‘ Inflammation

IL-1B8 { MDA
IL-6 4 GSH
TNF-a 4 CAT

Figure 7. A schematic diagram of apigenin’s antifibrotic effects on CCly-induced hepatic fibrosis
in mice.
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