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Abstract: Aberrant DNA hypermethylation at regulatory cis-elements of particular genes is seen
in a plethora of pathological conditions including cardiovascular, neurological, immunological,
gastrointestinal and renal diseases, as well as in cancer, diabetes and others. Thus, approaches for
experimental and therapeutic DNA demethylation have a great potential to demonstrate mechanistic
importance, and even causality of epigenetic alterations, and may open novel avenues to epigenetic
cures. However, existing methods based on DNA methyltransferase inhibitors that elicit genome-
wide demethylation are not suitable for treatment of diseases with specific epimutations and provide
a limited experimental value. Therefore, gene-specific epigenetic editing is a critical approach for
epigenetic re-activation of silenced genes. Site-specific demethylation can be achieved by utilizing
sequence-dependent DNA-binding molecules such as zinc finger protein array (ZFA), transcription
activator-like effector (TALE) and clustered regularly interspaced short palindromic repeat-associated
dead Cas9 (CRISPR/dCas9). Synthetic proteins, where these DNA-binding domains are fused
with the DNA demethylases such as ten-eleven translocation (Tet) and thymine DNA glycosylase
(TDG) enzymes, successfully induced or enhanced transcriptional responsiveness at targeted loci.
However, a number of challenges, including the dependence on transgenesis for delivery of the fusion
constructs, remain issues to be solved. In this review, we detail current and potential approaches to
gene-specific DNA demethylation as a novel epigenetic editing-based therapeutic strategy.
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1. Introduction

The exciting paradigm of epigenetics, that ‘genes are not your destiny’, has taken
a novel turn with the development of targeted molecular tools to selectively modulate
the epigenetic status (e.g., promoter methylation) and thus transcription of genes. The
ability to take control over the epigenome and ‘edit’ it for therapeutic and experimental
benefit represents an enticing but complicated endeavor. This review focuses on the rapid
progress of site-specific DNA demethylation, made possible by technological innovation
since the 2010s, but also traces the footsteps of DNA demethylation research since its dawn
in the 1980s. The article summarizes the current knowledge on the mechanisms of DNA
demethylation and details how they are or can be exploited to re-activate epigenetically
silenced genes. Going beyond an overview of ‘vectored’ delivery of epigenetic modifiers,
the paper introduces the concept of vector-free epigenetically acting agents, with a view to
future application in epigenetic medicine.

2. DNA Methylation as a Key Epigenetic Mechanism of Gene Function Control

DNA methylation that alters gene expression without a change in the DNA sequence
is the most widely studied epigenetic mechanism involved in the pathogenesis of various
diseases [1,2]. DNA methylation is a covalent modification that occurs to cytosines in the
context of cytosine-phosphate-guanosine (CpG) residues; when it occurs in key regulatory

Biomedicines 2023, 11, 1334. https://doi.org/10.3390/biomedicines11051334 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines11051334
https://doi.org/10.3390/biomedicines11051334
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-5574-737X
https://doi.org/10.3390/biomedicines11051334
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines11051334?type=check_update&version=1


Biomedicines 2023, 11, 1334 2 of 27

regions of the gene (e.g., promoter), methylation suppresses the expression of the gene [3].
Virtually all cells in an organism contain all the genes of that organism’s genome; epigenetic
mechanisms are broadly involved in the silencing of ‘unused’ genes which underlies the
difference in structure and function of cells [4,5]. This silencing is a powerful and inheritable
mechanism of gene function control [4]. DNA methylation is a key player in epigenetic
silencing of transcription [3,6]; conversely, lowered methylation of promoters or regulatory
intragenic regions has been linked to enhanced transcription [5,7,8]. DNA methylation of
CpG dinucleotides is catalyzed by DNMT3a and b, and DNMT1 maintains the methylation
during semiconservative DNA replication [9]. In case this maintenance methylation fails
for some reason, e.g., inhibition, depletion or nuclear exclusion of DNMT1, so-called
“passive demethylation” occurs in dividing cells [10]. Passive demethylation is a relatively
slow process and theoretically does not occur in terminally differentiated non-dividing
cells [11]. Given these points, it is unlikely that passive demethylation plays a leading role
in demethylation in most adult somatic cells that have completed mitosis [12], although it
plays an important role when genome wide DNMT inhibitors are employed therapeutically.

The first report on biological active DNA demethylation processes independent of cell
replication in vertebrates was published in 1984 [13], in which HpaII site 611 base pairs
upstream from the 5’ end of the of the chicken vitellogenin II gene were seen to exhibit
estrogen-dependent demethylation independent of DNA synthesis, predicting the existence
of a site-specific demethylase. However, no further characterization of this enzyme has
been forthcoming. Numerous evidences of active demethylation have been reported since
then [14–18]. Another common example of active demethylation is the demethylation
of pluripotency genes in nuclear reprogramming. During normal development, genes
related to pluripotency are constitutively silenced by histone and DNA methylation. For
example, the proximal m5CpG of the oct4 gene regulatory site in thymocyte nuclei trans-
planted into Xenopus oocytes is immediately demethylated [19]. Demethylation usually
occurs with changes in physiological cellular states. Examples include changes in cell
differentiation, such as terminal differentiation, or when exposed to nuclear hormones,
protein kinase C (PKC) activators, histone deacetylase inhibitors (HDACi) or changes in
neural activity [20–25]. These findings indicate that active demethylation is a widespread
phenomenon in both dividing and differentiated cells.

3. Etiological Significance of DNA Methylation

In mammals, about 60–80% of the CpG sites in the genome are modified into 5mC [7].
CpGs outside promoter CpG islands are usually highly methylated, while those within
promoter CpG islands are mostly unmethylated [26,27]. However, in several diseases, the
promoter CpG islands of genes ‘protective’ against the disease are found to be aberrantly
methylated [28–30]. Epigenetic alterations in CpG islands and, more broadly, elsewhere
across the epigenomic landscape have been increasingly reported, ranging from the most
frequent examples, linking DNA hypermethylation to cellular carcinogenesis, to a plethora
of cardiovascular, renal, hepatic, metabolic and infectious diseases and environmental ex-
posures [31–37]. Thus, the scope of aberrant methylation in pathogenesis is becoming more
and more elucidated. For example, aberrations of cell cycle checkpoints in cancer result
in abnormal cell proliferation and chromosomal instability. Examples include abnormal
methylation of the p53 gene [38–40], or hypermethylation of the checkpoint genes with
Fork-head and Ring finger (CHFR) in cancer cells [41–49].

While methylation and transcription are usually inversely correlated, and this is
typically true for promoter methylation, there are exceptional situations where an increase
in methylation leads to an increase in transcription if this methylation change affects
a key regulatory area of a special kind [50,51], which can happen with enhancers, or
where increased methylation inhibits binding of repressive factors or methylation-sensitive
transcription factors. In general, however, selective demethylation of genes occurs during
gene expression enhancement, but it is not certain to what extent demethylation is a primary
factor versus a secondary consequence of enhanced transcription.
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Moreover, DNA demethylation may not always be sufficient to increase transcription.
For example, demethylation of the IL2 promoter is necessary but not sufficient for gene acti-
vation [52]. In this case, binding of the transcription factor Oct-1 to the promoter-enhancer
region of the IL2 gene is a higher priority requirement for enhanced gene expression.
When Oct-1 binds to the promoter-enhancer region as a result of additional stimulation,
the IL2 gene becomes more sensitive to DNA demethylation and its gene expression is
more highly upregulated. When the stimulus is removed, Oct-1 remains in the promoter-
enhanced region, making the second and subsequent induction of gene expression faster
and stronger [52]. Thus, priming of the locus occurs to prepare for subsequent external
stimuli. The transcriptional result of gene demethylation is in this case dependent on the
presence of a background stimulus: if present, the newly demethylated gene becomes
intrinsically upregulated, otherwise it will ‘wait’ for an extrinsic trigger. This leads to an
important potential benefit of epigenetic editing over traditional gene overexpression or
a recombinant protein administration: demethylation opens the promoter to situation-
appropriate, context-dependent intrinsic (or extrinsic, if desired) stimuli.

Aberrant hypermethylation occurs as a result of intrinsic deregulation or upon ex-
posure to environmental toxicants; many environmental exposures have been linked to
epigenomic effects [53,54] leading to two major challenges in the field. First, while the
epidemiologic data for association of exposures with epigenomic effects are strong, proof
of causality for exposure-related methylation changes at specific loci has been impossible
due to a lack of experimental tools to specifically revert these alterations. Second, there
are no therapeutic agents that can gene-specifically reverse ‘harmful’ epigenetic changes
and achieve epigenetic-based treatment. These challenges offer an attractive opportunity
to employ DNA demethylation as a therapeutic strategy for diseases where DNA hyper-
methylation is involved. Until recently, only non-specific agents, such as cytidine analogs
including 5-aza-2′-deoxycytidine, have been available for removing methyl groups from
CpGs based on the inhibition of DNMTs, and they have been widely used to study the ef-
fects of demethylation on gene promoters [55–58]. However, these non-specific agents lead
to global demethylation of CpGs, making it impossible to define the causal effects of specific
CpG aberrations [59]. Following these experimental trials, active DNA demethylation by
enzymatic activity has become the focus of attention as an experimental and potential future
therapeutic strategy [60], promoting interest in gene-specific (or site-specific) demethylation
approaches [61].

4. Biochemical Mechanisms of Active DNA Demethylation

It is increasingly recognized that active demethylation plays an important role in a
wide variety of biological processes, and much attention and effort has been devoted to
the elucidation of the mechanism of active demethylation, including the identification
of the involved demethylase(s). DNA demethylase activity was noted for the first time
in extracts of mouse erythroleukemia nuclei [62]. It was found that 5-methylcytosine
(5mC) is finally replaced by C in a replication-independent manner, but this mechanism
has not been elucidated in detail for a long time. Over the past years, several studies
have proposed various possible mechanisms through which active DNA demethylation
may take place. These include enzymatic removal of methyl groups at 5mC, a series of
intermediary conversions, participation of the base excision repair (BER) and less well-
known mechanisms.

4.1. Enzymatic Removal of the Methyl Group of 5mC

In the initial step of the envisioned DNA demethylation process, 5mC is converted to 5-
hydroxymethyl cytosine (5hmC) by the addition of atomic oxygen; 5hmC is further oxidized
to 5-formylcytosine (5fC) and finally 5-carboxylcytosine (5caC) [63]. This is an important
step that allows for several alternative or duplicative methods to remake normal cytosine
residues autonomously or in a DNA replication-dependent manner, ultimately removing
the methyl mark [64–66]. The oxidized intermediates, 5fC and 5caC, are removed and can
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further regenerate unmethylated cytosine at the target site through the BER mechanism.
The first half of the oxidation reactions are catalyzed by the ten-eleven translocation protein
(TET) family enzymes, while the second half, removal of 5fC and 5caC, is catalyzed by
thymine DNA glycosylase (TDG) [67].

The first member of TET family, TET1, was discovered in acute myeloid leukemia
(AML) cells as a fusion partner for histone H3 Lys4 methyltransferase [68]. Subsequent
in vitro studies have shown that the enzymatic activity of human TET1 includes the ability
to hydrolyze 5mC [69]. TET protein can act on both fully methylated and hemimethylated
DNA [70]. This ability of TETs to oxidize 5mC is particularly important in embryonic
stem cells (ESCs), which must maintain the ability to self-renew and take on diverse 5mC
patterns [71]. The TET protein is characterized by its distinctive core catalytic domain, and
its isoforms are known to be cell type specific [72,73]. Mammals encode three TET protein
orthologues (TET1, TET2, and TET3) [74]. The three TET proteins have similar C-terminal
catalytic domain-containing cysteine-rich (Cys) regions and a double-stranded b-helix
(DSBH) fold which exhibits 2-oxoglutarate (2-OG)- and Fe(II)-dependent dioxygenase
activity [75].

4.2. BER Through Direct Excision of 5mC Converts

Following the sequential oxidation reactions described above, TDG initiates the re-
moval of target bases to make abasic sites [76]. Subsequently, apyrimidinic acid (AP) lyase
activity nicks the DNA backbone, producing 5′ phosphomonoesters and 3′ sugar phosphate
residues. AP endonuclease then removes the 3′ sugar chain, leaving a single nucleotide
gap that will eventually be filled by DNA repair polymerase or ligase [77]. Genetic and
biochemical evidence suggested at first that this mechanism is used in plants [78], whereas
evidence supporting the existence of similar mechanisms in the vertebrates was less com-
pelling. In 2000, a study using extracts from chick embryos suggested that this repair
mechanism may contribute to DNA demethylation in vertebrates as well [79]. This study
also demonstrated the existence of 5mC glycosylase activity against hemimethylated DNA
in the extract and revealed that the enzyme responsible for this activity is a homologue
of human TDG. Therefore, the 5mC glycosylase activity detected in this chicken embryo
extract was assumed to be due to TDG. However, the excision activity of TDG against 5mC
is only 1/30 to 1/40 of that against T/G mismatch, and TDG does not have the activity
to cleave N-glycosidic bonds [80]. Thus, the details of the involvement of TDG in DNA
demethylation needed to be further explored. Since TDG is known to act on hydroxymethy-
lated cytosines as well as 5fC and 5caC via its specific recognition site, though not on
5mC [80–83], it suggests a reasonable concept of the demethylation process that entails
starting with a conversion of 5mC to hmC/fC/caC by TETs, followed by TDG action. This
is confirmed by the observation that, in TDG-deleted cells, an accumulation of 5fC/5caC is
observed [84]. Given that on average ~10% of mCs in mammals are hmCs (bisulfite-based
methods, e.g., pyrosequencing, do not distinguish the two forms), this could explain the
consistent but low-impact results of using TDG alone in epigenetic editing studies [85,86].
Indeed, low levels of active, replication-independent DNA demethylation were seen to be
mediated by TDG [84].

The action of TDG as a demethylase, whether involving BER or not, is supported by
epigenetic editing reports using solely this enzyme [85,86]. Assessment of the relative input
of TETs and TDG in demethylation can be complicated by the intrinsic presence of either
enzyme in the nucleus. This has been addressed in a convincing demonstration that TET
and TDG interact with each other in several ways in the demethylation process: TET1 and
TDG interact physically, forming stable TET1–TDG complexes [87]. Moreover, TET1CD
and TDG act in concert to release 5mC so that the excision of 5mC and 5hmC from DNA
requires the catalytic activities of both TET1 and TDG; finally, TET stabilizes TDG activity,
and their coordinated action engages BER in a way that avoids double strand breaks [88].
Hence, TDG is not simply a sequential follower of TET, as was previously considered.
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This information about TDG is not inconsistent with its previously presumed role as
a demethylase following the deamination of mC by the AID (activation-induced deam-
inase)/APOBEC (apolipoprotein B mRNA-editing enzyme complex) family of cytidine
deaminases [69,89]. Deamination-mediated demethylation could also involve the DNA dam-
age response protein GADD45, or even methyl-binding domain protein MBD4 [19,90,91].
However, there is evidence that contradicts this premise [92,93]. It therefore appears that
deaminases are unlikely to be enzymatic effectors for epigenetic editing.

4.3. Potential for Enzymatic Demethylation without Excision and BER

Studies in embryonic cells allow the derivation of a mechanism in which initial conver-
sion of mC to hmC by TET is followed by passive dilution where, as a result of replication,
the unmodified C is regenerated [94,95]. It remains unclear to what extent this occurs
during epigenetic editing, but it is plausible in dividing cells. It has also been reported that
DNMTs that normally methylate the cytosine can, in some conditions, have a reverse effect,
directly transforming mC to C [96].

AlkB homologs (ALKBH) are the other class (together with TET) of the Fe(II)/2-
Oxoglutarate (2OG)-dependent dioxygenase superfamily of enzymes that have demethy-
lating activity, and unlike TET they are capable of directly demethylating some of their
substrates [97]. Besides their action on 3mC and 4mC, ALKBH act on 5mC [98], but while
the outcome of the reaction for 3mC is unmethylated C, for 5mC it stops at 5caC, which
then likely becomes the substrate for TDG.

Limited evidence suggests that 5caC may be converted into C directly and without
excision: it was shown that both bacterial and mammalian C5-MTases can catalyze the
direct decarboxylation of 5caC (but not of 5DC), yielding unmodified cytosine in the
DNA [99]. It is possible that future studies will elaborate further on active enzymatic
DNA demethylation. The attractiveness of this or another direct enzymatic conversion
mechanism that avoids base excision lies in the lower risk of strand breaks and potential
mutagenesis, which may confound translational approaches in the future.

5. Biological Effects of De-Repression of Epigenetically Silenced Genes

De-repression of epigenetically silenced genes by active, targeted DNA demethylation
can have direct, exciting potential applications in a number of experimental strategies and
human diseases:

5.1. For Instructing Cells to Produce a Protective/Therapeutic Protein

One benefit of the re-activation of epigenetically silenced genes is to confer unusual
(but desirable) property to cells, e.g., production of a protein that is not typically produced
by a given cell type, for example, a cytokine or immunoregulatory molecule. As an
example, targeted de-methylation of nitric oxide synthase silenced in fibroblasts [85,86]
confers to them an ability to produce nitric oxide (NO), which is a key component of
innate immunity, including direct anti-microbial effects [100–103]. Enhancement of NO
production by upregulation of NOS2 expression is a desirable therapeutic strategy [86,104];
reactivation of the enzyme’s gene could lead to increased production at targeted tissue sites.

5.2. In Targeting Specific Monogenic Epigenetic Aberrations That Single-Handedly Cause Disease

For example, fragile X Syndrome is a form of autism linked to epigenetic silencing
in the promoter of the FMR1 gene [105]; demethylation of its promoter could restore
transcription, and this presumption has recently been clearly demonstrated [106].

To modify expression of cancer-related genes: silencing of tumor-suppressor promoters
by DNA hypermethylation is an important mechanism of carcinogenesis [107] and could
be selectively targeted.
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5.3. In Experimental Strategies Such as Transdifferentiation and Regeneration
5.3.1. Transdifferentiation

Artificial overexpression of non-typical genes in fibroblasts transforms these cells into
other types [108,109]; epigenetic editing could provide heritable effect without the need
for transgenesis.

5.3.2. Proliferation

Specialized cells (cardiomyocytes or neurons) are non-dividing because genes respon-
sible for cell division are switched off; epigenetic editing of cell cycle regulators could drive
DNA synthesis and potentially lead to proliferation [110].

However, until recently, most of the identified DNA methylation changes are used
either correlatively, or as biomarkers for various diseases: 1. diagnostic markers [111];
2. prognostic markers [112,113]; 3. markers for optimal treatment according to disease
subclasses [114]; 4. markers for monitoring treatment efficacy [115]; 5. markers to identify
genes to be examined for the development of epigenetically targeted therapies [107]. These
DNA hypermethylated markers have been studied most extensively in cancer [116]. How-
ever, aberrant DNA hypermethylation is being implicated in other diseases. A selection of
recently published reports on non-cancer disease-linked promoter DNA hypermethylation
is shown in Table 1. As shown, gene promoters are abnormally hypermethylated in many
diseases, making them prime candidates for therapeutic targets. Therefore, developing
strategies for site-specific CpG promoter demethylation of disease-associated genes is a
critical and exciting challenge.

Table 1. Reports on disease associated promoter DNA hypermethylation in noncancer diseases.

Category Disease Gene Year References

nervous Alzheimer’s disease HOXB6 a, ANKRD30B b, etc. 2019, 2020 [117,118]
Parkinson’s disease Solute Carrier Family 7A11 2020 [119]
schizophrenia Solute Carrier Family 6A4 2022 [120]
borderline personality disorder BDNF c 2018 [121]
epilepsy PABPC1 d, ARGLU1 e, etc. 2021 [122]
depression KLK8 f, NR3C1 g 2021 [123,124]
fragile X syndrome FMR1 h 2019 [105]

immunological systemic lupus erythematosus NCR3 i 2021 [125]
rheumatoid arthritis SFRP2 j 2018 [126]
systemic sclerosis PARP-1 k 2018 [127]
Sjogren’s syndrome IRE1α l, XBP-1 m, GRP78 n 2018 [128]
Graves’ disease CRHR1 o, B3GNT2 p 2021 [129]
type 1 diabetes Cathepsin H 2021 [130]
Crohn’s disease KCNJ15 q 2022 [131]

endocrine/metabolic osteoporosis Nrf2 r 2021 [132]
type 2 diabetes TXNIP s 2021 [133]
hyperlipidemia PPARα t 2022 [134]

cardiovascular cardiomyopathy ASB1 u 2018 [135]

renal IgA nephropathy Cosmc v 2015 [136]
diabetic nephropathy TRIM13 w 2020 [137]

pulmonary idiopathic pulmonary fibrosis PPARγ 2022 [138]
chronic obstructive pulmonary disease CYP4F11 x, SNRPN y, etc. 2014 [139]

hepatic hepatitis C SHP-1 z 2021 [140]

a homeobox B6, b ankyrin repeat domain 30B, c brain-derived neurotrophic factor, d poly(A) binding pro-
tein, cytoplasmic 1, e arginine and glutamate rich 1, f kallikrein-8, g Nuclear Receptor Subfamily 3 Group C
Member 1, h FMRP translational regulator 1, i natural cytotoxicity triggering receptor 3, j secreted frizzled-
related protein 2, k poly [ADP-ribose] polymerase 1, l Inositol-requiring enzyme 1, m X-box binding protein 1,
n glucose regulated protein78, o corticotropin releasing hormone receptor 1, p UDP-GlcNAc:betaGal beta-1,3-N-
acetylglucosaminyltransferase 2, q Potassium inwardly rectifying channel, subfamily J, member 15, r nuclear factor
erythroid 2–related factor 2, s Thioredoxin Interacting Protein, t peroxisome proliferator-activated receptor alpha.
u ankyrin repeat and SOCS box containing 1, v core1ß1, 3galactosyl transferase, w tripartite motif containing 13,
x cytochrome P450, family 4, subfamily F, polypeptide 11, y Small nuclear ribonucleoprotein-associated protein N,
z Src homology domain 2-containing protein tyrosine phosphatase 1.
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6. Gene-Specific DNA Demethylation

Site-specific gene targeting DNA demethylation is accomplished by fusing the
demethylases to engineered DNA-binding domains (DBDs) that tether the enzyme to
the desired DNA sequence [61]. Since it was first reported simultaneously by three indepen-
dent groups [85,86,141,142], the development of this innovative technology has opened the
possibility of epigenetic therapeutic applications for various diseases. Here, we review the
latest findings on strategies for site-specific DNA demethylation and discuss the prospects
for clinical translation in the future.

6.1. Selection of Demethylase for Targeted DNA Demethylation

The most frequently reported DNA demethylase for gene targeting are the TET family
proteins. Among these, TET1 fusion protein is most commonly used. However, there
are scattered reports using TET2 and TET3, which are considered to have enzymatic
activity equivalent to that of TET1, at least in vitro [75], although not in all experimental
settings [141].

An increasing number of studies have reported the success of tethering TETs to DNA
for targeted demethylation in recent years [143–147]. In the context of T cell differentiation,
the dCas9-TET1catalytic domain (CD) demethylates the FOXP3-Treg specific demethylated
region (TSDR) of Jurkat cells, leading to a Treg-like phenotype, suggested the feasibility of
dCas9-TET1-mediated Treg programmation of primary T cells [148,149].

In cancer cells, dCas9-TET1 enhances the cisplatin sensitivity of A549 cells (lung
carcinoma epithelial cells) by promoting the expression of nicotinamide nucleotide tran-
shydrogenase (NNT) [150]. dCas9-TET1CD was used to demethylate the EphA7 gene:
the protein correlates with life expectancy in cervical cancer, indicating the potential of
dCas9-TET1CD as a therapeutic strategy for cervical cancer [151]. Leucine-rich repeat and
immunoglobulin-like domain (LRIG) 1 is a negative regulator of receptor tyrosine kinases
and a tumor suppressor; decreased LRIG1 expression is consistently observed in various
types of cancer and is linked to poor patient prognosis [152]. dCas9-TET1CD-mediated
demethylation along with VP64-mediated transcriptional activation increased endogenous
LRIG1 expression in breast cancer cells, and reduced cancer cell viability [153]. TET1CD
reactivated X-linked endogenous FOXP3 in breast cancer [154]. The tripartite-motif (TRIM)
family proteins contribute to cancer initiation, progress, or therapy resistance, exhibiting
tumor-suppressive functions: they are frequently downregulated by promoter methylation
in cancerous tissues [155]. dCas9-TET1CD induced specific demethylation of TRIM58 in
renal carcinoma cells (RCC) [156]. Promoter of the TMEM244 gene was demethylated to
upregulate its expression in Sézary syndrome—an aggressive form of cutaneous T-cell
lymphoma [157]. dCas9-TET1CD could demethylate hepatocyte nuclear factor (HNF)1A
and Beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase (MGAT3)
genes in BG1 (human ovarian adenocarcinoma) cells [158], and telomeric repeat-containing
RNA (TERRA) in HeLa (human cervix carcinoma) and T98G (human glioblastoma) cell
lines [159].

The following reports have been published on the function of TET1 in non-tumor
cells. TET1 ablation impairs cardiac differentiation of mouse embryonic stem cells and
re-expression of the TET1CD rescued the differentiation defect in Tet-triple knockout
mESCs [160]. Cyclin-dependent kinase-like (CDKL) 5 is associated with X-linked infantile
spasm syndrome (ISSX). Halmai et al. performed artificial X chromosome inactivation
(XCI) using dCas9-TET1CD targeting CDLK5 [161]. Rett syndrome is an X-linked neu-
rodevelopmental disorder caused by loss-of-function heterozygous mutations of methyl
CpG-binding protein 2 (MECP2) on the X chromosome in young females [162]. Qian et al.
reported reactivation of MECP2 in human embryonic stem cells (hESCs) derived from RTT
by dCas9-TET1CD [163]. These two reports suggest the potential of dCas9-TET1CD for
therapeutic application in X chromosome associated diseases. dCas9-TET1CD also could
re-activate Oct4 in NIH-3T3 cells [164] and beta-galactoside alpha-2,6-sialyltransferase 1
(ST6GAL1) in CHO cells [165].
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A few studies signal readiness to transition epigenetic editing experiments to in vivo.
Fragile X syndrome (FXS), the most common genetic form of intellectual disability in males,
is caused by silencing of the FMR1 gene associated with hypermethylation in the CGG
expansion mutation in the 5′ UTR of FMR1. dCas9-TET1CD was used to demethylate the
CGG repeats in the brain cells of mice so that FMR1 expression in edited neurons was
maintained in vivo after engrafting into the mouse brain [106]. With dCas9-TET1CD system
and hydrodynamic tail vein injection, Hanzawa et al. showed targeted DNA demethylation
of the Fgf 21 promoter in the liver of PPARα-deficient mice [166]. Russell–Silver syndrome
(RSS) is a rare disorder characterized by intrauterine growth restriction (IUGR) and poor
growth after birth. The patients of RSS show H19 upregulation and insulin-like growth
factor (Igf) 2 downregulation. Horii et al. developed RSS model mice via demethylated
H19 promotor lesion with embryonic microinjection of dCas9-TET1CD [167]. Noack et al.
delivered dCas9-TET1CD targeted Dchs1, a regulator of corticogenesis, to mouse brains by
electroporation and verified the biological relevance of the aberrant methylation of Dchs1
in developmental malformations and cognitive impairment [168].

On the other hand, TDG alone has been successful in demethylating and transcrip-
tionally enhancing the NOS2 gene [85,86]. Furthermore, targeted DNA demethylation
with Release of Silencing 1 (ROS1) 5mC DNA glycosylase [169] fused to the DNA-binding
domain of yeast GAL4 (GBD) has been reported [170]. These reports are supplemented
by studies using targeted fusions with P300 acetyltransferase, which helps support the
epigenetic editing effect on gene transcription [149,171]. Thus, the selection of demethylases
may be broadened in the future.

Given the multi-step nature of transformations from mC to C where TET proteins
and TDG glycosylases interact in moving the atoms of the CH3 group, the strategies for
application of multiple demethylases for epigenetic editing form a novel area of studies
that may be called ‘atomic epigenetics’. When interpreting the reports of each single
enzyme successfully employed for demethylation, it is important to consider that the other
enzymes were intrinsically present as is natural for unmodified cells. At the same time,
the paucity of studies on combinatorial use of different demethylases presents a space for
future investigations.

6.2. Site-Specific DNA-Binding Domains

There are several types of DBDs that have been fused with the putative demethy-
lases to tether them sequence-specifically to the promoters of interest. Aside from cus-
tomizable DBDs aimed to allow single gene specificity, other naturally occurring DBDs
have historically been the first used to affect a group of genes at once. For example, the
Rel-homology domain (RHD) of NF-kB has been employed to target TDG to all NF-kB-
dependent genes [85,86]. This and similar systems (using for example transcription factor
binding domains) may be employed in epigenetic editing for re-activation of intrinsic
transcription using a ‘grouped’ approach.

Recently, more specific and customizable DBDs have become applied. One of these is
the recombinant transcription activator-like effector (TALE) [142,172]. TALE is a class of
naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas sp.
The DNA-binding domain of each TALE consists of 34-amino acid repeat modules arranged
in tandem that can be rearranged according to a simple cipher to target new DNA sequences.
Customized TALEs can be used for a wide variety of genome engineering applications,
including transcriptional modulation and genome editing [173]. The molecular tool through
which DNA demethylase is targeted to the disease-related gene promoters can be made
by tethering human TET1 demethylase enzyme to a TALE repeat that has targeted DNA-
binding specificities [142]. Modified TALE repeats provide an attractive platform for
guiding TET1 activity. This is because assembly of individual repeat domains of known
nucleotides can be used to produce large amounts of monomeric proteins that bind to
virtually any target DNA sequence [174]. However, TALEs may be less suitable specifically
for de-methylation, as they have difficulty binding richly methylated sequences [175].
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Concomitant to the TALEs, a well-known DNA-binding protein used for targeted
editing is the zinc finger protein tandem array (ZFA). The DNA recognition domain of ZFA
contains 3–6 or more Cys2-His2 zinc fingers. Each zinc finger in a ZFA recognizes a 3-bp
DNA sequence via a single α-helix; tandem array assembly allows recognition of a longer
sequence in the increments of 3, usually 9–18 bp in length [176]. ZFAs approach the DNA
from the major groove [177] and bind with high specificity to DNA sequences [176,178].
Different ZFA modules are used in combination, based on their respective affinities for a
particular three-base sequence, to target specific genomic regions [179]. The site-specific
DNA demethylation using ZFA-TETs fusion protein is shown in Figure 1A.
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Both ZFA and TALE were used as binding platforms for TET1 in site-specific DNA-
demethylation studies, and both systems were equally effective in inducing transcription
of targeted genes [175,180,181]. ZFAs and TALEs each have strengths and weaknesses
regarding opportunities for targeting and specificity of binding; however, ZFAs provide
a broader choice of specific arrays for a given target area. Novel algorithms simplify and
improve the design process [182–184]. In a typical 3-finger array, 9 bp are recognized;
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however, it is possible to design 6-mers or longer molecules to target 20–30 bp sequences
for better specificity. Longer ZFAs and TALEs, however, could still suffer from some
non-specific binding, as off-target binding is known to occur both for ZFs [185], and for
TALE’s [186,187]. To maximize single gene specificity, a ‘multiple hits’ approach may be
used to target multiple fusion molecules to the same promoter in the near vicinity of each
other, and in both strands [86], because the action of multiple demethylase molecules is
cumulative, and it is unlikely that a combination of a dozen different constructs will bind
in close proximity to an unrelated promoter.

In the last decade, the clustered regularly interspaced short palindromic repeat-
associated ‘dead’ Cas9 (CRISPR/dCas9) module has received significant attention as a site-
specific epigenome editing tool [166,188]. The CRISPR module can be used as a site-specific
demethylation tool by combining the specific DNA-binding ability of inactivated ‘dead’
cas9 (dCas9) with demethylase, such as TET1 or TDG. Quite a few targeted demethylation
studies have been published using CRISPR-dCas9 systems [143–168,189–192]. Generally,
CRISPR-dCas9-TET1CD fusion proteins are paired with sgRNAs that have programmable
20 nucleotide sequences homologous to the target loci (Figure 1B).

The first report on site-specific demethylation using the CRISPR-dCas9-TET1 system
was published in 2016 [192]. In that study, the demethylation and transcription of RANKL,
MAGEB2 and MMP2 were promoted by the delivery of dCas9-TET1 constructs to cultured
cells (HEK293, SH-SY5Y, HeLe) using plasmid vectors. They also modified the sgRNA by
inserting bacteriophage MS2 RNA elements into the conventional sgRNA to improve the
efficiency of delivery of the fused proteins to their targeted binding regions. Several other
attempts have been made to amplify the response to associated effector modules in the
CRSPR system. For example, Taghbalout et al. developed the Casilio-DNA Methylation
Editing (ME) platform to amplify the efficacy of effector modules working in the targeted
promotor loci [146,193]. Nguyen et al. introduced the Sun Tag linker to the system to recruit
multiple copies of VP64, a strong non-epigenetic transcriptional activation domain, at each
locus of interest, which improved the efficiency of fused TET1 in inducing demethylation
and transcription [190].

The characteristics of the three DNA-binding modalities are summarized in Table 2.
Comparing ZFA with CRISPR, both have their own strengths and weaknesses. ZFA,

being a protein, is more stable in vivo than a guide RNA. As shown in Figure 2, ZFAs are
much smaller than dCAS9, for which the size and structural complexity represent a signifi-
cant problem. ZFAs can permeate into cells and further into their nuclei, spontaneously
delivering a fused enzymatic payload [194], whereas for dCAS9, additional measures for
internalization and translocation are required. At the same time, gRNA DBD promises a
better specificity of the binding; re-designing a ZFA-based construct to target a new gene
requires re-expression and repurification of the entire fusion protein, whereas, with dCAS9-
demethylases, only a replacement of gRNA is required to re-target; finally, the emerging
wealth of tools for CRISPR editing creates a favorable landscape for the development of
new applications. Nevertheless, the current enthusiasm for CRISPR technology in gene
editing cannot be directly translated to vector-free epigenetic editing; the benefits of ZFA
over dCAS9 (spontaneous internalization, small size, absence of the need to co-transfect
gRNAs and protect them from the aggressive in vivo airway milieu) make it a valuable
approach that remains a useful tool for epigenetic editing [195,196].
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Table 2. Comparison of three DNA-binding domains for vector-free demethylation.

ZFA TALE CRISPR/dCas9

Components Zinc finger domain TALE DNA-binding domain crRNA/tracrRNA or sgRNA, dCas9

Size ~1 kb + demethylase ~2 kb + demethylase 4.2 kb (dCas9) + 0.1 kb (sgRNA)

Working mechanism DNA/protein recognition DNA/protein recognition DNA/RNA recognition

Length of the target sequence 9–36 bp 30–40 bp per TALE pair 20–22 bp

Target recognition efficiency High High Very High

Off target effects Low for long arrays Unknown Lowest

Multiplexing Possible Difficult Possible

Cloning Essential Essential Not essential

Advantages
Small protein size (<1 kDa)
facilitates packaging and
purification

High specificity with each module
recognizing 1bp; no need to
engineer linkage between repeats

Enable multiplexing

When administered as a naked
protein, spontaneously internalize
into cells and translocate into
nuclei, delivering the fused
enzymatic payload

Only a replacement of sgRNA is
required to retarget new genes

Limitations Re-designing the entire protein is
required to re-target

Re-designing is required to target
new genes

Large protein size (~150 kDa) makes
packaging into vectors or
nanovesicles difficult

Cloning methods that require
additional linker sequence to fuse
modules together add variability

Repetitive sequences may induce
undesirable recombination events

When administered as a naked
protein, additional measures for
cellular internalization and nuclear
translocation are required

Has difficulty binding
methylated DNA

sgRNA may be unstable under
in vivo and in vitro biological
conditions, may require
packaging/protection

Finally, some older domains may become re-employed to support the transition of
epigenetic editing from virally vectored to protein-only tools. [197].

7. In Vivo Delivery

Most of the previous findings on site-targeted DNA demethylation have been based
on in vitro experiments. As one of the few exceptions, Lei et al. introduced the CRISPR
system into mice by microinjection of the dCas9-DNA methyltransferase MQ1 construct
on a lentivirus vector into zygotes [198]. Hanzawa et al. also expressed plasmid-based
CRISPR/dCas9 in mouse livers using the hydrodynamic tail vein injection [166]. These
studies are highly relevant because they demonstrate that the approach of site-specific
DNA demethylation can potentially work in vivo. However, laboratory techniques such
as zygotes microinjection and hydrodynamic tail vein injection have problems in clinical
application, such as high procedural difficulty and inability to ensure accurate organ-
specific delivery. Methods such as microinjection and electroporation are more suitable
in vitro [199,200].

Since in vivo knowledge of site-specific DNA demethylation is so limited, an overview
of in vivo site-specific demethylation will depend on what is known about targeted nucle-
ases genome editing, which has similarities [198]. Here, we summarized current strategies
of three main viral vectors and other non-viral technologies.

7.1. Viral Delivery

Viral transduction benefits from the ability of virions to incorporate their genome into
the host for replication; thus, viruses are used as vectors to encode proteins and deliver
them to target cells.
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7.1.1. Adenoviral Vectors (AdVs)

First-generation adenovirus vectors (AdVs) were designed to substitute a transgene for
the E1 (3.15 kb) and/or E3 (3.1 kb) regions. [201]. The first-generation adenovirus vectors
could transduce a wide variety of target cells, achieved high levels of gene expression
and were sufficient for applications where transient high activity was required and an
immune response to the vector or transgene was negligible. However, the first generation
of adenoviral vectors had to overcome several safety concerns. At high ‘multiplicities
of infection’ (MOI), certain host gene products with E1-like activity may be expressed,
thereby unnecessarily inducing host cell proliferation [202]. Leakage of adenoviral DNA
replication accumulating cytotoxic late gene products has a direct cytotoxic effect on
transduced cells and triggers a host cellular immune response [203,204]. To overcome these
adverse effects, the second generation of AdVs were developed with extended genome
packaging capacity by removing two or more initial genes, such as E2 and E4 [205]. Several
clinical trials of genome editing nucleases have been conducted using such AdVs. For
systemic delivery of ZFAs, the expression unit coding the ZFAs is inserted into a serotype
5 AdV pseudotyped with serotype 35 fiber (AdV5/35) to repair autologous CD4+ helper
T cells from HIV infected patients [206]. Despite improvements compared to the first
generation, the problem of immune side effect in vivo has not been completely resolved in
the second generation AdVs, and therefore they are not yet optimal vectors for therapeutic
approaches [207]. A further evolution of AdVs is the high-capacity AdV (HCAdV), which
removes all virus-specific genetic information, leaving only the inverse terminal repeat
sequence (ITR) and packing signal. Compared to common AdVs, HCAdVs have the
following advantages: they suppress both innate and adaptive immune responses, and
their total packaging capacity has been expanded to a maximum of 36 kb, facilitating
delivery of large TALE expression cassettes or the CRISPR/dCas system [208].

One drawback of AdVs is that the level of coxsackie-adenovirus receptor (CAR),
the receptor for Ad on cells, determines the delivery efficiency [209]. For example, AR
expression in cancer cells is said to be negatively correlated with tumor grade, which
means that high delivery efficiency may not be achieved when targeting cancer cells in the
advanced clinical stage [210]. Therefore, the study of AdVs that could specifically act on
cancer cells is taking on a new and important role in anti-tumor research.

7.1.2. Adeno-Associated Viruses Vectors (AAVs)

Adeno-associated viral vectors (AAVs) are delivery vectors derived from icosahe-
dral, non-enveloped viruses of the family Parvoviridae, genus Dependovirus, and are
commonly used in genome editing technology because of their ability to be incorporated
site-specifically and because of their low immunogenicity. The pathogenicity of AAV has
not been confirmed so far. AAVs can deliver their genomes to mitotic and non-mitotic
cells and can survive outside the chromosome without delivering their genome to the
host cell [211]. A major drawback of the AAV vector system is its relatively small genome
size (approximately 4.7 kb), which limits the size of the foreign genes that it can carry.
However, with careful design, the sequences for expressing ZFA and TALE expression
cassettes can be successfully encapsulated in the AAV vector [207]. Multiple studies on
AAV/ZFA-mediated genome editing have shown positive results in experiments with ani-
mal models in vivo [212–214]. For example, in a study on hemophilia B using a humanized
mouse model, the concentration of human factor IX in plasma recovered to 23% of normal
on average by administering ZFA-carried AAV to the model mice [215].

Since the size of a typical spCas9 is about 4.2 kb, packaging it using an AAV with
a cargo size of about 4.5 kb poses a challenge [215]. To solve this problem, a smaller
saCas9 (~3.2 kb) was developed from Staphylococcus aureus species [216]. To date, AAV is
established as a delivery vehicle for the CRISPR/Cas system and has been used to target
brain cells, as well as skeletal and cardiac muscle cells [217,218].

On another topic, AAV has been reported to be a promising vaccine vector. Taking
advantage of this property, attempts are being made to develop a COVID-19 vaccine
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based on the AAV vector [219,220]. The AAV vaccines reportedly have advantages over
first-generation vaccines targeting the same spike protein, such as thermostability, high
efficiency, safety and single-dose vaccination. This research demonstrates the potential and
benefits of an AAV as a gene transfer vector.

7.1.3. Lentiviral Vectors (LVs)

Lentiviruses are viruses belonging to the retroviridae family and are characterized
by the stable insertion of viral genomic information into the host genome using viral RT
(reverse transcriptase) and IN (integrase) [221]. Lentivirus-based vectors have attractive
advantages as gene transfer vectors, including the following [222]:

(i) sustained gene transfer through stable integration of the vector into the host genome.
(ii) ability to infect both dividing and non-dividing cells.
(iii) broad tissue and cell orientation.
(iv) no expression of viral proteins in the host cells after vector transduction.
(v) ability to deliver complex gene elements.
(vi) a more secure integrated site profile.
(vii) relatively easy vector manipulation and production.

However, multiple patient deaths in early clinical trials have prevented lentiviral use as
delivery vectors in humans [223,224]. Therefore, safer integrase-deficient lentiviral vectors
(IDLV) have been developed in recent years. For example, Lombardo et al. used IDLV as a
delivery vector for ZFA-based genome editing in human stem cells [225]. However, the
efficiency of IDLV may depend on the target tissue [224]. For example, IDLV is less efficient
at transferring genes into mouse hepatocytes than a conventional lentiviral vector, but it is
highly efficient at transferring genes into murine muscle [224,226].

The characteristics of the three vectors mentioned above are summarized in Table 3.

Table 3. The characteristics of the three gene transfer vectors.

AdVs * AAVs ** LVs ***

Cell affinity Inefficient for some types of cells Dependent on viral serotypes Broad

Infection into non-dividing cells + + +

Transient/Stable expression Stable expression by genome
integration Transient, episomal Transient, episomal

Maximum titer Very high High High

In vivo immunogenicity High Very low Low

* adenoviral vectors. ** adeno-associated viruses vectors. *** lentiviral vectors.

Although viral vectors are by far the most efficient tools for gene transfer, many is-
sues preclude their in vivo and especially clinical use. Therefore, while the transduction/
transfection-based approach to embedding epigenetically acting fusion proteins into re-
cipient cells has served a useful purpose in the early stages of epigenetic editing, with
experimentation almost exclusively being performed in vitro, it is linked to numerous
problems when it comes to translating it into in vivo, and especially into human appli-
cations. The viral vector is a foreign invader; thus, the body may mount an immune
response [227,228]; a repeat administration or, in case of a pre-existing immunity to the
viral vector, even the first administration will be ineffective for an immune subject [227].

Especially with retroviral vectors, genes incorporated into chromosomes pose a risk
of oncogenesis due to random gene transfer [229–231]. Moreover, insertional mutagene-
sis, viral persistence, accumulation of proto-oncogenic lesions, immunogenicity, cellular
toxicity, risks related to immune surveillance and other problems common to gene ther-
apy will similarly affect epigenetic therapy [232–235]. Finally, viral transfection can affect
transcriptional activity of host genes, which creates the potential for misinterpretation of
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gene expression data generated from transfected cells [236] and impairs usefulness for
experimentation on epigenetic control of transcription, even in vitro but especially in vivo.

7.2. Non-Viral Vectors

Non-viral vectors are classified into several subtypes based on their raw materials,
sizes or production methods. For example, by raw material they can be classified into
lipid-based vectors, polymer-based vectors, etc. Lipid-based vectors are further classified
into lipid nanoparticles (LNPs) and liposomes, etc., depending on their manufacturing
method and size. Liposomes, polymersomes, lipoplexes, polyplexes and dendrimers, are
commonly used as gene delivery vectors and can enclose the mRNA encoding the fusion
chimeras [237–240]. However, the low transfection efficiency and low gene expression rate
compared to viral vectors have been obstacles to the clinical application of non-viral vectors.
Considering this, various improvements of non-viral vectors have been attempted [241].
One example of these improvements is cationic liposomes that have been validated for
their high transfection efficiency and biocompatibility [242]. Positively charged gene
particles packaged in cationic lipids or cationic polymers are expected to be attracted to the
negative charges of the cell membrane, thus increasing the efficiency of cellular uptake [243].
Studies on non-viral nanoparticle-mediated in vivo delivery are increasing in number,
especially for the delivery of relatively small molecules such as RNAi [244–246]. However,
there are few reports on non-viral vector-mediated in vivo delivery of megamolecules for
genome editing. As an example, Han et al. recently reported using nanoparticles to deliver
antithrombin-targeted CRISPR/Cas9 to the liver of a hemophiliac model mouse [247].
Several groups have now reported LNP formulations for successful expression in lungs
following inhalation [248–252], indicating that the approach may be ready for therapeutic
efforts in pulmonary disease. Specifically, in [253], more efficient delivery to fibrotic than
healthy lungs was reported, reached over 12% of epithelial cells and 10% endothelial cells
in fibrotic lungs following intratracheal delivery.

Applications of programmable nuclease complexes are often hampered by the inability
of the complex to reach the target tissue or, if it does reach the target, to pass through the
cell membrane and then into the nucleus, and to exert therapeutic activity in vivo. Similar
challenges can be expected to occur with site-specific demethylases.

7.3. Direct Delivery of Epigenetically Acting Fusion Proteins

Transition from viral vectors to the use of non-viral engineered packaging systems
for epigenetically acting constructs could be a step forward in the field. It is important to
consider, however, that the very need for genomic integration/transgenesis is linked to
some of the side effects and challenges listed above for viral vectors. Lack of control on the
site of insertion, problematic control of expression (both the duration of expression and
its extent) including inability to stop the action if needed, immunogenicity of the mRNA,
design challenges and finally susceptibility to degradation by nucleases are commonly seen
with mRNA therapies and vaccines [254]. Thus, development of novel, safe and effective
approaches, e.g., based on protein-only ‘biologics’ that act on DNA methylation, is enticing.

Key challenges that may be anticipated here will include ascertaining internalization
of such fusion protein constructs into recipient cells and nuclei, and maintaining their
intactness in an in vivo environment. Proteins are usually less lipophilic, causing problems
in the cell membrane permeation process, but a ZFA protein complex can, surprisingly,
penetrate cell membranes due to the positive charge of Cys2-His2 zinc finger domains, and
Gaj et al. showed that the direct delivery of ZFA-tethered nuclease protein can disrupt the
CCR5 gene in both HEK-293 HDF cells, and human CD4+ T cells [255]. Unlike the natu-
rally cell-penetrating ZFAs, for TALEs and CRISPR/Cas9, conjugation of cell-penetrating
peptides (CPPs) is needed to facilitate cell entry [256]. In recent years, various CPPs, such
as TAT peptide (YGRKKRRQRRR), have been developed [257].

Another problem with direct delivery, especially for in vivo applications, is protein
stability. In the in vivo environment, unprotected proteins will come into direct contact
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with degrading enzymes. Therefore, it is important to not only expedite delivery, but also
to increase the stability of the protein or otherwise protect it, e.g., by encapsulation into
vesicles. One method utilized plasma membrane-derived extracellular microvesicles (AR-
MMs; arrestin domain-containing protein 1-mediated microvesicles) [258,259] for delivery
of CRISPR-Cas9/guide RNA complex, which can be employed for epigenetic editing. For
ZFAs, strategies to keep them stable have also been proposed, such as modifying the lysine
residues necessary for degradation [260]. Finally, the LNP packaging discussed above can
also be employed to package not only mRNA, but also the purified epigenetically acting
constructs, provided their size allows.

At the moment, non-vectored (ribo)protein-only epigenetic editing is the cutting edge
of the field.

8. Conclusions

The number of publications on targeted DNA demethylation has increased at an
accelerating rate in recent years, reflecting the high level of interest in this field. Most of
them are in vitro (Table 4) or ex vivo [106] studies using plasmid or viral vectors as a carrier,
but, recently, in vivo experiments have also been reported [143,166]. Although neither
of the gene delivery strategies are immediately applicable to clinical research, further
expansion of in vivo applications of the targeted DNA demethylation is expected to follow
in the future.

Table 4. Selected publications for targeted DNA demethylation/gene reactivation.

DBDs Enzymes Targeted Gene Research Materials Publication Year Ref

TALE TET1 RHOXF2 a HeLa cells 2013 [142]

TALE TET1 Ascl1 b Neural stem cells 2017 [261]

ZFA TDG Nos2 c NIH-3T3 cells 2013 [86]

ZFA TET2 C13ORF18 d, CCNA1 e,
TFPI2 f, SERPINB5 g

HeLa cells, SiHa cells, CaSki
cells, C33a cells 2016 [262]

ZFA TET1 FWA h Arabidopsis 2016 [263]

CRISPR TET1 RANKL i, MAGEB2 j,
MMP2 k HEK293FT cells 2016 [192]

CRISPR TET1
H19 l, RHOXF2, CARD9
m, SH3BP2 n, CNKSR1 o,
GFAP p

ESC, cancer cell lines,
primary neural precursor
cells, mouse fetuses

2016 [143]

CRISPR TET1 BRCA1 q HeLa cells, MCF7 cells 2016 [264]

CRISPR TET1 ST6GAL1 r CHO cells 2018 [165]

CRISPR TET1 Oct4 s NIH-3T3 cells 2022 [164]

CRISPR TET1 FOXP3 t HCC202 cells, HEK293T cells 2022 [154]

CRISPR TET1 PPH u Arabidopsis 2022 [265]

Rel-homology domain
(RHD) of NFκB TDG Nos2 NIH-3T3 cells 2012 [85]

DNA-binding domain of
yeast GAL4

ROS1 5mC DNA
glycosylase Targeted reporter gene HEK293 cells 2013 [170]

Proteins coded by the genes

a Rhox homeobox family member 2, b Achaete-scute homolog 1, c Nitric oxide synthase 2, d Chromosome 13
Open Reading Frame 18, e Cyclin-A1, f Tissue factor pathway inhibitor 2, g Maspin, h homeodomain-containing
transcription factor that controls flowering, i Receptor activator of nuclear factor kappa-B ligand, j Melanoma-
associated antigen B2, k Matrix metallopeptidase 2, l long noncoding RNA, m Caspase recruitment domain-
containing protein 9, n SH3 domain-binding protein 2, o Connector enhancer of kinase suppressor of ras 1, p Glial
fibrillary acidic protein, q Breast cancer type 1 susceptibility protein, r Beta-galactoside alpha-2,6-sialyltransferase
1, s octamer-binding transcription factor 4, t Forkhead box P3, u Pheophytin pheophorbide hydrolase.

Selected targeted DNA demethylation/gene reactivation-related papers are summa-
rized in Table 4.
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Targeted DNA demethylation in key regulatory areas of genes allows re-activation
of epigenetically silenced transcripts for experimental and therapeutic purposes. This
technology can be broadly useful in biomedical research, and its current advances aim to
overcome the key challenges of delivery, efficiency and gene-specificity of epigenetic effects.

Summary of benefits:

• Opens the gene to context-dependent, situation-appropriate stimuli
• Potentially heritable (at least mitotically) effects in tissues
• Mechanistic studies in epigenetics (environmental epigenetics, immunotoxicology)
• Vector-free methods will allow studying causality of immunoregulatory genes
• Forms a new class of ‘biologic’ drugs

Summary of challenges:

• Not every gene can likely be targeted
• Gene-specificity/off-target effects
• Non-viral delivery challenges
• Cell-specific delivery
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