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Abstract: Viruses infect millions of people worldwide each year, and some can lead to cancer or
increase the risk of cancer. As viruses have highly mutable genomes, new viruses may emerge
in the future, such as COVID-19 and influenza. Traditional virology relies on predefined rules to
identify viruses, but new viruses may be completely or partially divergent from the reference genome,
rendering statistical methods and similarity calculations insufficient for all genome sequences. Identi-
fying DNA/RNA-based viral sequences is a crucial step in differentiating different types of lethal
pathogens, including their variants and strains. While various tools in bioinformatics can align them,
expert biologists are required to interpret the results. Computational virology is a scientific field that
studies viruses, their origins, and drug discovery, where machine learning plays a crucial role in
extracting domain- and task-specific features to tackle this challenge. This paper proposes a genome
analysis system that uses advanced deep learning to identify dozens of viruses. The system uses
nucleotide sequences from the NCBI GenBank database and a BERT tokenizer to extract features
from the sequences by breaking them down into tokens. We also generated synthetic data for viruses
with small sample sizes. The proposed system has two components: a scratch BERT architecture
specifically designed for DNA analysis, which is used to learn the next codons unsupervised, and a
classifier that identifies important features and understands the relationship between genotype and
phenotype. Our system achieved an accuracy of 97.69% in identifying viral sequences.

Keywords: BERT; deep learning; DNA/RNA sequence; K-MERS

1. Introduction

Human beings and mammals can be infected by viruses that can spread easily through
contact with saliva, blood, or even through sneezing. Viruses have the ability to mutate
into different variants [1] and strains, which can potentially make vaccines ineffective.
Therefore, early and cost-effective diagnosis is crucial for preventing the spread of viruses
and reducing mortality rates. For instance, HCV is an RNA virus that infects human liver
cells, and chronic HCV infection can lead to a range of liver diseases, including hepatitis,
liver fibrosis, cirrhosis, and liver cancer. The early detection of HCV is important as there is
currently no known cure or vaccine for the virus. If left untreated, HCV can cause severe
liver damage and increase the risk of liver cancer [2]. Additionally, mononucleosis, also
known as the “kissing disease”, has been linked to several types of cancers, including
Burkitt’s lymphoma, Hodgkin’s disease, and nasopharyngeal carcinoma. Similarly, HBV is
an example of an oncovirus that can cause genomic instability, which can lead to the devel-
opment of hepatocellular carcinoma, the fifth most common cancer worldwide. Another
example is human papillomavirus (HPV), a double-stranded, circular DNA virus that can
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cause various epithelial lesions and cancers, including cutaneous and anogenital warts that
may progress to carcinoma depending on the subtype. Polymerase Chain Reaction (PCR) is
a widely used technique to amplify and detect specific nucleic acid sequences from various
sources, including viral particles in blood samples. The resulting DNA sequences obtained
from PCR can be used to identify viruses, their strains, and variants. These sequences can
be compared to reference databases, such as the NCBI GenBank, to identify the presence of
viral genetic material and determine the closest matches to known viral sequences [3].

BLAST (Basic Local Alignment Search) is a widely used bioinformatics tool that
compares DNA or protein sequences against a database to find similar sequences [4].
However, just finding similarities between the collected genome and a reference genome
using BLAST is not always sufficient to identify a pathogen, as there may be other factors
to consider. Some biological features, such as the presence of DNA-binding proteins, can
accurately and quickly predict the presence of viruses. Deep learning algorithms can be
used to classify DNA based on these features and provide more accurate predictions [5].

This paper aims to explore computational methods to detect viral genomes and predict
integration sites to understand the organs most affected by viral infections. This information
can help to develop targeted treatments for viral infections and improve patient outcomes.

2. Literature Review

Computational virology has witnessed notable progress in recent years, with the
widespread application of machine learning (ML) and deep learning (DL) techniques [6],
for DNA classification and virus identification [7]. In one study [8], ML algorithms were
compared with and without feature extraction for DNA classification, and the authors
concluded that ML could be used to investigate the origin of SARS-CoV-2 viruses. An-
other study [9] analyzed DNA sequence classification using convolutional neural networks
(CNN) and hybrid models, limited to coronaviruses, dengue, hepadna-viruses, and in-
fluenza. The study found that deep neural networks could predict the host directly from
genome sequences, but highlighted the limitations of LSTM gradient accumulation issues
over large nucleotide sequences and generalization problems due to a lack of complex adap-
tation features to identify the host. Similarly, in [10], the authors proposed deep learning for
viral host prediction, evaluating the effectiveness of deep neural networks on influenza A,
rabies lyssaviruses, and rotavirus using the European Nucleotide Archive (ENA) database.
However, the use of long nucleotide sequences can pose a challenge for the deep neural
network, as it faces LSTM gradient accumulation issues. Additionally, there may be a
generalization problem with the model, as it may lack the necessary complex adaptation
features to accurately identify the host from genome sequences. SVMs and regression
models were presented in another study [11] that focused on novel viruses without taxo-
nomic assignment, but they required long input sequences and only broad host categories
were supported. A transformer model based on the BERT architecture [12] was proposed
in [13] for eukaryotic, bacterial, archaeal, and viral sequences, relying on natural language
processing and bidirectional encoding. However, the prediction accuracy was lower for the
lowest taxonomic rank (genus). In [14], a LSTM model was used for DNA classification,
and the study focused on prokaryotic genomes. For eukaryotes, a classifier was proposed
to distinguish between coding and noncoding DNA and predict reading frames for only
the CDS (coding sequences). In a study conducted by [15], a DL architecture was proposed
to predict short sequences in 16s ribosomal DNA, resulting in a maximum accuracy of
81.1%. Another study [16] proposed a spectral-sequence-representation-based deep learn-
ing neural network, which was tested on a dataset of 3000 16S genes and compared with
GRAN (General Regression Neural Network). The study found that better results were
obtained by optimizing the model’s hyperparameters. Furthermore, the importance of
big data in intelligent learning was emphasized in [17]. The authors in [18] used machine
learning and deep learning techniques in virus identification and DNA classification to
treat COVID-19 patients, and achieved good results. However, there are also challenges
associated with the employment of these techniques, such as LSTM gradient accumulation
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issues, generalization problems, and computational cost. These challenges need to be
addressed through continued research and development to improve the accuracy and
applicability of these approaches in understanding and combatting viruses.

To summarize, these studies demonstrate the potential of machine learning and deep
learning techniques for virus identification and DNA classification. However, they also
highlight the challenges associated with these techniques, including LSTM gradient accu-
mulation issues, generalization problems, and the computational cost of feature selection.
Despite these challenges, the use of deep neural networks in predicting host identification
from genome sequences shows promise for the future of computational virology. With
continued research and development, machine learning and deep learning techniques can
aid in the identification and classification of viruses, potentially leading to better diagnosis,
treatment, and prevention of viral diseases. However, some research gaps have been
identified in the classification of various types of DNA sequencing for diseases using a
generalized model. To address this gap, this study presents a novel deep learning model
for the classification of various diseases such as Zika, influenza, HPV, WNA, hepatitis, and
dengue, and the majority of this research consists of two main components.

a. The first component involves a pipeline for nucleotide acquisition using the NCBI
GenBank database to train a BERT tokenizer.

b. The second component is specialized BERT architecture for DNA analysis that learns
unsupervised next codons and passes the last hidden state of the CLS token to a classi-
fier to identify relevant features for understanding genotype–phenotype relationships.

3. Materials and Methods

Our proposed method for analyzing viral genomic data is based on advanced natural
language processing (NLP) [19] techniques, with a focus on developing a specialized BERT
tokenizer that can extract relevant features from nucleotide sequences. The method com-
prises two main components: a basic pipeline for nucleotide acquisition and a specialized
BERT model for genomic data analysis.

The first component involves collecting nucleotide sequences of different viruses
from the NCBI GenBank database, which are then used to train the BERT tokenizer. This
tokenizer breaks down the nucleotide sequences into smaller units called tokens, with each
token consisting of three possible nucleotide combinations or codons.

The second component of the proposed system is a scratch BERT architecture designed
specifically for DNA analysis. This architecture learns the next codons in an unsupervised
manner, and then the last hidden state of the CLS token is passed to a classifier. The
classifier identifies relevant features that are crucial for understanding the relationship
between genotype and phenotype [20].

Our proposed method is particularly suitable for addressing the challenges associated
with analyzing long genome sequences, which require significant computational power.
Language transformer models, such as BERT, are particularly effective for this task because
they can learn complex patterns and relationships from genome sequences. Unlike tradi-
tional machine learning methods, these models can extract more meaningful and complex
features from the data.

3.1. Dataset

The dataset utilized in this study was obtained from GenBank [3], a publicly available
open-source database that provides access to the latest nucleotide sequences for the research
community. The employed dataset includes genome sequences of various viruses, such
as IAV, IBV, ICV, SFTS, Dengue, EnteroA, EnteroB, HBV, HCV, HSV-1, HPV, MPV, WNV,
and Zika.

Table 1 provides an overview of the different viruses included in the dataset, which
are classified into different taxonomic levels including order, family, genus, and species.
The Order column groups viruses with similar functions or characteristics. The Species
column is the lowest level of classification, and groups viruses that share genetic and
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biological characteristics. The table lists various species of viruses, and this paper focuses
on their classification.

Table 1. Taxonomic levels of viruses.

Order Family Genus Species

Articulavirales Orthomyxoviridae Alphainfluenzavirus IAV
Articulavirales Orthomyxoviridae Betainfluenzavirus IBV
Articulavirales Orthomyxoviridae Gammainfluenzavirus ICV
Bunyavirales Phenuiviridae Bandavirus SFTS
Flaviviridae Flaviviridae Flavivirus Dengue

Picornavirales Picornaviridae Enterovirus Enterovirus A
Picornavirales Picornaviridae Enterovirus Enterovirus B
Blubervirales Hepadnaviridae Orthohepadnavirus HBV

Amarillovirales Flaviviridae Hepacivirus HCV
Herpesvirales Herpesviridae Human alphaherpesvirus 1 HSV-1

Zurhausenvirale Papillomaviridae Alphapapillomavirus HPV
Chitovirales Poxviridae Orthopoxvirus MPV

Amarillovirales Flaviviridae Flavivirus WNV
Amarillovirales Flaviviridae Flavivirus Zika

3.2. Basic Pipeline for Nucleotide Sequence Acquisition

Due to the lack of publicly available datasets containing nucleotide sequences for large
sets of viruses, we have opted to collect the genomes of various viruses from the NCBI
GenBank databases [3]. As the genome sequences are in a raw and heterogeneous format, it
is essential to develop a robust and state-of-the-art BERT architecture. Figure 1 illustrates the
fundamental architecture of the pipeline system, which includes the following components.
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3.2.1. Nucleotide Sequence Collection from GenBank

The first stage of the system pipeline entails the collection of viral nucleotides. This
crucial step involves the thorough examination of publicly accessible nucleotide databases
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that are specifically designed to serve the research community. Through this initial stage,
the system can effectively gather the necessary data required to proceed with subsequent
analysis and processing.

3.2.2. Filter and Screening

To ensure the quality and relevance of genomic data, a Python script was employed to
filter raw and heterogeneous nucleotide sequences. This step was necessary to isolate the
relevant data from the sequences. Additionally, given that the analysis was conducted solely
in the Homo sapiens host cell, the host cell was also filtered to eliminate any extraneous
data. Through this rigorous filtering process, the resulting dataset was optimized for
subsequent analysis and interpretation.

3.2.3. K-Mers for Computational and Domain-Specific Feature Extraction

Following the collection of genomic data, the genomes were transformed into k-
mers [21], which are sets of possible nucleotide sequences of size k. This approach enables
the identification of hidden patterns in DNA/RNA sequences. Subsequently, the BERT
tokenizer was trained on the k-mers to generate DNA-specific tokens, which were utilized
in the proposed BERT model. Through this process, the resulting model was optimized for
the accurate analysis and interpretation of genomic data.

3.2.4. SMOTE

In the context of disease-related data, imbalanced genomic data samples are a common
occurrence, particularly with rare viruses such as ZIKA, MPV, and WNV, which may have
divergent genotypes and very few nucleotide sequences available in databases. To address
this issue, synthetic data can be added to the minority classes using SMOTE (synthetic
minority over-sampling technique) [17]. This approach generates new samples to balance
the data samples, in contrast to under-sampling techniques. By oversampling using SMOTE,
the bias often exhibited by deep learning models towards majority classes in unbalanced
datasets can be mitigated. Thus, SMOTE is a valuable approach in building deep learning
models that are not biased towards the majority classes.

3.2.5. Additional Preprocessing

It is essential to note that each deep learning or machine learning algorithm requires
distinct types of preprocessing stages. These stages are necessary to ensure that the input
data are optimized for subsequent analysis and interpretation. Specifically, preprocessing
for the proposed BERT model will be expounded upon in the subsequent section.

3.3. Proposed BERT Model

The proposed BERT model [12] comprises transformer-based building blocks as pre-
sented in Figure 2, each of which serves a distinct purpose in the pipeline. The stages of the
pipeline are explained below:

3.3.1. Proposed DNA/RNA Tokenizer

In this stage, the nucleotide sequence is pre-processed for the custom BERT model,
which has been trained on thousands of nucleotides. As the BERT Tokenizer is trained
on Wikipedia data, a pre-trained BERT model was not used. Instead, the BERT Tok-
enizer was trained for genome data using various K-MERS parameters to optimize the
BERT architecture.
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3.3.2. BERT Padding

Given that the length of 3-mers varies from sequence to sequence, and the maximum
length of nucleotide sequences is 7000 bp, any gaps or missing sequence regions were
padded with specific tokens. This ensured that the input sequence had a fixed length for
subsequent analysis.

3.3.3. Bidirectional Encoder Representation

The BERT model follows a specific format for training on K-MERS strings [22]. The
input K-MERS are encoded into a bidirectional representation by the encoder. BERT can
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extract specific biomarkers from the genome in an unsupervised manner, and we can
then pass these biomarkers into a deep neural network-based classifier. This stage of
the pipeline is crucial for accurately analyzing and interpreting genomic data using the
proposed BERT model.

3.3.4. Classifier

In the field of machine learning, classifiers are composed of various possible sets of
layers, such as dropout, ReLU, and softmax, among others. The selection of the optimal set
of layers is determined through experiments performed with different parameters. Once
attention-based features have been extracted, they are passed to another classifier consisting
of diverse layers that learn the complexity of domain-specific features. A probabilistic
model, such as sigmoid or softmax, is then applied to the resulting output. Our proposed
BERT model was fine-tuned for virology-related research, enabling it to acquire a more
sophisticated understanding of nucleotides, amino acids, and proteins. Once the input
context score vector had been obtained, it was fed into a softmax probabilistic layer, denoted
as P, as expressed by Equation (1).

P = So f tmax
(

CWT + bT
)

(1)

The general softmax Equation (2) was used to compute the probability distribution of
the output class, while the Categorical Cross Entropy loss function (3) was employed to
measure the dissimilarity between the predicted class probabilities and the true class label.

α(z)i= =
ezi

∑K
j=1 ezj

(2)

LCE = −∑n
i=1 ti log(pi), f or n Classes (3)

Here, as t represents the true label at time as i and as p represents the softmax proba-
bility for the jth class at time i.

3.4. Evaluation Metrics

A wide range of matrices are used for evaluating machine learning models. These
parameters help us to measure the efficiency of the generated model. The evaluation of a
model is based on True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN). The confusion matrix provides a comprehensive evaluation of the model’s
performance, allowing for further analysis and potential improvements in the classification
process. Based on the confusion matrix, we calculated the accuracy and F-score. Accuracy
is used to evaluate the model’s performance. Accuracy measures the number of correct
predictions made over the entire test dataset.

Accuracy =
TP + FP

TP + FP + TN + FN
(4)

The F-score is a weighted average of precision and recall, and it is used to evaluate the
performance of a classification model. Thus, to calculate the F-score we need to calculate
the precision and recall.

Precision P is the proportion of TP out of all predicted positives (TP + FP).

P =
TP

TP + FP
(5)

Recall (R) is the proportion of true positives (TP) out of all actual positives (TP + FN).

R =
TP

TP + FN
(6)
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F− score is the harmonic mean of precision and recall, that is:

F− score = 2 ∗ p ∗ R
P + R

(7)

The pseudo-code of the proposed model is described below in Table 2.

Table 2. Pseduo-code.

Input: NCBI GenBank nucleotide sequences

Output: Biomarkers extracted from genome

Let us denote the set of input nucleotide sequences as S, and the set of extracted biomarkers as B. Here is the mathematical
representation of the given pseudo-code:

• Collect nucleotide sequences:
• S = {s1, s2, . . . , sn}
• Filter and screen the sequences:
• S′ = {s|s meets certain criteria}
• Transform the genomes into k-mers:
• K = {k1, k2, . . . , km}, where ki is a k-mer of a nucleotide sequence s
• Train the BERT tokenizer on the k-mers:
• T = Tokenizer.train (K)
• Use SMOTE to balance imbalanced genomic data samples:
• S” = SMOTE (S′)
• Perform additional preprocessing steps for the BERT model:
• Convert nucleotide sequences to DNA-specific tokens using T
• Apply necessary transformations to prepare the data for the BERT model
• Preprocess the nucleotide sequence for the custom BERT model:
• Tokenize the nucleotide sequence using the proposed DNA/RNA tokenizer
• Pad any gaps or missing sequence regions with specific tokens
• Encode the input k-mers into a bidirectional representation using the BERT model’s bidirectional encoder:
• E = Encoder.encode (S”)
• Extract specific biomarkers from the genome in an unsupervised manner using the BERT model:
• B = Biomarker.extract (E)
• Pass these biomarkers into a deep neural network-based classifier:
• Classifier.train (B)

4. Results and Discussion

The experiment conducted involved selecting a certain amount of data, shown in
Table 3, which lists several diseases along with their corresponding counts representing the
number of cases or occurrences of each disease. The table shows that the counts range from
a high of 5000 to a low of 28, indicating the relative prevalence of each disease.

Table 3. Number of occurrences of each disease.

Disease Name Count Disease Name Count

HBV 5000 Gamma Influenza Virus 1941
Betta Influenza Virus 5000 Dengue 1866
Alpha Influenza Virus 5000 Human Alpha Herpes 1479

Entero Virus B 4653 Human Papilloma Virus 1355
Hepaci Virus 4619 West Nile Virus 371

Entero Virus A 4527 Zika Virus 321
Dabie Banda Virus 4193 Monkey Pox 28

The BERT model was configured with different parameters, as shown in Table 4. The
model specified with 2 layers, each with 2 attention heads and 768 hidden units per layer,
can handle input sequences of up to 5000 tokens in length and is designed to handle inputs
consisting of a single segment. The optimizer was set up to train the model using the Adam
optimizer with a small value of epsilon to avoid division by zero when computing the
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optimizer’s update step. The argument “freeze_bert” was set to False, indicating that the
parameters of the pre-trained BERT model will be updated during training.

Table 4. BERT model configuration.

Parameter Name Details Parameter Name Details

Maximum position embeddings 5000 Number of hidden layers 2
Number of attention heads 2 Hidden size 768

Training ratio 80 Testing ratio 20
Freeze_bert False epsilon value 0.00000001

Learning Rate 0.00005 optimizer Adam

The maximum sequence length of the BERT model was set to 5000, meaning that any
input sequence longer than 5000 tokens would be truncated. This experiment’s choice of
using the Adam optimizer is suitable for models with a large number of parameters, such
as BERT.

The evaluation of the proposed multi-class classification model was carried out using
a confusion matrix, as illustrated in Figure 3. The 14 different classes of viruses considered
in the model were IAV, IBV, SFTS, Dengue, EnteroA, EnteroB, ICV, HBV, HCV, HSV-1, HPV,
MPV, WNV, and Zika. This confusion matrix showed the performance of a multi-class
classification model on a set of test data. The matrix was structured in such a way that the
rows indicate the true classes of viruses, while the columns represent the predicted classes.
The numbers in the cells of the matrix represent the number of instances that were either
correctly or incorrectly classified by the model. For instance, the cell in the first row and
second column indicates that there were two instances of the IAV virus that were incorrectly
predicted to be IBV by the model. Similarly, the cell in the fourth row and fifth column
shows that one instance of the Dengue virus was incorrectly predicted to be EnteroA by
the model.

Biomedicines 2023, 11, x FOR PEER REVIEW 10 of 12 
 

 
Figure 3. Results of confusion matrix. 

The confusion matrix presented a clear representation of the model’s performance in 
terms of accuracy and F-Score. Looking at the matrix, we can see that the model’s perfor-
mance was generally good. The majority of instances have been correctly classified, and 
most of the off-diagonal entries are small. 

The ROC curve, as presented in Figure 4, provides a way to evaluate the performance 
of a proposed model. In the ROC curve, each virus is labeled from 0 to 13, respectively, as 
IAV, IBV, SFTS, Dengue, EnteroA, EnteroB, ICV, HBV, HCV, HSV-1, HPV, MPV, WNV, and 
Zika virus. According to the ROC plot, each class (i.e., virus) has a corresponding AUC 
value. Classes 0, 1, 2, 5, 9, and 10 have an AUC value of 0.99. Classes 3 and 6 have an AUC 
value of 0.96. Classes 7 and 8 have an AUC value of 1.00, which indicates perfect perfor-
mance. Similarly, classes 11, 12, and 13 have AUC values of 0.50, 0.79, and 0.72, respec-
tively. 

The proposed method was rigorously compared with various techniques to demon-
strate its robustness, as presented in Table 5. The model utilized the BERT architecture for 
DNA analysis, resulting in a remarkable accuracy of 97.69%. In comparison, the model 
presented in [23] used the BiLSTM model to classify the DNA sequences of MPV and HPV 
viruses and achieved an accuracy of 96.08%. The authors in [8] employed a CNN for DNA 
sequence classification and achieved an accuracy of 93.16%. Similarly, the XGboost algo-
rithm was used to classify five types of chromosomes, resulting in an accuracy of 89.51% 
[24]. These results demonstrate the superior performance of the proposed method over 
existing techniques in genomic data analysis. 

Table 5. Comparison with some recent models. 

Ref Year Method Accuracy (%) 
Proposed - BERT Architecture 97.69 

[23] 2022 BiLSTM model 96.08 
[8] 2021 CNN model 93.16 

[24] 2020 XGboost algorithm 89.51 

Figure 3. Results of confusion matrix.

To analyze the performance of the model more closely, we can calculate various
evaluation metrics such as precision, recall, and F1 score. Based on the given confusion
matrix, the results obtained from the experiment were an accuracy and F-Score of 96.47
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and 93.46, respectively. A high F-score indicates that the model has a high accuracy and is
successful at identifying true positives while minimizing false positives and false negatives.

The confusion matrix presented a clear representation of the model’s performance
in terms of accuracy and F-Score. Looking at the matrix, we can see that the model’s
performance was generally good. The majority of instances have been correctly classified,
and most of the off-diagonal entries are small.

The ROC curve, as presented in Figure 4, provides a way to evaluate the performance
of a proposed model. In the ROC curve, each virus is labeled from 0 to 13, respectively,
as IAV, IBV, SFTS, Dengue, EnteroA, EnteroB, ICV, HBV, HCV, HSV-1, HPV, MPV, WNV,
and Zika virus. According to the ROC plot, each class (i.e., virus) has a corresponding
AUC value. Classes 0, 1, 2, 5, 9, and 10 have an AUC value of 0.99. Classes 3 and 6
have an AUC value of 0.96. Classes 7 and 8 have an AUC value of 1.00, which indicates
perfect performance. Similarly, classes 11, 12, and 13 have AUC values of 0.50, 0.79, and
0.72, respectively.
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species that could be analyzed using the proposed system in the future. Investigating the 
performance of the BERT architecture on a broader range of viruses may provide valuable 
insights, which will be considered in future research. 
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Figure 4. ROC Curve.

The proposed method was rigorously compared with various techniques to demon-
strate its robustness, as presented in Table 5. The model utilized the BERT architecture for
DNA analysis, resulting in a remarkable accuracy of 97.69%. In comparison, the model
presented in [23] used the BiLSTM model to classify the DNA sequences of MPV and
HPV viruses and achieved an accuracy of 96.08%. The authors in [8] employed a CNN for
DNA sequence classification and achieved an accuracy of 93.16%. Similarly, the XGboost
algorithm was used to classify five types of chromosomes, resulting in an accuracy of
89.51% [24]. These results demonstrate the superior performance of the proposed method
over existing techniques in genomic data analysis.
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Table 5. Comparison with some recent models.

Ref Year Method Accuracy (%)

Proposed - BERT Architecture 97.69
[23] 2022 BiLSTM model 96.08
[8] 2021 CNN model 93.16
[24] 2020 XGboost algorithm 89.51

5. Conclusions

In conclusion, this research work successfully applied a specialized BERT tokenizer
and architecture designed for DNA analysis to analyze viral genomic data. The proposed
system consisted of a nucleotide acquisition pipeline and a customized BERT model for
genomic data analysis. The study collected nucleotide sequences from various viruses,
including Zika, influenza, HPV, WNA, hepatitis, dengue, and others from GenBank, and
employed advanced data balancing techniques to address any potential data imbalance. The
BERT architecture was customized for DNA analysis, and a classifier was used to identify
important features to understand the relationship between genotype and phenotype. The
proposed approach achieved an impressive accuracy of 97.69%.

While the study focused on a wide range of viruses, there are still many other viral
species that could be analyzed using the proposed system in the future. Investigating the
performance of the BERT architecture on a broader range of viruses may provide valuable
insights, which will be considered in future research.
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