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Abstract: The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has
not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that
are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver
cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in
many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or
parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus
regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of
HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum
stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC
associated with a specific liver disease are also described and a brief description of autophagy and
apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic
potential is reviewed and the experimental evidence indicating an interplay between the two is
extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell
death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in
drug resistance are examined.
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1. Introduction

Hepatocellular carcinoma (HCC) is a very complex world health problem. Approxi-
mately 905,677 new cases and 830,180 HCC-related deaths were reported in 2020 [1]. The
estimation of more than 1 million deaths caused by HCC by 2030 has been predicted [2].
HCC-associated liver diseases are chronic viral hepatitis B (HBV) and hepatitis C virus
(HCV) infection [3], non-alcoholic steatohepatitis (NASH) [4] and alcoholic liver disease
(ALD). The etiological risk for HCC varies according to the geographical location [5].
Thus, in the United States, 54.9%, 16.4%, 14.1% and 9.5% of HCC cases are associated
with the four commonest liver diseases HCV, HBV, NAFLD/NASH and ALD [6]. In Asia,
NAFLD-associated HCC is lower compared to the West [7]. However, the etiology of
HCC has changed over the last 20 years with a progressive increase in non-viral cases,
such as metabolic HCC and a concomitant decline in viral etiology [8]. This was true in
a study from Crete, where the initial high hepatitis C virus association decreased, and
alcohol ranked first among risk factors for HCC. Non-alcoholic fatty liver disease was also
continually increased as an important risk of HCC [9].

The development of HCC is associated with some form of cellular death, which may
be either programmed (PCD) (such as apoptosis, necroptosis and autophagy-dependent
cell death) or non-programmable (such as pyroptosis and necrosis) [10–13]. Apoptosis
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is probably the commonest cause of PCD. Characteristically, apoptosis does not elicit
inflammation because apoptotic bodies are engulfed by macrophages and are degraded by
lysosomes in autophagy [14,15]. Autophagy is an important degradation process of cellular
contents, leading to the recirculation of structural components of the cell and improved
survival. Autophagy-dependent cell death is a rare kind of PCD [16–18]. Lysosomes
are the most important subcellular organelles involved in the autophagic degradation of
protein aggregates [19,20]. Ferroptosis is a different form of PCD as it depends on excessive
iron and lipid peroxidation [21,22] and is closely related to a specific form of autophagy
called ferritinophagy, which is a critical part of the turnover of cellular iron through the
autophagic degradation of ferritin [23]. In addition, other forms of autophagy, such as
lipophagy, and heat shock protein 90 (HSP90)-mediated chaperone-mediated autophagy
(CMA) may induce ferroptosis by promoting lipid peroxidation. The purpose of this
review is to present the current views on HCC pathogenesis and the complex interplay of
autophagy, apoptosis and ferroptosis in the pathophysiology and treatment of HCC.

2. Pathogenesis of HCC

The cells of origin of HCC are not clear. Experimental evidence supports the implica-
tion of transformed mature hepatocytes as the cell of origin, but also the possibility that the
source is liver stem cells [24,25].

HCC is the result of either mutations, such as those in the TERT promoter or p53
suppressor gene [26,27], or epigenetic modifications. Some of them are directly involved
or activate important signaling pathways leading to HCC [28]. Genes coding for several
signaling pathways, such as Wnt/β-catenin, oxidative stress, AKT/mTOR and MAP kinase,
are often mutated in HCC and are used for the molecular classification of HCC [29]. All
these molecular abnormalities are triggered by external factors, such as alcohol consump-
tion, viral infection and abnormal nutrition. In general, three mechanisms are implicated
in the initiation and progress of HCC, namely, persistent liver inflammation, endoplasmic
reticulum (ER) stress and abnormalities of cell signaling pathways [5]. Inflammation is an
important pathogenetic factor irrespective of the etiology of the liver disease that leads to
HCC [30]. Inflammation starts when hepatocytes undergoing programmed or accidental
death liberate factors, such as HMGB1 and HDGF, to initiate an inflammatory response [31].
Different inflammasomes, particularly the nucleotide-binding oligomerization domain,
leucine-rich repeat and pyrin domain containing 3 (NLRP3), are activated and lead to the
release of the pro-inflammatory cytokine IL-1β. NLRP3 activation is mostly triggered by the
production of ATP from the mitochondria of the damaged cells [32] and lysosomal disrup-
tion [33]. NLRP3 inflammasome activation in hepatocytes is a two-step process. Priming is
the first step when damage-associated molecular patterns (DAMPs) from damaged cells
and pathogen-associated molecular patterns (PAMPs) stimulate TLR receptors, followed by
translocation of NF-kB to the nucleus and increase in pro-IL-1β and pro-IL-18 expression.
The second step is triggered when extracellular ATP or active lysosomal enzymes finally
lead to the activation of caspase-1. Cleavage by caspase-1 turns pro-cytokines into mature
IL-1β and IL-18, while the cleavage of gasdermin D leads to a programmed cell death called
pyroptosis. In this canonical activation of pyroptosis, fragments of gasdermin D form pores
in the plasma membrane, killing the cell and releasing IL-1β and IL-18, which aggravates
inflammation [34,35].

In the non-canonical pyroptosis, lipopolysaccharides (LPSs), from Gram-negative
bacteria, turn the pro-caspases 4, 5 and 11 into active enzymes that cleave gasdermin
D. The pores in the plasma membrane are formed, but without maturation, and release
IL-1β and IL-18. This is not always the case, as caspase-11 may activate the NLPR3-
dependent caspase-1 inflammasome and indirectly stimulate the release of intracellular
cytokines [36,37].

Interestingly, inflammasome-mediated pyroptosis also occurs in non-parenchymal
liver cells, implicating the gut microbiota. DAMPS and gut-derived PAMPs activate
Kupffer cells that produce IL-1β and TNF. NLRP3 activation in hepatic stellate cells (HSCs)
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promotes the production of the profibrogenic cytokine and induces the expression of the
profibrogenic molecule TGF-β. These events in concert lead to liver inflammation and
fibrosis, being the link between liver damage and hepatocellular carcinoma [38,39].

It was suggested that cathepsin B from lysosomes is the triggering stimulus of the
NLRP3 inflammasome, which is mostly mediated by the release of Cathepsin B [40–42].
However, mice macrophages deficient in cathepsin B showed comparable NLRP3 inflam-
masome activation with wild-type animals [43], suggesting that other products contribute
to NLRP3 inflammasome activation. Cathepsins B, L, C, S and X are probable candidates
in NLRP3 inflammasome activation by silica particles [44]. In an adenovirus infection,
cathepsin B release is also a mediator of inflammation, but reactive oxygen species (ROS)
inhibition reduces IL-1β secretion, indicating that ROS production might be the mechanism
of the induction of inflammasome activation by cathepsin B [45].

2.1. Endoplasmic Reticulum (ER) and Oxidative Stress

ER stress is caused by the accumulation of unfolded or misfolded proteins in the ER
lumen. Pathogens, mutations and an increased metabolic rate led to an increase in the
protein secretory load of the hepatocyte. The accurate monitoring of protein folding is
not maintained in ER, inducing the unfolding protein response (UPR) either to normalize
protein synthesis or to induce cell death in severe ER stress [46,47]. ER stress in murine
hepatocytes activates inflammatory pathways, such as NF-kB and TNF, leading to HCC
induction [48]. Chronic ER stress and increased UPR activity have been implicated in the
development of HCC and are present in HCC tumors irrespective of grade or stage [49–52].

2.2. Abnormalities of Signaling Pathways

• mTOR pathway

The abnormal activation of the oncogenic phosphoinositide 3-kinase/protein kinase
B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling is associated with HCC.
This is not unexpected, as this pathway is involved in various cellular functions, such as
cellular proliferation, differentiation, apoptosis and metabolism [53]. The AKT/mTOR
pathway is known to interfere with aerobic glycolysis regulating three limiting enzymes in
the glycolytic pathway (hexokinase 2, phosphofructokinase 1, and pyruvate kinases type
M2), a fact that is crucial for HCC progression [54–57]. The mTOR pathway is analyzed
later, as it is implicated in the interplay between autophagy and apoptosis.

• Wnt/β-catenin pathway

The deregulation of Wnt/β-catenin signaling is critical in human HCC [58,59]. A
total of 35% of human HCC tumors had a gain-of-function mutation of CTNNB1 encoding
β-catenin and loss-of-function mutation of AXIN1 [60,61]. Resistance to sorafenib and
regorafenib treatment was attributed to activated Wnt/β-catenin in HCC patients [62,63].
There is evidence that a second signal is required because Wnt/β-catenin alone is not
sufficient to induce hepatocarcinogenesis. Oncogenic mutations of β-catenin cooperate
with other oncogenes, such as c-Met [64–66] and K-RasV12 [67]. After activation, β-catenin
induces several downstream targets that are implicated in HCC induction. c-MYC is one of
the best-studied down-stream effectors of β-catenin [68,69].

• miRNAs

miRNAs are regulators of several tumor-related genes in carcinogenesis, acting ei-
ther as oncogenes or tumor suppressor genes. miRNAs are classified according to their
implication in the main molecular pathways leading to HCC tumorigenesis [70]. miR-30a,
miR-365, miR-526a, miR-377, miR-199a-5p and miR-330 all were implicated in apoptosis
regulation and were either upregulated or downregulated in HCC [71]. Other mRNAs
are involved in the repression of the PI3K/AKT/mTOR pathway or the Wnt/β-catenin
pathway [53]. Tumor suppressor miRNAs are associated with either HCC initiation and
progression [72] or with metastasis and recurrence [73]. Similarly, some pro-oncogenic
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miRNAs are associated with HCC initiation and progression [74], or are involved in HCC
recurrence and metastasis [75].

2.3. Additional Factors Are Involved in HCC Pathogenesis

• Exosomes

Exosomes transfer proteins, DNAs and RNAs, such as miRNAs, long non-coding
RNAs (lncRNAs) and messenger RNAs (mRNAs), between HCC and normal cells. Exo-
somes initiate either local or systemic reactions, participating to the initiation and progres-
sion of HCC. Exosomes are used as biomarkers and therapeutic tools in HCC [76,77].

• Ferroptosis

Ferroptosis is an iron-dependent process of regulated cell death, with accumulation of
lipid peroxides that causes damage to liver cells and is associated with the development of
HCC. It is analyzed later in the paper.

• Microbiota

Microbial products in the bowel are deeply involved in HCC pathogenesis. Bacterial
products from the gut microbiota can directly or indirectly damage DNA through the pro-
duction of ROS [78,79]. The altered composition of the gut microbiota may be one of the
mechanisms underlying the action of aflatoxin and other mycotoxins as powerful inducers
of HCC [80]. In addition to gut microbial products, several studies have incriminated
specific gut microbiota in association with HCC. Enterococcus faecalis is increased in
HCV-induced HCC development [81]. A similar study showed a significant increase in
Enterococcus species in patients with viral and alcoholic cirrhosis leading to HCC [82].
Microbiotas also interfere with bile acid metabolism, contributing to HCC development.
Bile acid metabolites, produced by the gut microbiota, can cause inflammation, ROS
overproduction and a reduction in apoptosis in the liver, finally leading to the development
of HCC. Moreover, they can modulate the function of liver immune cells, affecting HCC
progression. They can also indirectly contribute to the activation of the TLR4 receptor in
hepatocytes and Kupffer cells. Bile acids increase gut permeability, acting on the tight
junctions, and allow for an increased transportation of LPS to the liver, thus promoting
angiogenesis and the downregulation of tumor suppressor miRNAs [83].

• Calcium

Ca2+ is present in various cell compartments transported among them by transporters
and exchangers, collectively known as the Ca2+ transportome. The impairment of the Ca2+

transportome contributes to HCC initiation, the formation of metastatic cells and reduction
in cell death [84].

• Autophagy and Apoptosis

These two critical parameters in the initiation and progress of HCC are analyzed
separately. Two very informative reviews on the pathogenesis of HCC have been recently
published [5,38].

Detailed pathophysiological factors implicated in HCC pathogenesis, including gene
mutation and epigenetic changes, have been recently reviewed [85].

3. HCC Related to Specific Diseases

The pathogenesis of HCC has some discrete characteristics associated with the etiology
of the liver disease.

3.1. HBV

HBV, as many other oncogenic viruses, does not directly lead to the development
of cancer. It is the interaction with host factors that first initiates pre-neoplasia and then
carcinoma [3]. Chronic inflammation from virally induced immune reactions is due to
inflammasome activation, increased secretion of pro-inflammatory cytokines and increased
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levels of ROS within the liver microenvironment, which finally determines the develop-
ment of cancer [86]. A chronic HBV infection leads to long-lasting hepatic inflammation,
inducing cirrhosis and HCC progression due to increased hepatocyte turnover rates and
the accumulation of mutations [87]. The alterations of platelets could also play a role in
hepatocarcinogenesis [88,89].

In addition to the critical role of inflammation, HBV directly affects hepatocarcino-
genesis, unlike HCV. This is because HBV integrates its genome into the DNA of the host,
leading to genomic instability and mutagenesis in both proto-oncogenes and tumor sup-
pressor genes [90]. HBV integration alters the tumor suppressor gene p53 or the combined
p53–Rb pathway. Overall, most HCC cases harbor mutations in the component genes of
either the p53 or the Rb pathway alone or of the combined p53–Rb pathway [91]. These
alterations are associated with the inhibition of apoptosis [92]. This is the main mechanism
through which HBV induces HCC in the absence of cirrhosis. In the presence of cirrhosis,
hepatocarcinogenesis is multifactorial as there are several target genes impaired by HBV
genome integration [93–95]. The integration of HBV DNA is constantly detected in 80% to
90% of tumor tissues and in 30% of non-HCC tissues next to HCC [93], even prior to the
induction of HCC [96]. It is conceivable, therefore, that a hidden HBV infection may exist in
HBsAg-negative patients and induce hepatocarcinogenesis [97]. The increased expression
of truncated HBsAg, HBcAg and HBx proteins favors HCC development through the
endoplasmic reticulum and mitochondrial stress [98,99].

3.1.1. The Important Role of HBx

HBx plays its role through several mechanisms [100,101]. HBx expression might
induce hepatocarcinogenesis by interfering with telomerase activity during hepatocyte
proliferation [96,102], upregulating the activation of human TERT [103–105]. In addition,
the X protein interacts with several nuclear transcription factors and signal transduction
pathways [106,107]. Among the most important deregulated pathways are the Wnt/β-
catenin, the PI3K/Akt/mTOR and the Ras/Raf/mitogen-activated protein kinases (MAPK)
pathways [108]. HBx and pre-S proteins activate mTOR signaling during an HBV infection
and increase cell proliferation and angiogenesis [109,110]. Moreover, HBx has either
anti-apoptotic [111–113] or pro-apoptotic activity [114]. These effects collectively lead
to uncontrolled malignant transformation.

Epigenetic changes refer to chromatin changes without interference with the DNA
sequence and include DNA methylation, histone modification and RNA-related silenc-
ing [115]. HBx causes epigenetic hyper- or hypo-methylation of the DNA and the tumor
suppressor genes, inducing chromosomal instability [116,117]. HBx also promotes the
acetylation of the histones H3 and H4, contributing to the pathogenesis of HCC [118–121].

3.1.2. The Role of RNAs

Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) also contribute to
the initiation and progression of HBV-related HCC [122–124]. Several microRNAs can be
regulated by HBV infection and promote hepatocarcinogenesis [125,126]. They modulate
the Wnt/β-catenin signaling pathway, leading to the development of HCC [127].

The role of superinfection with HDV in the development of HCC is not clear. A direct
oncogenic effect of HDV has not been unequivocally demonstrated [128]. A molecular
signature of HDV–HCC different from HBV–HCC in malignant and non-malignant hepato-
cytes has been reported [129]. The pathogenesis of HBV-associated HCC has been recently
reviewed [100,130].

3.2. HCV

The pathogenesis of HCC in HCV has certain similarities and differences compared
to that in HBV. Thus, DNA damage also occurs during HCV replication, causing genomic
instability and leading to hepatocarcinogenesis [131]. The role of chronic inflammation
is as important in HCV as it is in HBV in relation to carcinogenesis. However, it has
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certain discrete characteristics, as inflammation is used for the immune escape of the virus.
Macrophages are activated by the core and NS3 proteins of HCV, triggering the NLRP3
inflammasome and inducing the secretion of pro-inflammatory cytokines. IL-18 secretion
induces NK cell activation. In addition, IL-1β and IL-6 production by macrophages support
the activation of HSCs, increasing collagen deposition and fibrosis. IL-1β, IL-6 and TNF-α
secretion may lead to malignant induction [132,133]. The chronic inflammatory environ-
ment in combination with certain viral proteins leads to a continuous activation of signaling
pathways associated with hepatocyte survival, such as STAT3 and NF-kB. STAT3 is also
involved in the development of myeloid-derived suppressor cells (MDSCs), which produce
IL-10 favoring the expansion of regulatory T cells. Tregs impair immune response, and
this is further accentuated by the increased expression of programmed cell death protein 1
(PD-1) and Fas ligand (FasL), driving the HCV-specific cytotoxic T lymphocytes to their
apoptosis [134]. Epigenetic abnormalities similar to HBV also favor HCV-induced hepato-
carcinogenesis. Thus, DNA methylation, histone modifications and microRNAs are also
involved in the development of HCC [135]. LncRNAs and microRNAs similarly contribute
to the induction and progression of HCV-associated HCC. miR-373 forms a complex with
LINC00657, promoting uncontrolled cell growth [136]. The hypermethylation of certain
promoter regions suppress mRNA expression, favoring the progression of HCV-associated
HCC [137].

The major difference between HBV- and HCV-induced HCC is the fact that the RNA
hepatitis C virus cannot integrate into the host genome in a way similar to HBV. On the
contrary, most of the carcinogenic effects of HCV are mediated through the action of its viral
proteins, which deregulate host cellular cycle checkpoints, resulting in DNA mutations in
liver cells. Some effects of HCV proteins are similar to those produced by the HBx protein
of HBV [100,134,138,139].

Earlier reports showed that the HCV core and NS5A proteins play a critical role in
HCC development [140–142]. Thus, the association of NS5A and p53 allows the transcrip-
tional repression of the p21/waf1, a downstream effector gene of p53, and may contribute to
HCV-mediated HCC [143]. HCV core and NS3 proteins can also activate TERT, the enzyme
responsible for the length of the telomere. Short telomeres lead hepatocytes to apoptosis.
Therefore, active TERT reduces apoptosis, favoring HCC. Indeed, increased TERT activity
was associated with the aggressiveness and a poor prognosis of HCC [144]. HCV infec-
tion activates the Wnt/β-catenin pathway, leading to the subsequent activation of cell
survival genes. The core protein reduces the expression of the Wnt antagonists [145,146].
The NS5A protein activates PI3K/Akt signaling pathway, reducing the degradation of
β-catenin [147,148] and blocking apoptosis [149,150]. The c-Myc oncogene is also acti-
vated through the Wnt/β-catenin pathway in a murine mode [151]. The activation of the
PI3K/Akt/mTOR pathway by NS4A is similar to the activation of the same pathway by the
HBx protein of the HBV, both inducing HCC [152]. Moreover, the activation of the mTOR
pathway was related to tumor differentiation and vascular invasion in HCC patients [153].
Lysosomes degrade the tumor suppressor p53 protein through the CMA autophagy (CMA).
CMA is activated as a result of chronic ER stress and increased unfolded protein response
related to HCV infection [154,155].

The viral proteins core and NS5A also affect lipogenesis [156]. HCV-infected cells
had increased levels of polyunsaturated fatty acids (PUFAs) [157]. The accumulation of
long-chain fatty acids in the infected hepatocytes finally leads to the activation of the NF-kB
pathway, which leads to increased cellular survival and the development of HCC [158].

Finally, HCV proteins are implicated in an interplay of four signaling pathways, all of
which are implicated in the induction and progression of HCC. EGFR is phosphorylated
after the virus binds to its entry receptor, CLDN1/CD81. EGF pathway activation is
sustained by the action of NS3/4A and maintained by the reduction in EGF degradation
mediated by NS5A.The STAT3 pathway is activated through the direct action of the core
protein and indirectly by the NS5A protein. The activation of the TGF-β pathway is
mediated by intermediary of the UPR, and via the core protein. The VEGF pathway is
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activated by the active HIF-1a, which is activated by the core protein. The HCV core protein
can trigger angiogenesis through a crosstalk between TGF-β2 and VEGF expression, thus
favoring the progress of HCC [159]. Details on the four pathways interplay can be found in
a recent detailed review [134].

The NS5B protein is also implicated in the induction and progression of HCC. HCV
infection negatively regulates the retinoblastoma tumor suppressor protein (Rb). This is
mediated by the NS5B protein, which is complexed with Rb, targeting it for degradation
via the proteasome. The disruption of the Rb pathway in cells infected with HCV inhibits
apoptosis and promotes chromosomal instability, factors that favor the development of
HCC [160]. Some of these mechanisms may persist even after HCV eradication, and thus the
risk of HCC development is not abolished. This is still a hotly discussed subject [154,161].

The mechanisms of HCC induction and progression in HCV infection have been
recently reviewed in detail [3,162].

3.3. NAFLD

NAFLD is the third commonest risk factor of HCC in the United States. Initial events
include genetic, metabolic, immunologic and endocrine pathways, which in turn activate
oncogenic mechanisms [4,163–165].

TERT, CTNNB1, TP53 and ACVR2A are frequently mutated genes in NASH-associated
HCC. Interestingly, ACVR2A tumor suppressor gene mutations were more common in
NASH–HCC than in the HCC of other etiologies [166]. The patatin-like phospholipase-3
(PNPLA3) I148M sequence variant is the best genetic association of NAFLD/NASH to
date and a strong risk factor for HCC [167]. The cycle-related kinase (CCRK) androgen-
driven oncogene interacts with pro-inflammatory signals induced by obesity to promote
NASH-related HCC [168]. However, the molecular profiles of NAFLD-associated HCC
are heterogeneous and no discrete mutation profile was identified as it is the case in
hemochromatosis and HCV-related HCC. By contrast, in HBV- and ALD-related HCC,
distinct mutational signatures are usually identified [27,169]. However, a novel mutational
signature was recently associated with NASH–HCC, but this finding requires further
validation [166].

Epigenetic alterations similar to viral HCCs, such as DNA methylation, histone modifi-
cations and the silencing of microRNAs, were identified in NAFLD–HCC as well [170–172].
Some DNA methylation changes during NASH–HCC are different from those of viral-
hepatitis-associated HCC. MAML3 is one among the DNA hypomethylated genes. MAML3
is a co-activator of β-catenin-mediated transcription, increasing the transcriptional activ-
ity of β-catenin [173]. Yet, the only epigenetic alteration that has clearly been linked to
NASH-related HCC is the gene encoding chromodomain helicase DNA-binding protein 1
(CHD1) [174].

Specific microRNAs may also participate in NAFLD progression into HCC. MiR-301a
upregulation and miR-375 downregulation were reported as HCC progresses from the
early to late stages [175].

Inflammation and metabolic disturbances, such as diabetes, obesity and iron deposi-
tion, provide a favorable tumor microenvironment for the progression of malignant lesions.
Over 90% of HCC occurs in association with liver inflammation [30]. Inflammation in
NASH is similar to HBV and HCV, leading to the upregulated release of pro-inflammatory
cytokines, such as IL-18, IL-1β, TNF-α and IL-6. TNF-α is probably the best studied pro-
tumor cytokine in HCC. It activates the NF-kB and JNK signaling pathways to promote
cell survival and inhibit apoptosis [176–178]. IL-6-mediated STAT3 activation is also a
major driver of hepatocyte repair and replication, favoring HCC development [176]. In-
flammation and hyperinsulinism in NASH are constant proliferative signaling mechanisms,
which cause rapid HCC growth [179]. However, the sequence fatty liver-inflammation–
NASH–fibrosis–HCC is not always linear, and some patients may progress from fatty liver
to advanced fibrosis and HCC in the absence of significant inflammation [180–182].
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Insulin resistance and hyperinsulinemia activate the PI3K-Akt and MAPK pathways to
induce cell proliferation and inhibit apoptosis [165,183]. Immune and endocrine mediators
originating from the gut microbiome provide an additional molecular mechanism that is
implicated in HCC progression [184].

Oxidative stress is another important factor in HCC development in NASH. Hepato-
cytes overloaded with fatty acids generate ROS and ER stress as a result of mitochondrial
dysfunction to cause cell damage predisposing to HCC [185–187]. An early event in
NAFLD, associated with oxidative stress, is the promotion of pathological polyploidization
and may participate in HCC development [188]. Iron deposition in the liver is an impor-
tant inducer of oxidative stress in NASH. Elevated levels of iron are observed in NASH
patients and are associated with HCC development [189]. Interestingly, oxidative stress,
associated with iron overload in NASH, activates Wnt/β-catenin signaling and triggers
carcinogenesis [190].

It should be noted that HCV and NASH have common metabolic abnormalities, such
as hepatic steatosis, insulin resistance and oxidative stress. However, the underlying
mechanism is different. The metabolic deregulation of HCV is induced by the core protein,
in contrast to the complicated metabolic abnormalities of NASH [191]. The important
contribution of apoptosis and autophagy in NASH-related HCC is examined later.

3.4. Diabetes

Type 2 diabetes mellitus (T2DM) predisposes to HCC even after adjustment for the
presence of alcoholism, obesity and chronic viral hepatitis [192–194]. Moreover, the HCC
recurrence rate is 2.5–4-fold higher in patients with T2DM, independently of the presence
of cirrhosis or of the etiology of the liver disease [195,196]. Only in patients with chronic
hepatitis B or primary biliary cholangitis, diabetes did not increase the risk of HCC [197].
However, in a nationwide Japanese study, the annual incidence of HCC in diabetes in-
creased from 0.11% to 1.0% when advanced fibrosis was present [198]. Mechanistically,
insulin resistance (IR) results in hyperinsulinemia as well as the activation of the insulin
receptor and insulin-like growth factor 1 (IGF-1) signaling pathways, which are important
initiators and supporters of hepatocarcinogenesis. HCC cells overexpress IGF-1 and insulin
receptor substrate-1 (IRS-1). IGF-1 inhibits apoptosis and favors, therefore, HCC cell prolif-
eration [4]. IRS-1 increased activity results in the activation of several cytokine pathways,
including PI3K/AKT/mTOR, which modify cell cycle and favor cellular proliferation.
IRS-1 also seems to prevent TGF-β-mediated apoptosis. In addition, alterations in lipid
and glucose metabolism stimulate the production of ROS and cause mutations in the p53
onco-suppressor gene [199,200]. Moreover, data show that LINC01572 is upregulated in
HCC tissues from patients with diabetes. The overexpression of LINC01572 increased HCC
cell proliferation through sponging miR-195-5p, leading to an increase in glycolysis and
the activation of the PI3K-AKT signaling pathway [201].

3.5. ALD

In most European countries, ethanol participates in the development of HCC be-tween
30 and 50% [202]. In France, the geographical distribution of HCC is not uniform, but
the most affected regions are areas with a high wine production or those with excessive
alcohol consumption [203]. On the contrary, in Crete, Greece, hepatocellular carcinoma is
associated with the dispersion of HCV and HBV. ALD-related HCC was not very common
in the past, but an increasing trend has been identified [204].

Hepatocarcinogenesis in excessive alcohol consumption is mostly due to the metabolic
mechanisms associated with ethanol metabolism into acetaldehyde by alcohol dehydro-
genase (ADH) and the microsomal CYP2E1. Acetaldehyde enters the mitochondria and
oxidizes to acetate by mitochondrial aldehyde dehydrogenase (ALDH) [205]. There are two
main mechanisms of cellular damage caused by acetaldehyde. The first is the formation of
DNA and protein adducts. The second is the production of increased amounts of ROS by
mitochondria, causing oxidative stress through lipid peroxidation that further deteriorates
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DNA mutagenesis. Oxidative stress is further aggravated by the iron deposition and lipid
accumulation associated with excess ethanol [206]. ROS accumulation damages cellular
macromolecules and is a critical factor in the progression of hepatocarcinogenesis through
the formation of lipid peroxides, such as 4-hydroxy-nonenal [207].

An additional important factor, participating in liver carcinogenesis, is the increased
gut permeability and the bacterial overgrowth caused by ethanol metabolism in the
gut [208]. Endotoxins from the gut enter the portal vein and activate Kupffer cells, interact-
ing with the receptor TLR4, which leads to the secretion of pro-inflammatory cytokines,
such as IL-1, IL-6 and TNF-a, and to the initiation of liver inflammation [209,210]. NF-kB,
one of the regulators of the inflammatory response, is also activated by TNF-a [211,212].
Moreover, the IL-6/STAT3 and TNF-a/NF-kB pathways have been implicated in hepa-
tocarcinogenesis [213]. The mitogenic activity of hepatocyte is increased and hepatocyte
apoptosis is inhibited, resulting in the induction of HCC [211].

The role of inflammasomal activation has been investigated in mice with ALD. IL-1β
signaling is mandatory for the development of alcohol-induced liver steatosis, inflammation
and injury. The upregulation of caspase-1 activity and inflammasome activation are the
mediators of increased IL-1β [214].

Acetaldehyde production in the hepatocyte is influenced by the genetic variants of
ADH and ALDH. The alleles ADH1C*and ALDH2*2 are associated with an increased prob-
ability of HCC [215–217]. Other genetic determinants are implicated in the severity of ALD,
such as the patatin-like phospholipase domain-containing protein 3 (PNPLA3), the trans-
membrane 6 superfamily member 2 (TM6SF2) and the membrane-bound O-acyltransferase
domain-containing protein 7 (MBOAT7) [218–220].

Moreover, acetaldehyde interferes with methyl group transference, leading to DNA
hypomethylation and modifications of both oncogenes and tumor suppressor genes [221,222].

3.6. Hemochromatosis

Iron overload is the characteristic of hereditary hemochromatosis (HH), and increased
iron produces increased ROS through the Fenton reaction, leading to DNA damage and
HCC. Studies on the association of hemochromatosis and ferroptosis as a risk factor of
HCC are limited, possibly because these studies were conducted before ferroptosis was
described [223].

A recent study demonstrated that ferric citrate triggers ferroptosis in cells, suggesting
the involvement of ferroptosis in HH [27]. This study also showed that SLC7A11 is
a candidate gene of ferroptosis in HH and indicated that the Nrf2 activation may be a
compensatory mechanism to protect against iron-overload-induced ferroptosis in HH [224].

Nonetheless, the risk of HCC in HHH was clearly overestimated in the past. More
recent studies have indicated that this risk is lower and mostly occurs in patients with
cirrhosis at the time of diagnosis. The true incidence of HCC in HH is better derived from
population-based studies [225].

In a population study, the overall standardized incidence ratio of HCC was 1, which
increases among first-degree relatives of the patients [226].

However, a very recent study suggested that HH without cirrhosis is an independent
risk factor for HCC after adjustment for all known risk factors. The aOR was 28.8 higher
than any other disease risk factor for HCC [227].

4. Apoptosis

Apoptosis is one of the forms of programmed cell death, in which characteristic cellu-
lar contents are not liberated into the surrounding environment. Apoptosis is mediated
by a sequential activation of a series of caspases. The initiator 8 and 9 caspases are ac-
tivated from pro-caspases upon sensing the initial signal via intracellular sensors, and
activate the executioner 3, 6 and 7 caspases. The intrinsic pathway initiates apoptosis by
an internal cell damage, while an external signal initiates the extrinsic pathway of apopto-
sis [228]. External stimuli, such as TNF-α, Fas ligand and TNF-related apoptosis-inducing
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ligand (TRAIL), operate through surface death receptors, while intrinsic stimuli operate
by the mitochondrial signaling pathway [229,230]. The intrinsic pathway is associated
with mitochondrial outer membrane permeabilization (MOMP), followed by the release of
cytochrome c and leading to apoptosome formation. The effector caspases cleave hundreds
of cellular proteins causing DNA fragmentation and actin reorganization, leading to mem-
brane blebbing. Phosphatidylserine (PS) molecules exposed on the plasma membrane act
as “eat me” signals for macrophages [11].

MOMP is regulated by the BCL-2 family. The pro-apoptotic BCL-2 proteins, BCL-
2-associated X protein (BAX) and BCL-2 antagonist killer 1 (BAK) are activated by the
pro-apoptotic proteins BAD and BID, leading to the activation of the caspase cascade and
cell apoptosis. Protection from apoptosis is provided by pro-survival BCL-2 proteins [231].

This intrinsic apoptotic pathway initially increases the activity of pro-apoptotic BH3-only
proteins that bind and neutralize the members of the pro-survival BCL-2 family [232,233].
BAK and BAX are then free to assemble into structures that cause MOMP [234,235]. Details
of the apoptotic pathway have been recently reviewed [236–238].

Apoptosis and HCC

In human HCC, the activation of the anti-apoptotic BCL-xL is usually associated
with a parallel downregulation of BAX [239]. Moreover, the inhibition of caspases is
also common in HCC, associated with TGF-β signaling. All these contribute to liver
cancer initiation and progression [240]. As mentioned above, a significant number of HCC
patients have alterations of the NF-kB pathway, particularly patients with NASH-induced
HCC [241,242]. NF-kB activation via TNF promotes HCC by inhibiting apoptosis. The
effects of NF-kB may promote HCC development by either activation or inhibition. The
opposing different effect of NF-kB can be explained. The activation of NF-kB is linked to
several pathways inhibiting apoptosis, such as the Bcl-2 family members and FLIP, but
also to other pro-survival pathways [231,243]. On the other hand, increased hepatocyte
apoptosis is associated with increased compensatory proliferation, leading to an increased
incidence of oncogenic mutations. Murine experiments with reduced hepatocyte NF-kB
activation increase hepatocyte apoptosis and compensatory proliferation, followed by
increased predisposition to HCC [30,244]. Similar to NF-kB, c-Jun N-terminal kinase (JNK)
can promote HCC development by inducing inflammation and hepatocyte proliferation,
but it may also have an anti-tumorigenic function. Taken together, these findings indicate
that the TNF-α, NF-kB and JNK pathways may have either pro-survival or cell death effects,
both leading to HCC development [178,245–247].

The activation of caspases and other apoptosis-related molecules is a common finding
in the liver of NASH patients [244]. Apoptotic hepatocytes stimulate immune cells and
hepatic stellate cells, contributing to the progression of fibrosis. Inflammasomes, oxidative
stress and ER stress also contribute to the progression of NASH and development of HCC
by the induction of apoptosis [248], but the exact interplay is still debated.

Apoptosis may also be involved in the development of ALD-related HCC. JNK modu-
lation has a dual role. Experiments in hepatocytes indicate that JNK activation by ethanol
or acetaldehyde can be both pro- and anti-apoptotic. The activation of p42/44 MAPK, on
the other hand, is anti-apoptotic, for both ethanol and acetaldehyde [249].

5. Autophagy

The understanding of the mechanism of autophagy ( a Greek word, meaning self-
eating) is based on the pioneer works of Christian De Duve and Yoshinori Oshumi [250,251].

The sequential stages of autophagy include induction, phagophore, autophagosome
and autolysosome formation and finally degradation [252–254].

The first step in the induction of autophagy is the formation of the ULK1 complex
from the assembly of the ULK1, ATG13, FIP200 and ATG101 proteins. The ULK1 complex
induces the formation of the PI3KC3 complex containing the proteins Beclin1, Atg14, VPS15
and VPS34. Both complexes are necessary for the formation of the autophagosome. Beclin1
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regulates the effects of the complex. When the anti-apoptotic protein Bcl-2 binds to Beclin1,
it reduces the affinity of Beclin-1 for VPS34 and inhibits autophagy. Beclin1 is released from
Bcl-2 by BNIP3, another member of the Bcl-2 family with a BH3 domain, and autophagy
is initiated. The protein Rubicon also binds to Beclin1 and inhibits the PIK3C3 activity.
The transformation of phagophores into autophagosomes requires the Atg12–Atg5–Atg16
complex and the phosphatidylethanolamine (PE)-conjugated LC3II (Atg8) system. Finally,
the autophagosome fuses with the lysosome for the degradation of the contents, which
thereby degrades the autophagosomal contents (Figure 1) [255,256].
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Figure 1. Regulatory pathways of autophagy. Black arrows indicate induction and red arrows
indicate inhibition. See text for details.

AMPK, a sensor of the cellular energy, is an important regulator of autophagy. Upon en-
ergy starvation, the activated AMPK initiates autophagy by increasing ULK1 activity through
the serine phosphorylation of ULK1. Autophagy is inhibited by the PI3K/AKT/mTORC1
pathway, when enough cellular energy is available. AMPK can negatively regulate mTORC1,
either directly through the phosphorylation of mTORC1 activity or indirectly by activating
TSC2, which is a strong inhibitor of mTORC1 [257]. Recently, an additional mechanism
for mTORC1 activation under energy-rich conditions was described. mTORC1 phosphory-
lates the protein Pacer, causing the disruption of the Pacer, Stx17 and HOPS complex, thus
abolishing the autophagosome maturation mediated by this complex [258].
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p38 also upregulates autophagy by inhibiting mTOR, while JNK and BNIP3 disrupt
the Bcl-2–Beclin11 interaction, thereby initiating autophagy [259–261].

Two additional autophagy regulators have been described. The lncRNA NBR2 in-
hibits Beclin 1-dependent autophagy and suppresses autophagy-induced cell proliferation
in HCC [262], while Forkhead box O3 (FOXO3), a member of the FOXO subfamily of
transcription factors, upregulates autophagy, acting on ULK1, Beclin-1 and LC3 [263].

A detailed overview of the autophagy mechanisms involved in HCC development
and progression have been recently published [264,265].

Mitophagy is a special form of autophagy that clears damaged mitochondria and is
mediated by two molecular pathways. The first pathway is activated by the HIF1A/HIF-1a
hypoxia-inducible factor 1 subunit alpha (HIF1A/HIF-1a). The second pathway is the
PINK1 (PTEN-induced kinase 1)-PRKN (parkin RBR E3 ubiquitin protein ligase) path-
way, activated by membrane depolarization. An important regulator of mitophagy is
the TP53/p53, which facilitates mitochondrial dysfunction and disturbs the clearance of
damaged mitochondria by mitophagy [266].

Autophagy and HCC

Autophagy is implicated in the initiation and progression of HCC in many ways. It
is closely associated with inflammation, which is a critical factor in HCC development.
Autophagy and inflammasomes are interconnected as the same mechanisms regulate them,
but through different pathways. The NLRP3 inflammasome activated by DAMPS induces
caspase-1, leading to pyroptosis, as mentioned above [34,35].

Caspase-1 is also a mediator of autophagy activation. Autophagy eliminates inflamma-
somes and also damaged cellular organelles that would otherwise act as DAMPS [267,268].
However, this negative correlation between autophagy and inflammasomes is not always
operative, as both can move towards the same direction in cases of NF-kB activation [269].
Moreover, the behavior of autophagy depends on the involvement of liver cells. Autophagy
is protective in NAFLD and ALD, reducing lipid accumulation and oxidative stress. Au-
tophagy activation in Kupffer cells also inhibits inflammation and liver fibrosis, but favors
fibrosis if activated in HSCs [270,271].

In the early stages of cancer, autophagy behaves as a tumor suppressor, eliminating
damaged mitochondria and unfolded proteins. It also decreases lipid accumulation in
liver cells, reducing inflammation. Autophagy, however, acts as a tumor promoter after
HCC induction, maintaining oxygen homeostasis to help the survival of malignant cells.
In addition, it favors the appearance of resistance to treatment [272–275]. Both macroau-
tophagy and CMA act as a double-edged sword in liver hepatocarcinogenesis, as shown by
experimental and clinical studies. Mice with defective autophagy do not develop HCC,
irrespective of any challenge, due to the activation of tumor suppressors, such as p53. How-
ever, after the induction of HCC, autophagy is necessary to degrade tumor suppressors,
thus promoting the progression of HCC [276,277].

Increased levels of the autophagy marker LC3-II are correlated with lymph node
metastasis, high vascular invasion and, most importantly, the reduced 5-year survival of
HCC patients [278,279].

The macroautophagy flux is impaired in the final stages of HCC. However, during
the later stages of HCC, more than 95% of tumors have an expression of LAMP-2A that is
consistent with the induction of CMA in HCC [280]. CMA is probably upregulated under
continuous, severe stressful stimuli and functions as a potential compensatory mechanism
to reduce macroautophagy after the induction and establishment of HCC [281].

The activation of the Wnt/β-catenin pathway favors the development of HCC, as
previously mentioned. Experimental evidence indicated that Wnt/β-catenin inhibitors
repress the proliferation of HCC cells by regulating autophagy [282]. However, another
report suggested that other mechanisms not related to autophagy led to an interference
with Wnt secretion and a reduction in tumor growth through alternative, not-yet-identified
pathways [283].
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A special form of autophagy that removes damaged mitochondria is also a double-
edged sword in HCC growth. Increased mitophagy was reported to suppress HCC cell
survival [284,285]. The opposite has also been suggested, as increased mitophagy may
promote hepatoma cell survival either through an increased production of ROS or through
the attenuation of p53 activity [286,287].

Certain points should be noted in connection to the HCC of specific etiology. In HBV,
the HBx protein increased autophagosome formation and reduced lysosomal acidification
and the accumulation of immature cathepsin D [288,289]. This repression of lysosomal
acidification is important for the development of HBV-associated HCC [290]. The inhibition
of lysosomal degradative function by hydroxychloroquine induced p53 and increased
apoptosis, but the activation of autophagy using the Torin-1 inhibitor of mTOR increased
HCC growth [280]. Moreover, Arrestin beta 1 (ARBB1) promoted HCC formation through
the interaction of HBx with LC3 and the promotion of autophagy [291]. HCV generates
cellular stress and activates CMA autophagy to promote cell survival. CMA activation leads
to HCC induction due to the repression of hepatic innate immunity and the degradation of
several tumor suppressors [292].

Lipolysis and autophagy are interconnected. Autophagy reduces lipid accumulation,
oxidative stress and inflammation in the liver, but autophagy also regulates adipogenesis
and differentiation in the adipose tissue [293]. Similar to HBV, autophagic flux and the
level of mature cathepsin D were reduced in three murine models of NAFLD, suggesting
defective lysosome acidification under endoplasmic reticulum stress [294]. In NASH and
NASH–HCC, autophagy has a dual role. On the one hand, autophagy reduces intracellular
lipid droplets, attenuating lipotoxicity and inflammation. On the other hand, autophagy
also affects adipogenesis and adipocyte differentiation. Basal autophagy, therefore, behaves
as a tumor suppressor. After the induction of HCC, unbalanced autophagy contributes to
carcinoma cell survival [295,296]. However, the contention of whether autophagy favors
or inhibits NASH progression has not been settled. Defective autophagy is also linked to
NASH–HCC through the induction of pro-inflammatory NF-kB activity, while defective
mitochondria are retained, producing ROS to damage cellular DNA [297]. Interestingly, un-
der conditions of reduced autophagy, hepatocytes were found to release the high-mobility
group box 1 (HMGB1) protein, driving the proliferation of isolated hepatic progenitor cells.
This could be an additional mechanism for the development of NAFLD–HCC [298].

ALD-associated HCC is also related to autophagy. Mitochondrial aldehyde dehydro-
genase (ALDH2) is a critical enzyme further metabolizing the acetaldehyde produced by
ethanol metabolism. Experiments in ALDH2 transgenic mice demonstrated that ALDH2
mitigates alcohol-induced liver steatosis and inflammation through the regulation of au-
tophagy [299]. Moreover, TNF-α-induced protein 8 (TNFAIP8) is involved in the progres-
sion of HCC. TNFAIP8 induces autophagy by inhibiting the AKT/mTOR pathway in HCC
cells. In addition, a direct interaction with ATtg3–Atg7 proteins was also reported. This
mechanism is operative in the ALD of mice and humans, but not in NASH [300].

An important aspect of HCC development is the effect that autophagy exerts in the
tumor microenvironment and particularly in TAMs. The increased autophagy of TAMs
leads to the anti-tumoral M1 polarization, while the inhibition of autophagy leads to M2
polarization that favors hepatocarcinogenesis. The activation of the mTOR pathway, which
is a negative regulator of autophagy, leads to M2 phenotype polarization and the promotion
of HCC. The coagulants tissue factor (TF) and factor VII (FVII), locally produced in tumor
microenvironment, promote HCC growth by the repression of autophagy mediated by
mTOR activation and Atg7 [301,302].

6. Interplay between Apoptosis and Autophagy

Autophagy and apoptosis are normally tumor suppressor pathways. The degradation
of oncogenic molecules by autophagy prevents cancer initiation, while apoptosis eliminates
cancer cells. Under conditions of stress, autophagy may facilitate the survival of tumor
cells [303]. Similar external or internal signals can induce either apoptosis or autophagy.
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They usually exhibit mutual inhibition, although single-cell experiments indicated that, in
many instances, they are both operational. Apoptosis and autophagy may act in concert to
kill or, alternatively, the activity of one mechanism can exclude that of the other. The result
is important for the effectiveness of chemotherapy in several cancers, including HCC [304].
Usually, autophagy precedes apoptosis [305]. The initial activation of autophagy is an
effort towards survival. The initiation of apoptosis will eventually kill the cell if autophagy
fails. The induction of autophagy inhibits apoptosis, while apoptosis suppresses autophagy
initiation [306]. Bcl-2 is an important regulator of the interplay. Bcl-2 inhibits the pro-
apoptotic Bax and interacts with the PI3K complex of the autophagy pathway, promoting
survival. However, the phosphorylation of Bcl-2 inhibits its binding to Bax, leading to
apoptosis [307]. A pro-apoptotic role of autophagy has also been reported [308].

An example of the concerted action of the two pathways to inhibit the replication
of hepatocellular carcinoma cells was recently published. Solamargine, a traditional Chi-
nese herb medicine, induced both apoptosis and autophagy to repress the replication of
hepatoma cell lines [309]. Similarly, Jujuboside B, an ingredient of the traditional Chi-
nese medicine Zizyphi Spinosi Semen, induced both autophagy and apoptosis in breast
cancer cells [310]. A synergy between autophagy and apoptosis was also described in
the anti-fibrotic activity of curcumol. It can induce both the autophagy and apoptosis of
hepatic stellate cells. Since fibrosis is an important factor for the initiation of HCC, this dual
action of curcumol may favorably influence HCC initiation [311]. However, a detrimental
outcome may be the result of the concerted action of apoptosis and autophagy. This was
reported in human kidney mesangial cells incubated with homocysteine, which induced
ER stress. Both autophagy and apoptosis were activated, and the viability of cells was
significantly reduced [312].

On the other hand, the ER stress and UPR that follows is an example of the mutual
inhibition of apoptosis and autophagy. The accumulation of unfolded proteins in the ER
lumen induces ER stress and the activation of three major UPR pathways (PERK, IRE1α
and ATF6) leading to UPR. The final result is the inhibition of apoptosis and the activation
of autophagy. This mechanism may be related to the proliferation of HCC cells and the re-
sistance of HCC to chemotherapy [47]. The impact of autophagy on cell survival during ER
stress varies according to the tissue type. ER-induced autophagy protects against cell death
in colon and prostate cancer cells. However, in normal human colonocytes, autophagy does
not counteract ER stress but facilitates ER-induced apoptosis [313]. A mutual exclusion is
not operative only in the liver. It is operative in secondary hyperparathyroidism cells, where
the autophagy inhibitor chloroquine enhances experimentally induced apoptosis [314]. In
hepatocellular carcinoma, autophagy may either support apoptosis or antagonize apoptosis.
The activation of autophagy may lead to the induction of apoptosis and the inhibition of
the growth of hepatoma cells [315,316]. Experimental evidence indicates that lipophagy,
a special form of autophagy, can also act in both ways. It can either supply tumor cells
with energy important for their proliferation or suppress tumor development through the
direct inhibitory effect of acid lipase [317,318]. Lipophagy can also induce apoptosis via
the induction of mitochondrial stress [319].

Experimental evidence has also indicated that an interplay between autophagy and
apoptosis may be implicated in the pathogenesis of NASH and ALD. JNK1 increases
palmitate-induced lipoapoptosis, whereas JNK2 activates autophagy and inhibits palmitic
acid lipotoxicity, improving the survival of hepatoma cells [320,321]. The promotion of
autophagy by the mitochondrial uncoupling protein 2 (UCP2) also inhibits apoptosis [322].
The inhibition of autophagy by the tumor protein p53-binding protein 2 (TP53BP2) may be
involved in NASH [323]. The overexpression of Rubicon, a Beclin-1-interacting negative
regulator for autophagosome–lysosome fusion, causes the suppression of the late stage of
autophagy. Its blockade mitigated autophagy suppression and reduced palmitate-induced
ER stress and apoptosis [324]. Parkin-mediated mitophagy may attenuate apoptosis,
improve the quality of mitochondria and suppress hepatocyte steatosis in models of ALD
due to Parkin translocation into mitochondria [325]. Sirtuin 3 (SIRT3) is a nicotinamide
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adenine dinucleotide-dependent deacetylase located within the mitochondria. SIRT3
is a negative regulator of autophagy. SIRT3 overexpression causes AMPK inhibition,
mTOR activation and finally autophagy suppression, promoting the hepatocyte lipotoxicity
induced by saturated fatty acids [326].

An important field of research is the identification of pathways where autophagy and
apoptosis meet (Figure 2). Several pathways that mediate the interplay between autophagy
and apoptosis have been identified and are analyzed in this paper [327].
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Figure 2. A simplified diagram of the interplay of autophagy and apoptosis. Most controllers of the
interplay are presented. p53, the main gatekeeper, increases autophagy directly or indirectly through
the DRAM activation of AMPK, but cytoplasmic p53 may inhibit autophagy. p53 increases apoptosis
via the inhibition of Bcl-2 or the overexpression of BAX. Bcl-2, associated with Beclin1, inactivates the
complex, leading to increased autophagy (only Vps34 is shown here). The phosphorylation of either
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Beclin1 by DAPK or Bcl-2 by JNK liberates the pro-autophagy complex. DAPK also increases
apoptosis by an unknown mechanism. The cleavage of Beclin1 or Atg5 (an autophagy inducer
promoted by ER stress) by apoptosis-induced caspases inhibits autophagy. Several intermediate
components have been omitted for clarity. Intermittent line: Cleavage.

6.1. Beclin-1

The Beclin-1/BCL-2 interaction was the first described molecular connection between
autophagy and apoptosis. Beclin-1, the mammalian homolog of the yeast Atg6, participates
in autophagosome formation as a component of the PI3K complex [328,329]. The inter-
play between autophagy and apoptosis is mediated, in part, by the interaction between
Beclin-1 and the anti-apoptotic proteins BCL-2 and BCL-XL [330,331], as previously men-
tioned. This inhibits the pro-autophagic function of Beclin-1, but does not interfere with
the anti-apoptotic activity of the BCL-2 family proteins. In addition, the inactivation of
Beclin-1 triggers apoptosis [331]. Several BH3-only proteins can activate both autophagy
and apoptosis. To induce apoptosis, BH3-only proteins directly neutralize anti-apoptotic
proteins from the BCL-2 family, and stimulate those with pro-apoptotic functions. Beclin-1
is such a protein, as it possesses a BH3 region [332]. inhibiting these anti-apoptotic proteins,
or, alternatively, activating the pro-apoptotic BCL-2 family members, such as BAX and
BAK [333]. On the other hand, BH3-only proteins disrupt this interaction and permit Beclin-
1 to increase autophagic activity. Only BIM, a unique BH3-only protein, has an opposite
effect on autophagy. BIM interacts with Beclin-1 and prevents autophagy. NIX, another
BH3-only protein, localized in the mitochondria, favors mitophagy. JUN N-terminal kinase
(JNK) is also associated with autophagy regulation. JNK induces autophagy or apoptosis
through the phosphorylation and inactivation of BCL-2, leading to apoptosis or through
the phosphorylation of BIM that disrupts the inhibitory interaction with Beclin-1, leading
to autophagy [306].

6.2. Beclin-1 in HCC

Autophagy is significantly reduced in the most aggressive HCC cell lines and tissues,
particularly when the Bcl-xL protein is overexpressed. These findings were corroborated in
curative resection specimens from HCC patients where the reduced expression of Beclin-
1 was negatively correlated with survival only in the Bcl-xL+ patients, indicating that
an increased expression of the anti-apoptotic gene Bcl-xL was associated with decreased
expression of Beclin-1 and a poor prognosis [334].

These results were verified in two additional studies. The first was performed in
material from 103 HCC patients, where Beclin-1 was negatively correlated with the anti-
apoptosis protein Bcl-2 and positively correlated with the pro-apoptosis protein Bax. The 5-
year survival rates were considerably higher among patients with strong Beclin-1 positivity
compared to those with weak or negative expression [335]. The second study of 35 HCC
patients reported similar results [336].

Interestingly, it was found that nitric oxide (NO) may influence the autophagy–
apoptosis balance in HCC through Beclin-1. The levels of NO were significantly increased in
HBV-related HCC compared to cirrhosis. Further experiments with human hepatoma cells
showed that NO induced apoptosis and inhibited autophagy, whereas the induction of au-
tophagy could attenuate NO-induced apoptosis. NO controls the switch between apoptosis
and autophagy, disrupting the Beclin-1/Vps34 complex and increasing the Bcl-2/Beclin-1
connection [337].

The actions of sorafenib, a drug used for the treatment of advanced HCC, are additional
evidence for the significance of Beclin-1 in regulating autophagy and apoptosis. Sorafenib
induces autophagic cell death in HCC through Beclin-1 and apoptosis [338]. The induction of
apoptosis by sorafenib is probably a more important mechanism for hepatoma cell death as
the inhibition of autophagy augments the effect of sorafenib, increasing apoptosis [339,340].

A very recent report used a different approach that showed the interplay between
autophagy and apoptosis. Vaccinia-related kinase 2 (VRK2) increases sorafenib resistance in
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HCC cells. This is obtained by the phosphorylation of Bcl-2, thus enhancing the dissociation
of Bcl-2 from Beclin-1, followed by the formation of the Beclin-1/Vps34 complex, which
facilitates autophagy. Furthermore, VRK2 phosphorylated Bcl-2, promoting the interaction
of Bcl-2 with BAX, thereby reducing apoptosis [341].

In addition, Beclin-1 is involved in the regulation of apoptosis through the action of
caspase. Growth factor depletion leads to the caspase-mediated cleavage of Beclin-1, im-
pairing autophagy. A fragment of Beclin-1 is then generated and localized to mitochondria,
leading cells to apoptosis through the release of pro-apoptotic factors, such as BAX [342].
The pro-apoptotic protein BAX reduces autophagy, promoting the caspase-mediated cleav-
age of Beclin-1. This is an indication that apoptosis can suppress autophagy [343]. The link
between autophagy and apoptosis is further supported by evidence that other autophagy-
related proteins, such as ATG5, are also substrates for caspase cleavage and the induction
of apoptosis. The cleaved ATG5 translocates into the mitochondria, inducing the mito-
chondrial apoptotic pathway [344]. Therefore, the caspase-mediated cleavage of ATG5
and Beclin-1 switches autophagy to apoptosis. The involvement of caspase-3 constitutes a
switch between autophagic or apoptotic cell death [345].

6.3. mTOR Interaction with Autophagy–Apoptosis and the Regulation of mTOR in HCC

mTOR is implicated in several signaling pathways regulating cell proliferation, au-
tophagy and apoptosis [346]. There are two main mTOR signaling pathways: the classi-
cal PI3K/Akt/mTOR and the LKB1/AMPK/mTOR signaling pathways. The glycogen
synthase kinase 3 beta (GSK3B)-mediated phosphorylation of ULK1 is important in au-
tophagy induction, suppressing the mTOR pathway and potentially inducing tumorigene-
sis [347,348].

mTOR has also several effects on apoptosis depending on the cells involved and its
effect on the activation of downstream targets, such as p53 and BCL-2 proteins [349].

The anti-apoptotic BCL-2 homolog MCL1 controls autophagy and apoptosis. The
interplay between BAX and Beclin-1 downstream of MCL1 degradation finally determines
if autophagy or apoptosis will prevail. It should be noted that mTOR inhibition, following
nutrient deprivation, causes MCL1 degradation [350]. On the contrary, both autophagy
and apoptosis may be controlled through the activation of the mTOR pathway. Thus, β-
carotene attenuated both the apoptosis and autophagy of enterocolitis IEC-6 cells stimulated
with LPS, activating the PI3K/AKT/mTOR signaling pathway [351]. There is strong
experimental evidence that the mTOR pathway regulates autophagy and apoptosis in
HCC. The importance of the PI3K/Akt/mTOR signaling pathway in HCC induction and
progression has been established. It is implicated in every etiology of HCC (viral, ALD and
NASH). The mTOR pathway is overexpressed in almost 50% of HCC and the impaired
activation of this pathway affects cell proliferation, differentiation, autophagy and the
epithelial–mesenchymal transition (EMT) [352,353].

Apigenin, a dietary flavonoid, induced apoptosis and autophagy in HCC cells by
inhibiting the PI3K/Akt/mTOR axis. Although autophagy protected cells from death, the
end result was the inhibition of cellular proliferation [354]. Brusatol, a traditional Chinese
herbal medicine, inhibited proliferation and induced apoptosis in liver cancer lines. The
autophagy inhibitor chloroquine attenuated Brusatol-induced apoptosis, indicating that
Brusatol promoted autophagy-induced apoptosis in HCC through the inhibition of the
PI3K/Akt/mTOR axis [355].

The upregulation or downregulation of mTOR-related oncogenic lncRNAs contributes
to the aberrant expression of oncoproteins, leading to the disturbed regulation of the
mTOR axis [356,357]. The aberrant expression of lncRNAs is associated with the metas-
tasis, recurrence and chemoresistance of HCC [358]. In particular, the inhibition of the
lncRNA HIF1A-AS1 increases apoptosis by reducing HIF-1α/mTOR-induced autophagy,
while its overexpression is related to the TNM stage and lymph node metastasis [359]. A
synergistic effect of PI3K/AKT/mTOR pathway-induced autophagy and apoptosis was
recently reported. The concomitant incubation of hepatoma cell lines with aloin and met-
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formin inhibited cellular proliferation, increasing both autophagy and apoptosis [360]. The
regulation of mTOR in HCC has been recently reviewed [361].

6.4. p27kip1

p27 kip1 is a cyclin-dependent kinase inhibitor and a tumor suppressor. p27Kip1 is a
critical mediator of autophagy and apoptosis. Unlike other tumor suppressors, such as p53,
the loss of p27 expression, frequently found in tumors, occurs via proteasomal degradation
or re-localization, and not through genetic or epigenetic modifications [362]. The cellular
location of p27Kip1 is partially controlled by phosphorylation from several kinases, such
as Akt and AMPK. Thus, the cytoplasmic location of p27Kip1 has been found to promote
cellular survival through autophagy (Figure 3).
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and cellular localization of p27kip1.

Nuclear p27Kip1, however, increases cell susceptibility to apoptosis or senescence [363].
A reduction in energy metabolism activates the LKB1-AMPK energy-sensing pathway, lead-
ing to the phosphorylation and stabilization of p27kip1. Autophagy is induced and cell
survival is increased. A reduction in p27kip1 under these conditions activates apopto-
sis [364,365]. Recently, the DNAJC5 protein was reported to be associated with the regu-
lation of p27. DNAJC5 expression is frequently increased in human HCC and is strongly
related to poor prognosis. DNAJC5 enhances the degradation of p27, while DNAJC5
knockdown reverses the decrease in p27 levels, indicating that the oncogenic function
of this protein is p27-mediated [366]. A recent meta-analysis indicated that there was a
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significant correlation between low p27kip1 expression and aggressive progression, leading
to a shorter overall survival in HCC patients [367].

6.5. The Anti-Apoptotic FLIP

The cellular FLICE inhibitory protein (c-FLIP) and the viral FLIP (vFLIP) are important
anti-apoptotic proteins against death-receptor-mediated apoptosis and necroptosis [368].
There are three isoforms of c-FLIP: c-FLIPL (long form), c-FLIPS (short form) and c-FLIPR
(Raji form). They all share the DED1 and DED2 domains [369].

Apoptosis is inhibited by FLIP through the interruption of the cell death machin-
ery [370]. FLIP binds to procaspase 8, one of the molecules that is involved in apoptosis
induction, and stops its maturation, inactivating thus the downstream apoptosis cas-
cade [371]. However, the end result of FLIP implication depends on the level or type of
c-FLIP isoforms involved. The c-FLIPL negatively regulates necroptosis, but the c-FLIPS
promotes RIP3-mediated necroptosis [372]. The c-FLIP isoforms determine whether cell
death follow either through the caspase-dependent apoptosis or through the RIP3-mediated
necroptosis. Additionally, c-FLIP redresses autophagy, inhibiting Atg3-binding LC3, which
is an essential component for autophagosome formation [373]. Therefore, FLIPs act not
only as anti-apoptotic factors, but also as suppressors of autophagy. Moreover, a DED1
peptide or a DED2 peptide of FLIP effectively suppress the Atg3–FLIP interaction with-
out affecting the Atg3–LC3 interaction, resulting in cell death. These FLIP-derived short
peptides, therefore, induce growth suppression and cell death by autophagy [373].

FLIP is implicated in the many actions of the HBx protein. The pro-apoptotic function
of HBx is mediated through its interaction with c-FLIP variants [374], thus being anti-viral.
On the other hand, c-FLIP may be also pro-viral because it stabilizes HBx [375].

Associations between HCV viral proteins and c-FLIP were also described. The HCV
core protein maintains the expression of c-FLIP, ultimately blocking TNFα-mediated apop-
tosis [376], but the opposite results were also reported as HCV core, NS4B and NS5B
proteins enhance TNF-induced apoptosis. HCV proteins also reduced the expression of
NF-kB-dependent anti-apoptotic proteins, such as Bcl-xL, and c-FLIPL [377]. The hedge-
hog proteins are implicated in the action of FLIP in HCC. The abnormal activation of the
hedgehog pathway is associated with the occurrence of HCC. The protein Gli2 is a termi-
nal transcription factor in this pathway. Gli2 downregulation enhanced TRAIL-induced
apoptosis through the reduction in c-FLIP and Bcl-2, indicating the importance of Gli2 in
the activation of c-FLIP. On the other hand, the increased expression of c-FLIP alleviated
TRAIL-induced apoptosis via the suppression of caspase-8 [378].

6.6. The Role of the ATG12, ATG5 and ATG3 Proteins in Autophagy

ATG12 is an important mediator of the direction of the balance between autophagy
and apoptosis. ATG12, in association with ATG3, inhibits the anti-apoptotic Bcl-2 and
promotes apoptosis. When ATG12 is associated with ATG5, autophagy is increased. The
calpain cleavage of ATG5 switches autophagy to apoptosis [305,344,379,380].

6.7. The Death-Associated Protein Kinase (DAPK) Family in Apoptosis and Autophagy

Death-associated protein kinases (DAPK) are members of a family of five related
kinases that mediate several cellular pathways, including apoptosis, autophagy and tu-
mor suppression. The three better-studied family members are DAPK1/DAPK, DAPK2
and DAPK3/ZIPK, which share a high degree of homology but different cellular localiza-
tion [381]. Initial studies demonstrated that DAPK can induce apoptosis by several path-
ways, such as p53- and mitochondrion-dependent apoptosis in hepatoma cells [382,383].
However, the effect of DAPK2 in apoptosis is debatable. It seems that the overexpression of
DAPK2 causes significant apoptosis but only in cancer cells detached from the extracellular
matrix [381,384,385]. DAPK2 was shown to promote the initiation step of autophagy by
decreasing mTORC1 activity [386]. DAPK2 is subsequently involved in the additional
steps of autophagy. Beclin-1 is a target of DAPK. The DAPK-mediated phosphorylation
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of Beclin-1 promotes the dissociation of Beclin-1 from its inhibitor BCL-2 to induce au-
tophagy [387,388]. SB203580 is an inhibitor of the p38 mitogen-activated protein kinase
(MAPK) but also reduces cell proliferation in a p38/MAPK-independent way. This is
achieved through the induction of autophagy in HCC cells associated with the activation of
both AMPK and DAPK, which facilitates the phosphorylation of p53 and enhances Beclin-1
expression. The induction of autophagic death may, therefore, account for the antiprolifer-
ative effect of SB203580 in HCC cells [389]. Recently, the DEAD-box helicase 20 (DDX20)
protein was identified as a downstream target of DAPK that leads to the tumor suppressor
function of DAPK in HCC. DAPK1 ameliorated the proteasomal degradation of DDX20.
DAPK also suppressed hepatoma cell migration and invasion, but not proliferation [390].
It should be noted that, in other cancers, an opposite effect may be observed. In human
placental micro-vascular endothelial cells, DAPK2 overexpression led to a decrease in both
autophagy and apoptosis connected to a decrease in Beclin-1 and BAX, along with an
increase in Bcl-2 [391]. DAPK1 attenuated oxidative stress and reduced autophagy and
inflammation by inhibiting the p38MAPK/NF-kB pathway in a mice model of acute lung
injury [392]. In addition to autophagy and apoptosis, the precise role of DAPKs in HCC
biology is not known. In a DAPK1 knockout model, hundreds of upregulated genes and
downregulated genes were identified. The tissue metalloproteinase inhibitor 1 (TIMP1)
and Alpha-2-HS-glycoprotein (AHSG) exhibited the strongest associations with DAPK1
elimination [393].

6.8. p53

The tumor suppressor p53 is encoded by the TP53 gene and is a critical regulator of
autophagy and apoptosis in HCC. It is a sensor of cellular stress and responds to a variety
of stimulants, such as DNA damage and oxidative stress [394]. It controls apoptosis by
inducing the association of components of the extrinsic death receptor system [395] with
several various mitochondrial pathways, such as PUMA and BAX, which in turn promote
cell death [305,396–399]. Under stressful conditions, the cytoplasmic p53 translocates to the
mitochondrial surface, promoting either the inhibition of the anti-apoptotic Bcl-2 family
members or the activation of the pro-apoptotic members leading to the formation of pores
in the mitochondrial outer membrane, cytochrome C release and apoptosis [400,401].

In contrast to apoptosis, the upregulation of cytoplasmic p53 or nuclear p53 has dif-
ferent effects in the regulation of autophagy. p53 exerts both pro- and anti-autophagic
functions. This is dependent on its subcellular localization. The cytoplasmic p53 inhibits
autophagy, acting on the UNC-51-like kinase 1 (ULK1) complex. Under stressful con-
ditions, p53 translocates to the nucleus where it can promote autophagy by inhibiting
mTOR through the activation of the AMP kinase [402,403] or the transactivation of the
damage-regulated autophagy modulator (DRAM), which promotes the formation of au-
tophagolysosomes [404]. The induction of autophagy via DRAM leads also to apoptotic
cell death. Therefore, DRAM is an important element of the mechanism that controls
p53-mediated apoptosis and autophagy [380,404]. In addition, nuclear p53 promotes the
phosphorylation of Bcl-2. Phosphorylated Bcl-2 does not bind to Beclin-1, allowing the
promotion of autophagy [380,405,406].

A different mechanism of the implication of p53 in autophagy and apoptosis regulation
has been described. The high mobility group box 1 (HMGB1) and p53 form a complex
that controls the balance between autophagy and apoptosis. The loss of p53 increased
cytosolic HMGB1 expression and induced autophagy. On the other hand, the loss of
HMGB1 increased cytosolic p53 and decreased autophagy. The effects on apoptosis were
opposite. Therefore, p53 seems to be a negative regulator of the HMGB1/Beclin-1 complex,
up- or downregulating autophagy and apoptosis [407].

The role of Krüppel-associated box (KRAB)-type zinc-finger protein ZNF498 in p53-
induced apoptosis was recently reported in HCC. This protein suppressed apoptosis and
ferroptosis by decreasing p53 phosphorylation in HCC development [408]. However,
convincing evidence that p53 triggers apoptosis is available only for the wild-type. For
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instance, one study has shown that, in estrogen-positive breast cancer cells, the expression
of a truncated p53 mutant increased BCL-2, thus decreasing their apoptosis in breast
cancer cells [409]. Moreover, evidence has suggested that certain gain-of-function or
loss-of-function mutations of the TP53 gene, as found in many cancers, turn p53 into an
oncogene [410]. In this context, it should be considered that TP53 mutations are very
common in hepatocellular carcinoma, and their interplay in the regulation of apoptosis and
autophagy has not been investigated [411].

6.9. Tumor-Associated Macrophages (TAM) and the Tumor Microenvironment (TEM)

As previously mentioned, HCC, as most other cancers, have inflammation as a basic
pathogenetic factor. TAMs play an important role in the maintenance of inflammation
by producing several pro-inflammatory cytokines and chemokines [412]. The function of
TAMs is regulated by autophagy [413]. Kupffer cells with autophagy deficiency promote
liver inflammation and hepatocarcinogenesis via the production of ROS by the mitochon-
dria [414]. TLR2 activation by hepatoma factors results in autophagy augmentation and
the M2 immunosuppressive differentiation of TAMs [415]. TLR2-deficient mice had an
unexpected increase in HCC induction and progression because TRL2 deficiency resulted
in a decrease in macrophage infiltration and suppressed autophagy and apoptosis [416].
The natural compound baicalin shifted the differentiation of TAMs into the M1 anti-tumor
phenotype and decreased hepatoma cell proliferation by increasing autophagy [417]. An in-
teresting interplay of autophagy and a form of apoptosis called anoikis has been described.
Cancer cell detachment from ECM induces cell death via anoikis. In the interplay between
anoikis and autophagy, the ECM-integrin-activated dual tyrosine kinase complex of SRC is
involved. SRC was demonstrated to regulate AMPK autophagy. When cells are detached,
SRC is inactive, and AMPK is activated to induce protective autophagy against anoikis.
When cells are attached again, SRC activation, reduces AMPK activity and downregulates
autophagy, allowing cells to proliferate. Whether this mechanism is operative in HCC is
not known at present [418].

TAMs are part of the tumor microenvironment that contains other immune cells, such
as CD8+ T cells, T regulatory cells, myeloid-derived suppressor cells (MDSCs), dendritic
cells (DCs), B cells and natural killer (NK) cells. These immune cells are regulated by similar
signals and metabolic pathways with HCC cells. Therefore, this overlap makes them prone
to similar vulnerabilities, with HCC cells making it difficult to attack only tumor cells
without reducing antitumor immunity. Current research has produced conflicting results,
but this is a very promising field that may exploit ferroptosis with immunotherapy in HCC
treatment [419–421].

6.10. The Role of Mitochondria

Autophagy generates metabolic products, such as glutamine, to replenish TCA cycle
intermediates that are used to sustain the mitochondrial metabolism of tumor cells, thereby
sustaining mitochondrial metabolism in tumor cells [422]. In this context, chloroquine, a
small-molecule inhibitor of autophagy, was shown to damage mitochondrial metabolism
and diminish tumor growth [423–425].

Mitochondrial dysfunction promotes the accumulation of ROS, mtDNA damage and
proto-oncogene activation, which are associated with the induction and progression of
HCC [426,427]. A reduction in the mitochondrial membrane permeability (MMP) inhibits
the apoptosis of HCC cells [428]. MicroRNAs targeting mitochondria showed that miR-
518d-5p inhibits c-Jun/PUMA-induced apoptosis and increases sorafenib resistance in
HCC [429]. On the contrary, the natural compound dehydrocrenatidine (DEC) reduced
ATP production and disrupted the MMP of mitochondria in hepatoma cell lines. DEC in-
duced mitochondrial impairment, increased apoptosis and exerted anti-tumor effects [430].
Interestingly, the inhibition of mitochondrial autophagy (mitophagy) induced the accumu-
lation of damaged mitochondria in HepG2 cells and reduced both the proliferation of HCC
cells and the resistance of HCC to sorafenib [431].
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The role of mitochondria in tumor biology through the onset, maintenance and coun-
teraction of apoptosis and autophagy has been recently reviewed [432,433].

6.11. Other Factors

There is evidence that Ca2+ regulates both autophagy and apoptosis, but the exact
mechanisms are still unknown. An increase in Ca2+ induces autophagy but inhibits apop-
tosis, resulting in increased cell survival and proliferation. In theory, this is detrimental
for HCC [14]. Activated ribosomes are associated with HCC. The RNA-binding protein
PNO1 is an important ribosome in tumorigenesis. PNO1 was reported to be overexpressed
in HCC, leading to autophagy promotion and apoptosis inhibition through the MAPK
signaling pathway [434]. The interplay of autophagy and apoptosis in cancers has been
recently reviewed [406].

6.12. Ferroptosis

Ferroptosis is an iron-dependent regulated cell death characterized by iron overload,
lipid peroxidation and the overproduction of ROS [435,436]. The word derives from the
Greek word “ptosis”, meaning a fall, and the Latin “ferrum”, for iron. Biochemically,
ferroptosis is characterized by the consumption of glutathione (GSH) and the decreased
activity of GPX4.

There are three main mechanisms regulating ferroptosis:

(1) The glutathione/glutathione peroxidase 4 (GSH/GPX4) pathway, involving the sys-
tem Xc−, which imports cystine and exports glutamate. A central role in this system is
that of the cystine/glutamate exchanger solute carrier family 7 member 11 (SLC7A11)
and the SLC3A2 exchanger [437–439].

(2) Ferritinophagy and other iron metabolism pathways, particularly the p62-Kelch-like
ECH-associated protein 1 (Keap1)-Nrf2 regulatory pathways.

(3) The lipid metabolism pathways, implicating the tumor suppressor p53. p53 promotes
the sensitivity to ferroptosis via the suppression of SLC7A11 [435,438].

Experimental evidence showed that ferroptosis is controlled by a variety of external
inhibitors and activators [23]. Ferroptosis is initiated by a special form of autophagy called
“ferritinophagy”, leading to the degradation of ferritin [440]. Several proteins involved in
autophagy are also involved in ferroptosis. The elimination of Atg 5 and Atg7 reduced
ferroptosis, induced by the ferroptosis activator erastin. The nuclear receptor coactivator
4 (NCOA4) is the selective carrier of ferritin to ferritinophagy. The genetic inhibition of
NCOA4 reduces ferritin degradation and represses ferroptosis, while the overexpression of
NCOA4 increases ferritin degradation and ferroptosis.

Ferroptosis is also induced by lipid peroxidation. The overexpression of ACSL4 is
responsible for the synthesis of increased levels of polyunsaturated fatty acids (PUFAs),
mainly from cell membranes rich in phospholipids, which promote ferroptosis. On the
other hand, ACSL3 is responsible for the synthesis of monounsaturated fatty acids (MUFA)
that induce ferroptosis resistance. Three mechanisms, namely, the cystatin–GSH–GPX4,
the CoQ10–FSP1 and the GCH1–BH4–DHFR axes, all fueled by NADPH, can counteract
ferroptosis by inhibiting lipid peroxidation [438].

Inducers of ferroptosis, such as erastin and sorafenib, act by two mechanisms. They
inhibit the Xc–mediated cystine antiporter, reducing GSH and GPX4 and leading, therefore,
to ROS accumulation, and ferroptosis induction. Another mechanism is related to the
p62-Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor E2-related factor 2 (NRF2)
pathway. Nrf2 is a transcription factor that protects HCC cells from oxidative damage. p62
inhibits Keap1 and favors Nrf2 accumulation. Nrf2 activates retinoblastoma (Rb) and met-
allothionein (MT-1G) and induces ferritin heavy chain 1 (FTH1), quinone oxidoreductase 1
(NQO1) and HO-1. The administration of erastin or sorafenib leads to the upregulation of
MT-1G and p62 and the downregulation of Rb (Figure 4) [223,435,441–443].
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Figure 4. Mechanisms of ferroptosis. The Xc–antiporter system consisting of the SLC7A11 and
SLC3A2 subunits allows for the extrusion and internalization of glutamate and cysteine. Glutathione
peroxidase 4 (GPX 4) is produced by the glutamate–cystine exchange system. Xc- is the main inhibitor
of ROS. See text for details.

Beclin-1 was reported to increase ferroptosis by binding to SLC7A11. The elimination
of Beclin-1 inhibits ferroptosis and is initiated by the system Xc- inhibitors, such as erastin,
sulfasalazine and sorafenib. On the contrary, the activation of Beclin-1 promotes cancer cell
death by ferroptosis, but not by apoptosis or necroptosis [444]. Autophagy can coincide
with ferroptosis [445]. Ferroptosis was initially described as a separate type of regulated cell
death, distinct from apoptosis and autophagy. However, it is now evident that autophagy,
at least under certain conditions, contributes to ferroptotic cell death. Moreover, ferroptosis
may share common signals or regulators with apoptosis [23,446,447].

6.13. Ferroptosis and HCC

Liver iron overload and ferroptosis have been conclusively linked to HCC initiation
and progress [448–450]. As mentioned above, p53 is involved in the regulation of ferrop-
tosis. A single-nucleotide polymorphism at codon 47 of TP53 leads to the disruption of
p53 functions and resistance to ferroptosis, probably via the transcriptional regulation of
SLC7A11 expression [451]. In general, genes may act as negative regulators of ferroptosis,
increasing the resistance of HCC to drugs, such as sorafenib [452]. An increase in the
expression of metallothionein-1G (MT-1G), which is a negative regulator of ferroptosis,
increases resistance to sorafenib [453]. Ceruloplasmin also inhibits ferroptosis in HCC
and increases the deposition of iron and ROS production [454]. In contrast, the synthetase
long-chain family member 4 (ACSL4) is an essential mediator of ferroptosis execution and
promotes ferroptosis in HCC (Figure 4) [455]. An upregulation of the ACSL4 protein in
HCC tissues from responders to sorafenib has been demonstrated [456,457].

HBx causes the upregulation of ACSL4 by targeting miR-205, leading to the accumula-
tion of cholesterol, and the development of HCC [458,459].

ACSL4 promotes the progression of HCC cells. The blocking of hexokinase H2 (HK2)
activates ACSL4 effectively and leads to HCC progression [460,461].
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Natural omega-3 PUFAs are important substrates in the induction of ferroptosis and
the inhibition of tumor progression [462], a fact that can be exploited in HCC [463,464].
LncRNAs are also regulators of ferroptosis in HCC, but their action has not been clari-
fied [465,466]. Recently, signature models using lncRNAs and ferroptosis were established,
classifying HCC patients into two groups. The high-risk group had enhanced hepatocar-
cinogenesis and poor prognosis [467,468]. Equally, non-coding circular RNAs (circRNAs)
are associated with the development of HCC through ferroptosis. Circ0097009 endogenous
RNA controls the expression of SLC7A11 [469]. Novel ferroptosis-associated genes have
been proposed for prognostic use in HCC [470,471]. Despite the all increasing importance
of ferroptosis, there are no data on a possible interplay between ferroptosis, autophagy
and apoptosis in HCC. The role of ferroptosis in HCC initiation and progression has been
extensively reviewed [472,473].

7. Implications of Autophagy, Ferroptosis and Apoptosis in the Drug Treatment
of HCC

Most patients with HCC are only candidates for drug treatments by the time they are
diagnosed, as the tumor is unresectable or not suitable for loco-regional treatment [474].

Despite the introduction of several new drugs, the outcome is still unsatisfactory
because resistance is rapidly developed. Interestingly a commonly used class of drugs may
reduce the appearance of HCC. A meta-analysis demonstrated that statins may decrease
HCC occurrence. This protection was more evident in HBV patients. Lipophilic statins,
such as Atorvastatin, showed a greater effect. This effect was also dose-dependent [475].

The multi-kinase inhibitors sorafenib and lenvatinib are considered as first-line treat-
ment. A combination of atezolizumab and bevacizumab has been recently proposed as a
first-line treatment, but results are not impressive and many additional drugs have been
tested. A recent meta-analysis suggested that regorafenib and cabozantinib may be the best
candidates as second-line treatments in HCC [476].

However, there is extensive evidence that autophagy and ferroptosis are involved
in the resistance of HCC to drugs, and their manipulation may improve the efficacy of
treatments [477].

Autophagy inhibition may also be used as the treatment of HCC. GNS561, a new
autophagy inhibitor, specifically inhibits the enzyme palmitoyl-protein thioesterase 1,
(PPT1), leading to lysosomal membrane permeabilization, caspase activation and cell
death [478].

Furthermore, the activation of the CD8+ T cells can induce ferroptosis by the suppres-
sion of the two components of the Xc- system [479]. RSL3, another ferroptosis inducer,
also inhibits the proliferation of HCC cells [480]. Sorafenib resistance has been the most
extensively investigated. However, investigations offered conflicting results as autophagy
induced either increased resistance or increased efficacy in HCC sorafenib administra-
tion [481]. Sorafenib induces the ferroptosis of HCC cells due to the inhibition of the X−C
system, followed by glutathione depletion. Ferroptosis inhibitors, such as ferrostatin-1,
blocked the cellular death induced by sorafenib [482]. Sorafenib, combined with an as-
pirin treatment, synergistically induces apoptosis by blocking ACSL4 expression in HCC
cells [456]. It was also found that the suppression of MT-1G leads to increased lipid peroxi-
dation and sorafenib-induced ferroptosis in HCC cells [453]. Recent studies have shown the
implication of the Yes-associated protein (YAP) in sorafenib resistance. The YAP/TAZ and
ATF4 proteins are localized in the cytoplasm and antioxidant genes, such as SLC7A11, are
not induced in sorafenib-sensitive cells and ferroptosis is increased. In sorafenib-resistant
cells, however, YAP/TAZ and ATF4 are translocated to the nucleus and induce the SLC7A11
gene that represses ferroptosis [483]. Other factors associated with sorafenib resistance are
hypercholesterolemia and the overexpression of the cholesterol sensor SCAP [484], and the
high expression of the long non-coding RNA SNHG16 in association with low miR-23b-3p
expression, leading to increased autophagy and apoptosis inhibition [485]. By contrast,
the overexpression of miR-23a-3p directly targets ACSL4, leading to the suppression of
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ferroptosis and sorafenib resistance [486], while the dysregulation of miR-541 favors au-
tophagy and increases sorafenib resistance [487]. FOXO3 upregulation increased autophagy
and sorafenib resistance. Interestingly, the second-line drug regorafenib abolished this
protective mechanism [488].

Recently, the variant 1 (tv1) of proliferating cell nuclear antigen clamp-associated
factor (PCLAF) was found to reduce ferroptosis in HBV associated by decreasing Fe2+

accumulation [489]. On the other hand, the modulation of autophagy and/or ferroptosis
may lead to an increased efficacy of sorafenib. Thus, quiescin sulfhydryl oxidase 1 increases
ferroptosis and improves sorafenib efficacy [490].

Cholesterol reduces the degradation of the Golgi membrane protein 1 (GOLM1) and
suppresses the GOLM1-dependent autophagy of receptor tyrosine kinases (RTKs), thus
promoting HCC metastasis. Statins may, therefore, improve the efficacy of multiple tyrosine
kinase inhibitors in HCC treatment [491].

CDGSH iron sulfur domain 2 (CISD2) is an iron-sulfur protein. The inhibition of CISD2
increased sorafenib-induced ferroptosis in resistant cells through either ferritinophagy or
the inhibition of the p62–Keap1–NRF2 pathway [492]. The downregulation of complexin II
(CPLX2) and haloperidol (a sigma receptor 1 antagonist) promotes the ferroptosis and cell
death induced by sorafenib [493,494].

Autophagy inhibition improves sorafenib efficacy [495], while mitophagy induction
increases sorafenib and lenvatinib resistance [431,496,497]. On the other hand, the downreg-
ulation of COX-2 by ketoconazole leads to mitophagy induction through the PINK–Parkin
pathway and apoptosis stimulation [498].

Regorafenib resistance is due to reduction in the drug-induced apoptosis by topoi-
somerase IIα (TOP2A)-upregulated gene, which is involved in the resistance to rego-
rafenib [499]. Interestingly, many natural products are effective, inhibiting protective
autophagy or inducing autophagic death and the apoptosis of HCC cells [256].

Thus, heteronemin, a marine terpenoid, can induce ferroptosis in HCC cells [500].
The inhibition of the PI3K/AKT/mTOR pathway and the induction of autophagy and

apoptosis is the mechanism of HCC anti-tumor effect of compounds, such as aloin (in combi-
nation with metformin), pueraria flavonoids, apigenin and Shikonin [354,360,501,502].

Solamargine has been shown to induce autophagy and apoptosis and inhibit HCC
proliferation [309]. However, it should be noted that the stimulation of both apoptosis and
autophagy may be detrimental, as autophagy supports HCC proliferation. Therefore, the
combination with an autophagy inhibitor may be necessary as in the case of myricetin,
which is a natural flavonoid [503].

This was not the case with sarmentosin, which induced caspase-mediated apoptosis
in HCC cells blocked by the autophagy inhibitor chloroquine or the inhibition of Atg7,
indicating that autophagy was important for sarmentosin efficacy. Mechanistically, sarmen-
tosin inhibited mTOR and activated Nfr2 [504]. A detailed description of the mechanisms
of drug resistance in HCC was recently published [505]. It should be stressed, however,
that the above findings are based on experimental evidence and have not been tested in
real life clinical trials.

8. Conclusions

Autophagy and apoptosis are two forms of regulated cell death. They are critically
implicated in the regulation of HCC biology. Autophagy is interrelated with apoptosis and
chemotherapy in HCC. Generally, the induction of autophagy inhibits caspase-dependent
apoptosis, and the induction of apoptosis-associated caspase activation blocks the au-
tophagic process. However, autophagy may also induce apoptosis. During HCC induction,
autophagy acts as a tumor suppressor, but after induction, it behaves as a tumor promoter.
Recently, ferroptosis, a separate form of regulated cell death, was identified. Despite its
extensive implication in HCC, its interplay with autophagy and apoptosis, described in
other conditions, has not been fully exploited in HCC. There are several switches that
control the way in which the balance between autophagy and apoptosis turns. However,
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the initial cellular sensors that decide the direction of these two pathways have not yet been
identified. A better clarification of the mechanisms involved may have clinical implications.
The manipulation of either autophagy or apoptosis will improve the treatment outcomes of
a difficult-to-treat tumor. There is a need to test, in clinical trials, substances that have been
effective in experimental animals.
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