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Abstract: Long QT syndrome type 1 with affected IKs is associated with a high risk for developing
Torsade de Pointes (TdP) arrhythmias and eventually sudden cardiac death. Therefore, it is of high
interest to explore drugs that target IKs as antiarrhythmics. We examined the antiarrhythmic effect of
IKs channel activator ML277 in the chronic atrioventricular block (CAVB) dog model. TdP arrhythmia
sensitivity was tested in anesthetized mongrel dogs (n = 7) with CAVB in series: (1) induction experiment
at 4 ± 2 weeks CAVB: TdP arrhythmias were induced with our standardized protocol using dofetilide
(0.025 mg/kg), and (2) prevention experiment at 10± 2 weeks CAVB: the antiarrhythmic effect of ML277
(0.6–1.0 mg/kg) was tested by infusion for 5 min preceding dofetilide. ML277: (1) temporarily prevented
repolarization prolongation induced by dofetilide (QTc: 538 ± 65 ms at induction vs. 393 ± 18 ms at
prevention, p < 0.05), (2) delayed the occurrence of the first arrhythmic event upon dofetilide (from
129± 28 s to 180± 51 s, p < 0.05), and (3) decreased the arrhythmic outcome with a significant reduction
in the number of TdP arrhythmias, TdP score, arrhythmia score and total arrhythmic events (from
669 ± 132 to 401± 228, p < 0.05). IKs channel activation by ML277 temporarily suppressed QT interval
prolongation, delayed the occurrence of the first arrhythmic event and reduced the arrhythmic outcome
in the CAVB dog model.

Keywords: ML277; IKs channel; AV block dog model; long QT type 1; ventricular arrhythmia

1. Introduction

Long QT syndrome (LQTS) can be either congenital or acquired and is characterized
by a prolongation of the QT interval on the electrocardiogram (ECG). When inherited, the
most common type is caused by a loss-of-function mutation in the KCNQ1 gene, referred to
as LQT type 1 (LQT1), and is found in 40–50% of LQTS individuals [1,2]. The KCNQ1 gene
encodes the α-subunit of the slow component of the delayed rectifier potassium current (IKs)
and forms a functional channel together with the β-subunit (KCNE1). Specific activation of
the channel is present upon enhanced sympathetic stimulation and when maintaining a
proper repolarization reserve [3,4]. A loss-of-function mutation in the KCNQ1 gene results
in a reduced IKs density [5]. The accompanying reduced repolarization reserve predisposes
the heart to Torsade de Pointes (TdP) ventricular arrhythmias and possibly sudden cardiac
death. Enhanced sympathetic activity, typically by physical exercise or emotional stress, is
reported as a trigger [6].

Insights into regulators of KCNQ1/KCNE1 channels have been reported over the
last decades. They range from physiological modulators protein kinase A, phosphatidyli-
nositol 4,5-biphosphate and adenosine triphosphate to pharmacological modulators of
which, among others, hexachlorophene, zinc pyrithione and L-364,373 are presented as
IKs activators [7–10]. The latter are critically discussed regarding their sensitivity of solely
KCNQ1 or the KCNQ1/KCNE1 complex and their effect on other (cardiac) ion channels in
terms of possible side effects for LQT1 patients.
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(R)-N-(4-(4-methoxyphenyl)thiazol-2-yl)-1-tosylpiperidine-2-carboxamide (ML277)
was identified as a novel IKs activator by Mattmann and coworkers in 2012 [11]. It has been
proposed that activation of the IKs channel is achieved by increasing K+ conductance and
by prolonging the activation and deactivation transitions, and even prevention of channel
inactivation, by selectively enhancing the current during the activated open state of the
channel [12–14]. Furthermore, ML277 showed a very modest or no effect on the L-type
calcium current (ICaL) and the inward-rectifying current (IK1) in guinea pig ventricular
cardiomyocytes [12]. Since its identification, a few in vitro studies have reported on the
therapeutic potential of ML277. By acting on KCNQ1 and KCNQ1/KCNE1 complexes,
ML277 enhances IKs density and shortens the action potential duration in canine ventricular
cardiomyocytes and human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-
CMs) [12,15]. ML277 rescued IKs dysfunction in hiPSC-CMs with a patient-specific KCNQ1
mutation as shown via elevated IKs density and action potential shortening [16]. Similar
results by ML277 were shown in patient-specific hiPSC-CM clusters based on a reduced
field potential duration [17].

To our knowledge, the potential antiarrhythmic efficacy of ML227 in vivo has not yet
been reported. The chronic atrioventricular block (CAVB) dog is a model in which TdP
arrhythmias can be induced in serial experiments with high reproducibility, and has been
widely used to explore pro- and antiarrhythmic drug effects [18]. Ventricular remodeling
after AV block in combination with bradycardia and anesthesia predispose the heart to
TdP arrhythmias, and the IKr blocker dofetilide is accountable as a final trigger for TdP
induction [19,20]. The aim of this study is to examine the potential antiarrhythmic effect
of the IKs activator ML277 in the CAVB dog with a focus on repolarization duration and
arrhythmic outcome.

2. Materials and Methods
2.1. Animals

Animal care and experimentation were approved by the Committee for Experiments
on Animals of Utrecht University and were in accordance with the Directive 2010/63/EU
of the European Parliament and the Dutch law on animal experimentation (application
approval number: AVD115002016531, date of approval: 6 August 2016). Dogs were housed
in pairs in kennels with wooden bedding material, had ad libitum access to drinking water
and received food pellets twice a day. The animals were allowed to play outside once a day
with access to playing toys, and their welfare was checked daily.

The experiments were performed with seven purpose-bred mongrel dogs (two females)
(Marshall, New York, NY, USA). All dogs had remodeled hearts caused by AV block, which
was induced by radiofrequency ablation of the His bundle [21]. The animals had a body
weight of 25 ± 3 kg and were 18 ± 2 months old.

2.2. Preparation

Animals were fasted overnight and received premedication (0.02 mg/kg i.m. atropine,
0.5 mg/kg i.m. methadone, 0.5 mg/kg i.m. acepromazine and 0.1 mg/kg s.c. meloxicam)
half an hour prior to the procedure. General anesthesia was induced by sodium pentobar-
bital (Nembutal, 25 mg/kg i.v.) and maintained by 1.5% isoflurane in O2 and N2O (1:2
ratio) via mechanical ventilation at 12 breaths/min. Ampicillin (1000 mg) was administered
before (i.v.) and after (i.m.) surgery, and buprenorphine (0.3 mg, i.m.) was provided after
surgery. A monophasic action potential (MAP) catheter (Hugo Sachs Elektronik, March,
Germany) was inserted via the jugular artery to the left ventricular apex. Surface ECG
and a MAP signal were recorded continuously during the experiment using EP Tracer
(Cardiotek, Maastricht, The Netherlands) with a sampling rate of 1 kHz. Five dogs had an
idioventricular rhythm (IVR), whereas two dogs were paced at VVI40-50 due to extreme
bradycardia at IVR. The induction and prevention experiments were performed in series.
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2.3. Compounds

IKr blocker dofetilide (Biorbyt, Cambridge, United Kingdom, 0.025 mg/kg, i.v.) was
dissolved in 0.1 M HCl and further prepared in 0.9% saline solution. Infusion time was
5 min or until occurrence of the first TdP arrhythmia. IKs activator ML277 (Bio-Connect
B.V., Huissen, The Netherlands, 0.6–1 mg/kg, i.v.) was dissolved in polyethylene glycol
400 (PEG 400) and dimethyl sulfoxide (DMSO) in a 1:1 ratio. The dose was based on
absence of electrophysiological and hemodynamic effects upon proof-of-principle cardiac
safety experiments in anesthetized sinus rhythm dogs.

2.4. Induction Experiment

TdP arrhythmias were induced via a standardized protocol. After 10 min of baseline
(BL) recording, IKr blocker dofetilide was infused for 5 min or until the occurrence of
the first TdP (Figure 1A). TdP arrhythmias that lasted longer than 10 s were terminated
via defibrillation. Dogs were considered inducible when they showed at least three TdP
arrhythmias (of ≥5 ectopic beats) within 10 min after the start of dofetilide infusion.
Seven inducible dogs at 4 ± 2 weeks of CAVB remodeling (CAVB4) were included for the
prevention experiment.

Figure 1. Schematic overview of the experimental setup. Two experiments were performed in series.
(A) Induction experiment at chronic AV block 4 ± 2 weeks (CAVB4): baseline measurement followed
by dofetilide (Dof) infusion until first Torsade de Pointes (TdP) arrhythmia or maximum infusion of
5 min. (B) Prevention experiment at CAVB 10 ± 2 weeks (CAVB10): baseline measurement followed
by 5 min of ML277 and Dof infusion with identical duration as during the induction experiment.
Recordings were followed up for 10 min after the start of Dof administration.

2.5. Prevention Experiment

At 10 ± 2 weeks of CAVB remodeling (CAVB10), the antiarrhythmic potential of IKs
activator ML277 was examined in inducible dogs. After 10 min of BL recording, ML277
was infused for 5 min followed by dofetilide with a similar infusion duration as the
induction experiment (Figure 1B). Within the same animal, the dofetilide infusion time in
the prevention experiment was exactly the same as the dofetilide infusion time during the
induction experiment (until the first arrhythmic event or 5 min). This timepoint is referred
to as dofetilide timepoint 1 (Dof T1).

2.6. Data Analysis

Five consecutive beats from ECG lead II were measured manually in EP Tracer to
obtain the interval duration of ECG parameters RR, PP, QRS and QT. The QT interval was
corrected for heart rate (QTc) using the Van de Water formula [22]. The JTc interval was
obtained by subtracting the QRS interval from the QTc interval. The MAP duration of
the left ventricle (LV MAPD) at 80% of repolarization was measured semi-automatically
using custom-made software (AutoMAPD, MATLAB, MathWorks, Natick, MA, USA). The
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beat-to-beat variability of repolarization, quantified as short-term variability (STV), was
calculated from 31 consecutive beats using the formula: STV = ∑|Dn+1 − Dn|/

(
30 ∗
√

2
)

,
with D representing the LV MAPD [23].

Arrhythmic events were scored to quantify the severity of the arrhythmic outcome [24].
Single ectopic beats (sEB) were scored with 2 points, multiple ectopic beats (mEB) were
scored with 3–5 points and self-terminating TdP arrhythmias were scored with 6–49 points.
TdP arrhythmias received a score of 50, 75 or 100 points for one, two or three defibrillations,
respectively. The arrhythmic outcome was quantified by the relative TdP score (scored
TdP arrhythmias relative to the induction experiment), the total number of shocked TdP
arrhythmias, and the total score of all arrhythmic events within the 10 min time window
after the start of dofetilide infusion. The arrhythmia score is based on the average of the
three highest scored arrhythmic events [24].

2.7. Statistical Analysis

Data are presented as mean ± standard deviation (SD). Serial data were analyzed
using a paired Student’s t-test or a one-way analysis of variance (ANOVA) with a Tukey’s
test to correct for multiple comparisons. All statistical analyses were performed with
GraphPad Prism (version 8.3.0, GraphPad Software, San Diego, CA, USA). A value of
p < 0.05 was considered statistically significant.

3. Results
3.1. Temporary Suppression of Repolarization Prolongation

The duration of dofetilide infusion—established during the induction experiment—
was identical to the dofetilide duration at the prevention experiment (172 ± 54 s, corre-
sponding to 57 ± 18% of a full dose at 5 min), referred to as Dof T1 timepoint. An overview
of the delta QTc interval progress upon the induction and prevention experiments is pre-
sented in Figure 2A. During the induction experiment, dofetilide significantly prolonged
the QTc interval. During the prevention experiment, ML277 shortened the QTc interval to
some extent in all dogs. Moreover, the QTc interval prolongation during dofetilide was
suppressed by the IKs activator as shown by a shorter QTc interval at Dof T1 (393 ± 18 ms)
compared to this timepoint during dofetilide of the induction experiment (538 ± 65 ms,
p < 0.05, Figure 2A and Table 1).

However, this was a temporary effect since dofetilide further prolonged the QTc
interval—measured at the timepoint before the actual first arrhythmic event upon dofetilide
at the prevention experiment (479 ± 82 ms, Figure 2A and Table 1). Repolarization parame-
ters QT, JTc and LV MAPD showed the same behavior as the QTc interval: prolongation
upon dofetilide, a trend towards shortening upon ML277 and a delay upon dofetilide
following ML277 at Dof T1 (Table 1). The progress of the QT interval at the different
timepoints is also represented in the ECG lead II tracings of one dog in Figure 2C. The RR
interval and QRS duration remained stable at all timepoints (Table 1). The atrial rate was
not affected by ML277, whereas dofetilide showed an increased PP interval compared to
the baseline in the prevention experiment. The delayed effect by ML277 is also found in
the temporal dispersion of repolarization parameter STV: a dofetilide duration, similarly
to the induction experiment (Dof T1), did not increase the STV yet (0.85 ± 0.41, Table 1).
ML277 infusion alone did not induce any arrhythmic events.
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arrhythmic event during Dof at CAVB4 (Dof T1) and at the actual first arrhythmic event during Dof. 
Data of individual dogs in grey and mean ± SD in black, repeated measures one-way ANOVA with 
Tukey’s multiple comparisons test, * p < 0.05. (B) Time until the first arrhythmic event occurred 
during Dof at CAVB4 and during Dof after ML277 at CAVB10. Paired t-test, * p < 0.05. (C) Repre-
sentative ECG lead II and left ventricular monophasic action potential (LV MAP) tracings (dog #7) 
with QT intervals (in ms) presented at each measured timepoint and before the shocked Torsade de 
Pointes (TdP) arrhythmia (example during Dof at CAVB4). The scale bar is 1000 ms. 

Table 1. Electrophysiological parameters from seven chronic AV block (CAVB) dogs after dofetilide 
(Dof), and after ML277 followed by Dof. 
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LV MAPD 308 ± 41 399 ± 77 * 278 ± 20 274 ± 26 315 ± 24 # 389 ± 53 *&% 
STV 1.63 ± 0.50 2.97 ± 0.91 0.78 ± 0.56 0.73 ± 0.33 0.85 ± 0.41 2.31 ± 1.44 *& 

Parameters in milliseconds, data presented as mean ± SD, at baseline (BL) and before the first ar-
rhythmic event during Dof at the induction experiment at CAVB 4 weeks, and at 5 min of ML277 
infusion (ML277), at the same timepoint as the first arrhythmic event during Dof at CAVB 4 weeks 
(Dof T1), and at the actual first arrhythmic event during Dof at the prevention experiment at CAVB 

Figure 2. Effect of ML277 in dogs (n = 7) with chronic AV block (CAVB). (A) Progress of the delta
QTc interval (in ms) in the induction experiment: chronic AV block (CAVB) 4 weeks at baseline
(BL) and before the first arrhythmic event during dofetilide (Dof). The prevention experiment at
CAVB10 included timepoints at BL, at 5 min of ML277 infusion (ML277), at the same timepoint as
the first arrhythmic event during Dof at CAVB4 (Dof T1) and at the actual first arrhythmic event
during Dof. Data of individual dogs in grey and mean ± SD in black, repeated measures one-way
ANOVA with Tukey’s multiple comparisons test, * p < 0.05. (B) Time until the first arrhythmic event
occurred during Dof at CAVB4 and during Dof after ML277 at CAVB10. Paired t-test, * p < 0.05.
(C) Representative ECG lead II and left ventricular monophasic action potential (LV MAP) tracings
(dog #7) with QT intervals (in ms) presented at each measured timepoint and before the shocked
Torsade de Pointes (TdP) arrhythmia (example during Dof at CAVB4). The scale bar is 1000 ms.
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Table 1. Electrophysiological parameters from seven chronic AV block (CAVB) dogs after dofetilide
(Dof), and after ML277 followed by Dof.

Induction Prevention

BL Dof BL ML277 Dof T1 Dof

RR 1275 ± 190 1285 ± 180 1322 ± 242 1399 ± 299 1398 ± 301 1432 ± 290
PP 583 ± 113 638 ± 101 577 ± 101 596 ± 114 611 ± 102 672 ± 143 *

QRS 104 ± 21 102 ± 27 107 ± 24 107 ± 25 104 ± 27 103 ± 29
QT 456 ± 93 563 ± 70 * 406 ± 40 387 ± 36 428 ± 27 # 516 ± 77 *&%

QTc 432 ± 84 538 ± 65 * 378 ± 26 352 ± 31 393 ± 18 # 479 ± 82 *&%

JTc 327 ± 74 436 ± 47 * 272 ± 40 245 ± 34 289 ± 19 # 376 ± 59 *&%

LV MAPD 308 ± 41 399 ± 77 * 278 ± 20 274 ± 26 315 ± 24 # 389 ± 53 *&%

STV 1.63 ± 0.50 2.97 ± 0.91 0.78 ± 0.56 0.73 ± 0.33 0.85 ± 0.41 2.31 ± 1.44 *&

Parameters in milliseconds, data presented as mean ± SD, at baseline (BL) and before the first arrhythmic event
during Dof at the induction experiment at CAVB 4 weeks, and at 5 min of ML277 infusion (ML277), at the same
timepoint as the first arrhythmic event during Dof at CAVB 4 weeks (Dof T1), and at the actual first arrhythmic
event during Dof at the prevention experiment at CAVB 10 weeks. LV MAPD = left ventricular monophasic
action potential duration, STV = short-term variability of LV MAPD. N = 6 for LV MAPD and STV. Repeated
measures one-way ANOVA with Tukey’s multiple comparisons test. * p < 0.05 compared to BL within CAVB
group, # p < 0.05 compared to Dof CAVB4, & p < 0.05 compared to ML277 and % p < 0.05 compared to Dof T1.

3.2. Delay in Occurrence of First Arrhythmic Event

The timepoint at which the first arrhythmic event occurred after the onset of dofetilide
infusion is presented in Figure 2B. The time interval at which the first arrhythmic event oc-
curred upon dofetilide following ML277 pretreatment was significantly longer (180 ± 51 s)
compared to the time at which the first arrhythmic event occurred upon solely dofetilide
infusion (129 ± 28 s, p < 0.05).

3.3. Mild Antiarrhythmic Effect: Occurrence of TdP Arrhythmias

IKs activation by ML277 did not solely delay the occurrence of the first arrhythmic
event: the infusion of ML277 before the induction of TdP arrhythmias by dofetilide reduced
the relative TdP score in six out of seven dogs by more than 25% (Figure 3A). The number of
TdP arrhythmias terminated by defibrillation was also significantly lower following ML277
pretreatment (Figure 3B). The number of defibrillated vs. self-terminated TdP arrhythmias
per dog are presented in Figure 3C and show the overall reduction in the arrhythmias
after ML277.

Figure 3. Cont.
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Figure 3. Reduction in Torsade de Pointes (TdP) arrhythmias after ML277. (A) Relative TdP score
and (B) number of TdP arrhythmias terminated by defibrillation during dofetilide (Dof) infusion and
during Dof following ML277. (C) Overview of defibrillated and self-terminated TdP arrhythmias per
dog during Dof and ML277 + Dof. (D) Arrhythmia score and (E) total of arrhythmic events during
Dof and ML277 + Dof. Data of individual dogs in grey and mean ± SD in black, paired t-test with
* p < 0.05. (F) Representative overview of arrhythmic events in the 10 min time window per minute
after the start of Dof (left panel) and after Dof following ML277 (right panel). The score of arrhythmic
events refers to single ectopic beats (sEB, 2 points), multiple ectopic beats (mEB, 3–5 points) and TdP
arrhythmias (TdP, 6–75 points). A TdP terminated with one shock was scored with 50 points, and
two defibrillations were scored with 75 points. A delay of 55 s of the 10 min time window is included
in the results of ML277 + Dof. Results are from dog #7.
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The reduced arrhythmic outcome by ML277 is also presented by the significant de-
crease in the arrhythmia score (Figure 3D) and the total score of arrhythmic events (Fig-
ure 3E). The 10 min time window after the onset of dofetilide infusion, in which the
arrhythmic events were quantified, was shifted at the prevention experiment to compen-
sate for the delayed occurrence of the first arrhythmic event. A representative overview of
the occurrence of arrhythmic events during the prevention and induction experiment is
presented in Figure 3F. Note the delay of the first arrhythmic event with ML277 (140 s at
Dof vs. 195 s at ML277 + Dof) and the reduced number of defibrillated TdP arrhythmias
with a score equal to or higher than 50.

4. Discussion

In this study, we examined the potential antiarrhythmic effects of IKs activator ML277
in the CAVB dog model, which allows reproducible inducement of TdP arrhythmias under
standardized conditions. ML277 temporarily suppressed dofetilide-induced repolarization
prolongation and delayed the occurrence of the first arrhythmic event. Furthermore, the
arrhythmic outcome was reduced as quantified by the TdP score, the number of defibrillated
TdP arrhythmias, the arrhythmia score, and the total score of arrhythmic events.

4.1. Targeting IKs in the CAVB Dog Model

The IKr and IKs are crucial in accomplishing a stable repolarization phase, where IKs
is less dominant compared to IKr [25]. Furthermore, both currents strongly contribute
to a safety mechanism in case of an impaired function of a single potassium channel.
The contribution of IKs to this repolarization reserve is more dominant: IKr blocking by
dofetilide prolonged the APD by approximately 30%, while around 50% of the prolongation
was due to the HMR-1556-induced loss of IKs in dog cardiomyocytes [25]. In the CAVB
dog model, the IKr and IKs densities are significantly downregulated [26]. This explains
the ML277-induced delay in repolarization prolongation upon dofetilide in the CAVB
dog, and a lack of ML277-induced QTc modulation in sinus rhythm dogs. IKs blocking by
JNJ303 prolonged the QT interval in the CAVB model, and in combination with a trigger as
enhanced inotropy, ventricular tachycardia and TdP arrhythmias were induced [27].

In our standardized induction protocol, it is likely that IKr blocker dofetilide suffi-
ciently prolongs the QT interval in such a way that the remaining IKs fails to compensate to
maintain a proper repolarization reserve on a cellular level. This, in combination with AV
block-induced contractile and structural remodeling of the ventricles, anesthesia and brady-
cardia, predisposes the heart to TdP arrhythmias in approximately 75% of the animals [20].
The current study included solely animals inducible for TdP arrhythmias upon dofetilide
infusion. ML277 activated the IKs remaining after AV block-induced downregulation and
the inhibiting effect of anesthesia component isoflurane [28]. This is presented by a delay in
the occurrence of the first arrhythmic event and a delay in QT interval prolongation. Then,
dofetilide challenged the repolarization reserve to such an extent to become reduced and
unstable, thereby inducing QT prolongation and arrhythmic events. Here, the prevention
approach (ML277 before dofetilide) instead of a suppression experiment (ML277 after
dofetilide) allowed the establishment of electrophysiological effects of ML277 itself, and a
controlled measurement of electrophysiological parameters such as STV [29], which would
be challenging to obtain upon enhanced arrhythmogenicity when dofetilide was given first.
For further investigation, a suppressive approach would be of clinical value in determining
a therapeutic effect.

4.2. Reproducibility of Dofetilide-Induced Arrhythmias

With IKr blocker dofetilide as the final hit in the standardized protocol of the CAVB dog
model, TdP arrhythmia can be reproducibly induced in serial experiments [30]. Here, an
average number of 13 TdP arrhythmias occurred in the 10 min dofetilide time window, of
which 20% demanded defibrillation. In the current study, inducible animals ranged highly
in the number of defibrillations upon dofetilide (2–12). Upon ML277, a significant reduction
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in the arrhythmic outcome was presented, though the occurrence of TdP arrhythmias—
including the severe events demanding defibrillation—could not be suppressed completely.
Here, the results of the induction and prevention experiments were compared in order to
examine the potential antiarrhythmic outcome of ML277. While the exact reproducibility
of the arrhythmic outcome during two serial experiments cannot be excluded, the TdP
outcome remained relatively stable between the serial experiments upon a similar dose of
dofetilide [30].

In terms of cardiac remodeling over time, TdP sensitivity in inducible animals is
consistent over the weeks—from CAVB2 weeks on [20]. Moreover, KCNQ1 mRNA and
protein levels already decreased at three days, were maintained at for least 30 days after
the AV block in serial experiments [31]. An essential component for creating vulnerable
circumstances for TdP arrhythmias to occur in our CAVB dog model is anesthesia induced
by pentobarbital and maintained by isoflurane. Important to note is that no arrhythmias
occur under baseline conditions with this anesthetic regime [32]. On a level of ionic currents,
isoflurane has a blocking effect on IKs [28]. The effect of isoflurane in the current study can
be excluded due to serial performance of the induction and prevention experiment under
identical conditions.

4.3. (Pre)Clinical Implications

Despite the reduced repolarization prolongation and arrhythmic outcome, the sus-
tained occurrence of TdP arrhythmias after ML277 upon dofetilide infusion fails to consider
this IKs activator as an antiarrhythmic drug in our preclinical model [33]. Yet, this study
is the first to determine IKs activating effects of the compound in an animal model with
bradycardia-induced sensitivity to ventricular arrhythmias. Furthermore, it reveals a poten-
tial role of IKs activation in long QT circumstances (temporal antiarrhythmic effect) across
the well-determined and more dominant aspect of IKr.

4.4. Study Limitations

Despite the extensive electrophysiological evaluation of ML277 in the CAVB dog
model, the current data cannot distinguish if dofetilide counteracts with or ‘overrules’ the
ML277-induced electrophysiological effects or if it concerns a potential limited duration of
action by ML277. IKs and action potential recordings are lacking in this study and could
have provided further insight into the time and dose-dependent behavior of ML277 with a
confirming evaluation of the presented in vivo electrophysiological effects of ML277. Addi-
tional pharmacokinetic analysis is required to elaborate on the peak plasma concentrations
and its corresponding time-dependent effect on the presented antiarrhythmic properties.

5. Conclusions

IKs activation by ML277 temporarily suppresses dofetilide-induced repolarization
prolongation and the occurrence of a first arrhythmic event in the CAVB dog model.
Whereas the arrhythmic outcome is significantly reduced upon ML277, it fails to completely
suppress dofetilide-induced TdP arrhythmias.
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