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Abstract: The emergence of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs)
revolutionized the treatment of advanced-stage non-small cell lung cancer (NSCLC). Detected in
more than 50% of late-stage lung adenocarcinoma in Asian patients, the EGFR mutation was regarded
as a golden mutation for Asians. However, resistance to TKIs seems inevitable and severely hinders
patients from getting further benefits from treatment. Even though resistance caused by EGFR T790M
could be effectively managed by third-generation EGFR-TKIs currently, resistance to third-generation
EGFR-TKIs is still a troublesome issue faced by both clinicians and patients. Various efforts have
been made to maximize the benefits of patients from EGFR-TKIs therapy. Thus, new requirements
and challenges have been posed to clinicians of this era. In this review, we summarized the clinical
evidence on the efficacy of third-generation EGFR-TKIs in patients with EGFR-mutated NSCLC. Then,
we discussed advancements in sequential treatment aiming to delay the onset of resistance. Moreover,
the resistance mechanisms and features were depicted to help us better understand our enemies.
Lastly, we put forward future strategies, including recent approaches involving the utilization of
antibody drug conjugates against resistance and research directions about shaping the evolution of
NSCLC as a core idea in the management of NSCLC.
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1. Introduction

Non-small cell lung cancer (NSCLC) is one of the most aggressive cancer types and
the leading cause of cancer related death in China as well as world-wide [1,2]. Most
patients in China are already at unresectable late stage at diagnosis and the efficacy of
chemotherapy and radiotherapy were unsatisfying. Fortunately, the advancement of
EGFR-TKIs dramatically revolutionized treatment strategies for a great proportion of
NSCLC patients carrying EGFR mutations (Figure 1), which is the most common oncogenic
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mutations among Asians with lung adenocarcinoma (LUAD) [3–5]. Among the patients
carrying EGFR mutations, roughly 85% patients carry the classic mutations, 19deletions
(19dels) and 21exon L858R point mutation. The rest 15% uncommon mutations include
exon 19 insertion, exon 18 G719X, and exon20 S768I, which would respond relatively poorly
to first, second, and third generation TKIs [6,7]. Based on the results from previous clinical
trials, the remission rate for these subgroups was roughly 0–11% [8,9]. Multiple ongoing
trials are recruiting patients to explore the efficacy of novel drugs such as mobocertinib and
JMT-101 for uncommon mutation, we believe these trials will provide valuable evidence
for the management of these patients in the future [10]. Exon 20 insertion, which accounted
for up to 3.5% of all EGFR mutated NSCLC patients, was once regarded as an uncommon
mutation that could not be treated by EGFR-TKIs [11]. However, based on the inspiring
results from CHRYSALIS study, FDA approved Amivantamab and mobocertinib for the
management of patients with this mutation, which is a major breakthrough for Exon
20 insertions [12,13]. Details about Amivantamab and mobocertinib would be discussed
later in this review. An overview of different generations of EGFR-TKIs available worldwide
is displayed in Table 1.
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Figure 1. Summary of the EGFR-TKI signal transduction pathway.

Multiple prospective clinical trials and real-world studies have confirmed the superior-
ities of EGFR-TKIs regarding objective response rate (ORR), progression free survival (PFS),
overall survival (OS), and quality of life (QoL) when treating late-stage NSCLC patients
with EGFR-sensitive mutations compared to conventional platinum-based Chemother-
apy [14–17]. As a result, screening for possible EGFR mutations has been a standard of care
for patients with advanced lung adenocarcinoma and EGFR-TKIs have been approved as
first-line therapy for patients carrying EGFR-sensitive mutations by several authoritative
oncology associations such as ASCO, ESMO, and NCCN [18,19]. However, resistance
to first- and second-generation EGFR-TKIs will inevitably develop after 9–12 months in
median, and patients will no longer benefit from TKI therapy [20,21]. Even though T790M
mutation, the most common acquired resistant mechanism after first- or second-generation
EGFR-TKIs, could now be effectively managed using the third generation EGFR-TKIs
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such as osimertinib, furmonertinib and aumolertinib [17]. Resistance to third genera-
tion EGFR-TKIs is still a major obstacle which hinders patients to further benefit from
TKI therapy.

As resistance to EGFR-TKIs seems inevitable, attempting different drug combina-
tions in sequential treatment aiming to extend treatment to resistance duration as well as
strategies to overcome resistance have become major focus of research in this area. This
review summarized recent clinical advancements regarding different drug combinations in
sequential treatment. Moreover, we further introduced common mechanisms leading to
resistance as well as progresses made to overcome resistance, aiming to provide support
for clinicians and insights about future research in this field. In order to truly cure NSCLC,
we could not only try to chase the evolution of lung cancer but should manage to shape
their evolution.

Table 1. Overview of three generations of EGFR-TKIs and their indications.

Generic Trade Name Chemical Formula Indications

Erlotinib Tarceva®
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Table 1. Cont.

Generic Trade Name Chemical Formula Indications
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As resistance to EGFR-TKIs seems inevitable, attempting different drug combina-
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strategies to overcome resistance have become major focus of research in this area. This 
review summarized recent clinical advancements regarding different drug combinations 
in sequential treatment. Moreover, we further introduced common mechanisms leading 
to resistance as well as progresses made to overcome resistance, aiming to provide sup-
port for clinicians and insights about future research in this field. In order to truly cure 
NSCLC, we could not only try to chase the evolution of lung cancer but should manage 
to shape their evolution. 

2. Conversant with Our Weapons: Clinical Data of Third-Generation EGFR-TKIs

Third generation EGFR-TKIs, characterized by osimertinib, furmonertinib, and au-
molertinib were designed specifically to combat against T790M resistance, which is the
most common type of resistance after first- or second-generation EGFR-TKIs treatment [22].
In silica study indicates affinity between osimertinib and EGFR T790M is nearly 200-fold
higher than wild type, confirming its high selectivity [23]. According to the results of
AURA1 and AURA3, utilization of osimertinib for patients developed T790M acquired
resistance after first or second generation TKIs treatment could effectively extends PFS
and OS comparing to platinum-based chemotherapy. Moreover, cytotoxicity and rate of
adverse events of osimertinib were significantly lower than platinum-based chemother-
apy [17,24,25]. More importantly, osimertinib also brought hope for the treatment of
advanced NSCLC with brain metastasis. Based on chemical structure of osimertinib, it
has higher permeability for blood brain barrier and greater retention within the compared
to first and second generations EGFR-TKIs, therefore, it could effectively control brain
metastasis with EGFR-sensitive mutation [17]. This hypothesis was further confirmed by
later BLOOM Phase 1 trials [26]. According to third party independent review, meningeal
ORR was 62% and Duration of Response (DoR) 15.2 months. Meanwhile, AURA3 and
OCEAN study also confirmed that osimertinib could effectively reduce the rate of brain
metastasis, control the growth of cranial metastasis, and extends PFS and OS [27,28]. Based
on these inspiring results, NCCN recommended osimertinib for NSCLC patients with brain
metastasis carrying EGFR sensitive mutations in the 3rd edition of guideline for Central
Nervous System Cancers [29].

Multiple clinical trials indicate that benefits of osimertinib not only reflect in the
management of T790M mutations. In 2020, FLAURA Phase III study comprehensively
evaluates clinical benefits between osimertinib and first generation TKIs for untreated
advanced-stage NSCLC with EGFR sensitive mutations. This study further confirmed the
superiority of osimertinib in the management of all EGFR sensitive mutations. Compared to
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gefitinib or erlotinib, osimertinib could significantly extends PFS and reduces the incidence
of CNS progression [30]. Importantly, a later published ADAURA study provided basis
for the utilization of osimertinib as adjuvant therapy after surgical resection. Compared to
placebo, osimertinib could bring significant benefits regarding DFS while the adverse event
is within tolerance according to patients [31]. Besides, this strategy could also effectively
reduce mortality and recurrence rate to nearly 20%. Even though the final OS has not
been officially published, this result indicates a new era for NSCLC adjuvant therapy.
However, the dosage, duration of treatment, and indications for this strategy should be
further carefully studied before clinical application.

Furmonertinib (AST2818, alflutinib) is a third-generation EGFR-TKIs developed in
China. Pre-clinical study indicates furmonertinib, as well as its metabolites in vivo, are
highly selective anti-cancer agents [32]. Later, several Phase I clinical trials testified fur-
monertinib could effectively control the progress of advanced stage NSCLC with T790M
mutations. Also, the adverse effects were within tolerance range according to patients’
report43. In 2021, a multi-centre, single-arm, phase IIb study included 220 cases of NSCLC
patients who carriers primary T790M mutations or acquired T790M mutations after TKI
treatment [33,34]. According to this study, the median PFS was 9.6 months, ORR was 74%,
and tumor shrinkage was observed in 96% patients 44, 45. These results were slightly
better, despite not statistically significant, than previous results in osimertinib study. This
improvement could be attributed to the fact that both furmonertinib and its metabolites
in vivo exhibited high anti-tumor activity, as is mentioned above. Meanwhile, similar
to osimertinib, furmonertinib also has great permeability to Blood-Brain-Barrier. Clini-
cal trial indicated the ORR for patients with cranial metastasis was 66% and mPFS was
11.6 months [34,35]. Therefore, furmonertinib is expected to be another treatment choice for
T790M mutation, especially for patients with cranial metastasis, which is common among
advanced stage NSCLC.

The efficacy of furmonertinib as first line therapy was also exhilarating. Accord-
ing to the recent published FURLONG study at 2022 European Lung Cancer Congress
(ELCC), furmonertinib could significantly prolong PFS across all pre-specified subgroups
compared to gefitinib as first line treatment in advanced-stage NSCLC patients. Mean-
while, the frequency of grade ≥ 3 treatment-related adverse events was 11% in furmon-
ertinib and 18% in gefitinib group [36]. The final OS results of the FURLONG study was
highly anticipated.

Aumolertinib (almonertinib, HS-10296) is another third-generation EGFR-TKIs de-
veloped in China. Preclinical studies confirm aumolertinib also has good blood brain
penetration [37]. In the APOLLO Phase 1/2 trial, which includes patients with T790M
mutation after EGFR-TKIs therapy, aumolertinib exhibited its efficacy based on ORR, mPFS,
DoR, and OS [38,39]. Independent central review suggests This study also confirmed
anti-cancer activity of aumolertinib in real patients. The CNS ORR was 60.9% and CNS
DCR was 91.3% for patients with CNS metastases after taking aumolertinib [39]. Com-
pared to gefitinib, first line aumolertinib treatment could also significantly prolong median
PFS (mPFS) and DoR in Chinese patients with advanced EGFRm NSCLC according to
the recent published AENEAS study. Moreover, aumolertinib has similar rate of adverse
events that > grade 3 [40,41]. Currently, there are ongoing phase-III studies of almonertinib
(NCT04687241) and furmonertinib (FORWARD, NCT03787992) aiming to evaluate efficacy
of aumolertinib and furmonertinib as adjuvant therapy in EGFRm NSCLC patients after
complete tumor resection [20]. We will learn more about the administration of these drugs
in the future.

3. Drug Arrangement in Sequential Treatment-Maximizing Benefits for Patients

Based on these encouraging results, some scholars suggest that third generation EGFR-
TKIs should be prescribed as first line treatment for patients carrying EGFR sensitive
mutation regardless of T790M status. Indeed, this strategy was listed in the 2021 ASCO
guideline and 2022 ESMO expert consensus for advanced or metastatic NSCLC [18,42,43].
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Due to its good permeability across blood brain barrier, third-generation EGFR-TKIs should
be prioritized for those patients with CNS, including leptomeningeal disease, as suggested
by 2022 ESMO expert consensus [43]. However, on the one hand, from the perspective of
the nations’ healthcare systems, using osimertinib as a first-line therapy is not cost effective
and could bring significant burden to individuals and healthcare systems [44]. It should be
noted that this conclusion was made based on the healthcare system in the US and Mexico,
therefore, a detailed cost-effectiveness analysis of osimertinib as first line setting in China
mainland and other regions is warranted.

Moreover, multiple retrospective real-world research indicated that utilization of os-
imertinib as a second-line therapy after first/second generation TKIs could delay the onset
of resistance and effectively extend OS for patients, thereby maximizing the benefits to the
patients [45,46]. In the LUX-Lung7 study, among the patients who received osimertinib
after progression to afatinib, the mPFS was 21.9 m and 3-year OS rates were 90%. Impor-
tantly, for the patients receiving osimertinib as second-line treatment, the mPFS2 was even
higher, reaching 53.3 months [47].

GioTag is the first clinical research aiming to evaluate appropriate drug regimen for
patients carrying EGFR sensitive mutations worldwide. This real world, single-arm, multi-
centre study retrospectively analyzes time on treatment (TOT) and OS for patients with
EGFRm advanced or unresectable NSCLC who had T790M-positive disease after first-line
afatinib and subsequently received osimertinib (2+3 treatment) [48]. The results indicate in
afatinib plus osimertinib group, median time on treatment was 27.7 months while mOS
was 37.6 months in whole population. In Asian subgroup, median time on treatment was
37.1 months while mOS was 44.8 months for afatinib plus osimertinib treatment. Im-
portantly, the rate of cranial metastasis was stable prior and after afatinib treatment [48].
Therefore, fearing of potential cranial metastasis should not be considered as a reason for
first line osimertinib treatment as osimertinib could effectively penetrate blood brain barrier.
The feasibility of 2+3 treatment was further substantiated by the UpSwinG study published
in December 2021. This observational study demonstrated promising activity of sequential
afatinib and osimertinib in patients with EGFR-mutant NSCLC in 191 patients from 9
different countries [49]. Moreover, in the RESET study conducted in South Korean, the
result indicates sequential afatinib and osimertinib treatment could improve survival rates,
TOT, and DCR compared to treatment with afatinib followed by other chemotherapies.
This study suggests such strategy could maximize the clinical benefits for patients while
reducing chemotherapy exposure [50]. Given the real world setting of these studies, a
head-to-head prospective trial that systematically compares mPFS, mOS, and TTF between
sequential 2+3 vs osimertinib is urgently needed.

However, how to optimize the sequence of EGFR-TKIs treatment is also controversial.
Whether using second generation followed by third generation EGFR-TKIs (2+3 strategy)
or first generation followed by third generation EGFR-TKIs (1+3 strategy) is highly debated.
Recent subgroup analysis of ARCHER 1050 study indicates even though dacomitinib could
effectively extends OS compared to gefitinib in the whole population, the final mOS result
was not statistically significant among Asians. Meanwhile, only 9.7% patients get the
chance to receive osimertinib after resistance while this rate was 11.1% among gefitinib
arms. Besides, the mOS for dacomitinib + osimertinib patients was also shorter than
gefitinib + osimertinib patients [51,52]. However, a multi-centre retrospective study con-
ducted in Japan suggests differently. The data indicates afatinib + osimertinib could brought
significantly better ORR and disease control rate (DCR) compared to gefitinib + osimertinib.
The mPFS, despite not statistically significant, also tends to be prolonged in afatinib + osimer-
tinib arm [53]. Another small-scale retrospective research suggests for patients developed
T790M mutation after administration of first/second generation EGFR-TKIs, receiving
sequential afatinib + osimertinib could extends OS than receiving first generation EGFR-
TKIs + osimertinib [54]. Some researchers attributed this improvement in efficacy to the
fact that second generation EGFR-TKIs have a wider inhibitory spectrum compared to
first generations, which means they could postpone clonal expansion and homogenize
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subclonal mutation, thereby delaying onset of acquired resistance and prolonging time on
treatment. As a result, 2+3 strategy may be a better choice than 1+3 strategy.

Despite of the superiorities of second generation EGFR-TKIs mentioned above, it
should be noted that compared to first generation EGFR-TKIs, adverse events are more
severe and more often in second generation TKIs as they bind to EGFR in an irreversible
manner [9]. Meanwhile, these results were limited by the sample size and nature of the
retrospective analysis. The applicability and practicability of such regimen still need to be
further explored in larger prospective research. Moreover, as Furmonertinib was recently
approved by FDA, sequential treatment strategy for this drug lacks relevant support. Up
till now, there was no clinical research nor retrospective study to systematically evaluate
efficacy of afatinib plus furmonertinib or aumolertinib as first line treatment. Therefore, how
to comprehensively evaluate mutational status and patients’ tolerance to adverse effects,
optimize drug sequencing, and maximize the benefits of patients from third generation
EGFR-TKIs will be a major field of study in the future. It should also be noted that in
real world setting, only less than 30% of patients receiving first- or second-generation
EGFR-TKIs as first line therapy have the chance to receive subsequent third generation
EGFR-TKIs [52]. Therefore, comprehensively evaluating pros and cons of different first
line therapy from different dimensions, including efficacy, improvement in QoL, adverse
events, and cost-effectiveness, will be a major focus of research for our team in the future.
Management of advanced stage lung cancer is a marathon rather than a sprint; hence
oncologists nowadays need to take the long view rather than merely considering current
situations. Establishing optimal management strategies for EGFRm NSCLC is still an
unmet medical need that warrants further investigation.

4. Facing the Inevitable Rivalry: Mechanisms and Strategies against Them
4.1. EGFR Dependent Mutations
4.1.1. C797S Mutations

Like T790M, C797S mutation also occurs at EGFR 20ex. It is reported that C797S
mutation is the most common mechanism underlying on-target osimertinib resistance,
developing in 10–26% of patients [1]. However, the exact mechanism of this phenomenon
was not clearly elucidated. Crystallized structure indicates such mutation will only alter
the hydrophilicity of 797 residue. Considering that C797 is the site of covalent binding for
all known irreversible EGFR-TKIs, it is hypothesized such alteration will affect binding
affinity of osimertinib and thereby resulting in re-activation of EGFR pathway [1–3]. In the
absence of co-existing T790M mutations, which is common in patients receiving osimertinib
as first line therapy, re-challenging with first- or second- generation EGFR-TKIs such as
erlotinib and dacomitinib might be beneficial for the patients. However, the authors also
suggested this strategy would eventually result in the co-existence of T790M and C797S [4].

Co-existence of T790M and C797S mutation is more common among patients receiving
osimertinib as second-line therapy. Based on the allelic context of T790M and C797S, this
mutation could be further divided into two subgroups, trans C797S and cis C797S mutation
(Figure 2). An in vitro study published in 2015 indicated that for trans mutation, cells
will be resistant to osimertinib but sensitive to a combination of first and third generation
EGFR-TKIs. However, cells with trans mutations will be unresponsive to all EGFR-TKIs
alone or in combination in vitro [5]. Therefore, different strategies were adopted to manage
different types of C797S mutations in clinic. For cis mutations, there is a deficient of
valuable meta-analysis or clinical research data to support clinical decisions. In 2018,
Zhao et al. reported a case of an effectively managed lung cancer patient harboring triple
EGFR mutations of L858R, T790M, and cis-C797S who was treated with a combination of
osimertinib, bevacizumab, and brigatinib based on circulating-DNA mutational status [6].
In a small-scale retrospective study that included 15 cases of advanced NSCLC with cis
C797S mutations, 5 patients received a combination of brigatinib (ALK inhibitor) and
Cetuximab while 10 patients received platinum-based chemotherapy. The result suggests
ORR and mPFS was 60% and 14 months in combinatorial group while only 10% and
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3 months in chemotherapy group [3]. This research brought public’s attention on brigatinib-
based therapy and multiple researchers published similar results [7,8]. However, based on
our experience at daily clinical work at the National Cancer Center in China, the efficacy of
this strategy is less than optimal, and it should be noted that these reports were neither large
scale nor randomized trials. Therefore, the efficacy of brigatinib based therapy remains
further exploration.
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Trans C797S mutation only takes up a small proportion, approximately 10% among all
C797S mutations [9]. Some reports suggested 1+3 combinatorial therapy, such as erlotinib
plus osimertinib, could effectively reverse resistance [9–11]. However, limited to patient
sample, this drug regimen was not widely accepted by many clinicians. Therefore, manage-
ment strategy for such patients still lacks a unified standard. Further multi-centre clinical
trials are needed to explore the efficacy and mechanism of such choice. The ORCHARD trial
(NCT03944772) is a phase III multi-arm study aiming to evaluate the efficacy of osimertinib
plus gefitinib in patients with C797S mutations after first-line osimertinib. We believe
results from this trials will bring us insights regarding management of these patients in the
future [12] (Figure 3).

Fourth generation EGFR-TKIs are developed aiming to overcome C797S mutations,
which abolishes affinity between TKIs and EGFR. Even though clinical data are not avail-
able, many of them such as BPI-361175, TQB3804, and CH7233163 have shown their efficacy
against C797S mutations in preclinical experiments and are undergoing phase I trials [13,14].
These data were highly anticipated by both clinicians and patients.

4.1.2. EGFR Independent Mechanisms of Resistance

Histological transformation and bypass activation are the most frequent alterations in
EGFR off target resistance to third generation EGFR-TKIs, including first- and second-line
setting. We will discuss their mechanisms and corresponding clinical management.
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4.1.3. Small Cell Lung Cancer (SCLC) Transformation

In a small population of patients (5–10%) after EGFR-TKIs treatment, resistance is
characterized by a transformation of histological type from NSCLC to SCLC [15]. However,
the mechanisms underlying this transformation is undefined. One hypothesis suggests that
SCLC originated from NSCLC, whereas some researchers argued this transformation is a
state of intratumor heterogeneity and drug selection. In the other words, chemotherapy and
TKIs effectively inhibit the growth of NSCLC, therefore resulting in SCLC dominance [16].
However, there was clear evidence that transformed SCLC is a unique type of SCLC, which
is distinct from both SCLC and Combined SCLC [17]. Therefore, the first hypothesize was
commonly accepted by most clinicians.

Immunohistochemistry indicators exhibited positive staining for CD56, Syn, TTF-1,
and a strong positive staining for Ki-67, while a negative staining for PD-L1 after trans-
formation [18]. Moreover, such transformation also indicates rapidly progressed diseases
and a poorer prognosis, the OS after transformation is approximately 10 months [19].
Some researchers suggests ZEB1, SPP1, MUC1, CD44, and ESRP1 might involve in the
transformation process based on GEO datasets, however, no in vitro or in vivo study was
conducted to confirm this statement [20]. In 2020, E.Pros et al. suggests RB1 rearrangement
in LUAD patients may be used to predict the risk of SCLC transformation under growth
inhibition. Based on this conclusion, they proposed that RB1 status may be used as a
marker for SCLC transformation [21].

In a recent retrospective analysis that includes 9 cases of patients with SCLC transfor-
mation in City of Hope, researchers suggested SCLC transformation patients have a unique
histological, molecular, and clinical profile over various time points and therefore argues
for a more precise classification based on the unique mutational status of each patients
at different time points, making it more complicated to understand pathophysiological
processes that leads to this transformation and develop valuable targets [15]. Currently,
chemotherapy, especially the combination of etoposide and platinum is widely used for
the treatment of transformed SCLC [19]. Combination of EGFR-TKIs and chemotherapy
was also suggested by some clinicians as they can delay drug resistance and SCLC trans-
formation, however, safety and efficacy of such combinatorial therapy is still doubtful.
The utilization of immune checkpoint inhibitors (ICI) was also reported as case report in
transformed SCLC patients, however, majority of researchers suggests the efficacy of ICI
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in transformed SCLC is far from ideal, this could be attributed to low level of PD-(L)1
expression in SCLC [17,22,23]. Apparently, more collaboration in research is needed to
elucidate this process and formulate treatment strategies to overcome this issue.

4.1.4. MET Amplification

MET is also a member of receptor of tyrosine kinase superfamily. Mainly expressed in mes-
enchymal and tumor cells, its overexpression could activate downstream RAS/RAF/MAPK
pathway and lead to carcinogenesis [24]. The proportion of MET amplification within
acquired resistance to EGFR-TKIs patients’ group is roughly 5–20%59. Preclinical in vivo
study confirmed inhibition of MET pathway could re-sensitive resistant clones to gefitinib
therapy [24,25]. Therefore, research in this area mainly focuses on the combinatorial ther-
apy between EGFR-TKIs and MET inhibitors. And there are already results from phase I
study to support such combinations. Crizotinib is a multitarget tyrosine kinase inhibitor
that could binds to MET, ROS, and ALK. In preclinical and preliminary clinical trials,
the combinatorial therapy of crizotinib and gefitinib could effectively reverse resistance
caused by MET amplification [26,27]. A small-scale real-world study confirmed simul-
taneous inhibition of MET and EGFR could reverse EGFR resistance and extend PFS for
patients. Generally, crizotinib was generally well-tolerated and effective in various studies
across different populations [28]. Meanwhile, several selective MET inhibitors such as
savolitinib and tepotinib also demonstrate their efficacy when combined with EGFR-TKIs.
The INSIGHT study is a multicenter randomized trial aiming to evaluate the efficacy of
tepotinib in patients with EGFR mutated NSCLC with MET amplification. The phase II
result suggests for patients with high MET overexpression (IHC 3+), tepotinib + gefitinib
could effectively extends mOS and mPFS, however, this improvement is not evident in
patients with mild MET overexpression (IHC 2+) [29]. Even though this phase II study
was prematurely terminated due to low recruitment, the efficacy of either tepotinib alone
or in combination with other EGFR-TKIs in NSCLC patients with MET amplification still
warrants further exploration. In a recent multicenter phase Ib study involving the efficacy
of osimertinib + savolitinib on patients who harbor MET amplification and progressed after
osimertinib treatment, interim data suggests such combination has satisfying risk-benefit
profile for patients and anti-tumor activity [30]. However, these results are limited by the
size of the study. Therefore, more detailed and comprehensive data needs to be published
to confirm the plausibility of such strategy.

Amivantamab (JNJ-6372) is a bispecific EGFR and c-MET antibody that gains FDA
approval for patients with locally advanced or metastatic EGFR exon 20 insertions NSCLC
recently [31]. Recent study suggest it might be another therapy for patients progressed
after osimertinib due to MET amplification. In the CHRYSALIS trial ORR was 36% among
patients who progressed after osimertinib and 100% among TKI-naïve patients [31,32].
Recently, researchers from Korea, USA, and China initiated a phase III multi center trial
aiming to compare the safety and efficacy of amivantamab + lazertinib versus osimertinib
as first line treatment in EGFRm patients [33]. The result of this trial may dramatically
change the paradigm of current management strategy for EGFRm NSCLC patients. An-
other phase III study of amivatamab with pemetrexed and cisplatin chemotherapy is also
ongoing (NCT04538664). They may bring further surprise to our patients as well as us
oncologists [34].

4.1.5. HER2 Amplification

Osimertinib resistance induced by HER2 amplification was first reported by Planchard
et al. in 2015 [35]. Interestingly, they discovered that for some reason, HER2 amplification
and T790M are mutually exclusive [35]. osimertinib resistance due to HER2 amplification
was approximately 3% in the FLAURA trials [36]. HER2 amplification is also a common
mutation noticed in clinical trials of several other types of third generation EGFR-TKIs
such as abivertinib [37]. Therefore, like MET, switching to other types of EGFR-TKIs could
not effectively manage this situation. Considering HER2 amplification is a commonly
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spotted mutation a breast cancer and its antibody Trastuzumab could effectively inhibit
breast cancer with such mutations. Therefore, the combinatorial therapy that includes
Trastuzumab and EGFR-TKIs or Chemotherapy gains researchers’ attention. In 2018, a
single arm phase II clinical trial that include 24 such patients indicated practicability of
combining Trastuzumab and Paclitaxel. The ORR was 46% and response rate was highly
correlated with HER2 expression level [38]. It should be noted that the control group was
absent in this study, and the combination of Paclitaxel makes it impossible to determine the
contribution of individual drugs regarding treatment efficacy. In 2021, Gan et al. reported
several cases of successful management of HER2 induced osimertinib resistance using
pyrotinib+EGFR-TKIs in a small-scale retrospective analysis [39]. However, this conclusion
lacks evident data support considering sample type and design of the study.

4.1.6. Overexpression of AXL

AXL is a member of TAM (TYRO3, AXL, and MER) family, which play important role
in multiple cellular process such as growth, proliferation, apoptosis, and adhesion. There-
fore, AXL overexpression is always an indicator of poor prognosis in tumor [40]. Activation
of AXL Receptor and its ligand GAS6 is a major mechanism of acquired resistance to EGFR-
TKIs therapy [41–43]. Both AXL and EGFR share the same PI3K/AKT and MAPK/ERK
downstream pathway. Therefore, activation of AXL will bypass the inhibitory signal of
EGFR-TKIs and continue to activate these pathways, leading to carcinogenesis. Meanwhile,
overexpression of AXL could also promote Epithelium-Mesenchymal Transition (EMT),
which would assist metastasis [44]. Unfortunately, there are no AXL inhibitors that was
approved by FDA for NSCLC. Preclinical study suggests combination of AXL inhibitor and
erlotinib could induce G2-M cell cycle arrest and enhance apoptosis for NSCLC that was
resistant to EGFR-TKIs [41,44]. Even though the combinatorial utilization of AXL inhibitors
and EGFR-TKIs exhibited its efficacy in vitro and in vivo, there are no clinical data to
suggest the safety and efficacy of such regimen. Therefore, management of AXL-induced
EGFR resistance is still a major challenge.

4.1.7. Downstream BRAFV600E Mutations

BRAFV600E mutations mediated EGFR-TKIs resistance was first reported by Ho et al. in
2017, which was effectively controlled using BRAF and EGFR blockage simultaneously [45].
As is illustrated above, BRAF is located downstream of EGFR signaling cascade and it
is estimated that BRAFV600E occurs in 3% of patients who developed resistance to Os-
imertinib [46]. Up till now, little is known about this mechanism of resistance and no
concensus has been agreed regarding management of these patients. In preclinical models,
concurrent administration of BRAF inhibitor(encorafenib and dabrafenib) and osimertinib
could effectively control resistance, meanwhile, the efficacy of this combination therapy
was also substantiated by several case studies [9,45]. However, toxicity of this combination
should not be overlooked since therapeutic agents targeting BRAF have been associated
with numerous adverse events, serious adverse events which lead to dose reduction have
been reported by several studies [47]. Therefore, the tolerability and potential benefit of
this combination strategy should be carefully evaluated by physicians.

4.1.8. Agnostic-Based Strategies: New Hopes

Recently, the concept of antibody-dependent drugs gained wide research attentions.
Antibody-drug conjugates is a novel approach that might be effective in NSCLC patients
developed resistance to TKIs [31]. Bound to a specific antibody, cytotoxic drug could thereby
be delivered specifically into tumors and exerts its effect while minimizing unpleasant
adverse events.

T-DM1 is an anti-HER2 antibody-drug conjugated trastuzumab emtansine. It is hy-
pothesized that T-DM1 monotherapy could be effective in patients with concurrent EGFR
and HER2 mutations. Preclinical study suggests combination of osimertinib and T-DM1
would effectively reverse off-target EGFR resistance caused by HER2 amplification [48].
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Further research still needs to be done to evaluate effectiveness of these drugs. Overall,
there are no approved therapy for EGFR mutation accompanied by HER2 amplification. A
phase II clinical trial (TRAEMOS, NCT03784599) is now recruiting patients who harbors
HER2 amplification and progressed after osimertinib treatment to evaluate possibility of
osimertinib plus T-DM1 in clinical settings [49]. We believe we will get more information
about how to manage these patients soon.

Patritumab Deruxtecan is an antibody-drug conjugate constituted by a HER3 antibody
and topoisomerase I inhibitor. HER3 is one of the four members of EGFR family and
considered as a compelling target to reverse resistance to EGFR-TKIs [50]. It is reported
to be expressed in more than 83% of EGFRm lung cancers [51]. As molecular alterations
leading to EGFR-TKIs resistance were diverse and targeting specific mutations to reverse
resistance might be impractical in real world setting, therefore, targeting and delivering
cytotoxic agents into tumor cells that expressed a ubiquitous receptor such as HER3 might
provide a novel strategy for the management of TKI resistance for a broader population.
A recent phase I study substantiated the safety and efficacy of Patritumab Deruxtecan
for patients with EGFRm NSCLC that was resistant to previous EGFR-TKIs treatment.
Among 57 patients, ORR was 39%, mDoR was 6.9 m, and mPFS was 8.2 m. The final OS
data was still immature [52]. Previous similar studies suggested for patients receiving
platinum-based salvage therapies after EGFR-TKIs resistance, mPFS was 2.8–3.2 m and
mOS was only 7.5–10.6 m [53]. Even though adverse events of Patritumab Deruxtecan
were observed in all participants and the proportion of ≥Grade 3 treatment related adverse
events was 64%, the toxicity profile of Patritumab deruxtecan was still manageable, these
serious toxicity effects could be successfully mitigated by dose reduction or dose delay in
this clinical trial [52]. Considering this promising improvement in mPFS with acceptable
adverse events, a global phase II trial (NCT04619004) aiming to evaluate safety and efficacy
of Patritumab deruxtecan as a single agent for EGFRm NSCLC patients whose disease
progressed after EGFR-TKIs treatment is ongoing [53].

Generally, antibody drug conjugate is a rapidly evolving area of study and appealing
therapeutic options for a diverse subset of cancer. With a better understanding about the
payload, linker, and the drug internalization process these years, antibody drug conju-
gate has become a “biological missile” target against cancer. Even though they exhibited
promising effects in early phase clinical trials, several limits remain. Compared to conven-
tional small molecules or chemotherapy, ADCs require a more complicated manufacturing
process as well as a sophisticated drug component selection to maximizing their efficacy.
Moreover, due to its relatively large molecular weight, the concentration of drug in tumors
is limited. Study suggested only a small portion of ADCs could reach to the tumor cells.
Therefore, efficacy of the efficient payload should also be considered when designing
novel ADCs [54]. Overall, with a more elaborated molecular subtyping and pathological
classification system of NSCLC, a better comprehension of the mechanisms of actions for
ADCs, and a refinement of manufacturing protocols, we believe they will become powerful
weapons for oncologists in the combat with cancer in the near future.

5. Future Directions

In the past decades, the development of EGFR-TKIs brought tremendous benefits
to NSCLC patients as they could extend PFS and OS while having less adverse effects
compared to traditional chemotherapy and radiotherapy. Their roles as neoadjuvant
therapy also attracts wide attentions. However, obstacles still exist in this field, which
limits its further utilization in clinical settings.

Different generations of EGFR-TKIs not only brought hope for patients, but also pose
challenges to clinicians. How to maximize the efficacy of each type of EGFR-TKIs become a
major issue in daily practices. It has been proved EGFR mutation is a highly heterogenous
group, therefore, it is not sufficient to simply prescribe EGFR-TKIs to patients with EGFR
mutations. The concept of precision oncology requires us to provide the best therapy to
the suitable patients at the right time. Based on this idea, combinatorial therapy based
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on patient mutational status, biomarkers, and anticipated response to each generation
of TKIs therapy is warranted. Our team as well as our collaborators worldwide have
done tremendous work aiming to establish a comprehensive framework for molecular
classification of NSCLC based on multi-omics data, however, there is still a long way to go.

Meanwhile, despite the emergence of osimertinib greatly controlled resistance due
to T790M, C797S mutation was considered as a major mechanism of resistance for third-
generation EGFR-TKIs. Even though some case reports provided experience about the
utilization of brigatinib regarding management of different types of C797S mutations, a
standardized drug regimen needs to be set to guide the clinical practices for these patients.
The good news is various fourth-generation EGFR-TKIs dedicated to C797S mutations, such
as EAI045 and TQB3804, were under development or undergoing clinical trials. However,
an anticipated dilemma for clinicians would be what should we recommend to our patients
harboring C797S mutation, brigatinib based therapy or fourth generation EGFR-TKIs
clinical trial? Moreover, the ever evolving acquired resistance to TKIs also raised public’s
concerns about super-resistant mutations. It would not be a surprise to us if we witnessed
the emergence of another mutation that caused resistance to fourth generation EGFR-TKIs.
Therefore, the priority of our treatment plan is still trying to delay the occurrence of drug
resistance while bringing exact benefit to our patients.

Antibody drug conjugates represent an innovative strategy to overcome resistance
and several clinical trials have demonstrated appealing results and additional research are
ongoing. However, it should be reminded the dosage, schedule, indications, management
of adverse events, drug choice after resistance, and lines of treatment should be carefully
investigated before being widely accepted in clinics.

In conclusion, as NSCLC is a highly heterogenous cancer and resistance is an unavoid-
able demon that hinders survival of our patients, what we can do is to make the best use
of our available drugs to delay the onset of resistance and overcome resistance, assisting
our patients to get more benefits from treatment. With this in minds, how to plan drug
choice for sequential therapy and adjust drug regimen based on patients’ phenotype as
well as tumor microenvironment, managing to shape the evolution of NSCLC rather than
attempting to chase the evolution of NSCLC would the future directions of NSCLC research
as well as goals for clinicians.
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