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Abstract: Nano-engineered medical products first appeared in the last decade. The current research
in this area focuses on developing safe drugs with minimal adverse effects associated with the
pharmacologically active cargo. Transdermal drug delivery, an alternative to oral administration,
offers patient convenience, avoids first-pass hepatic metabolism, provides local targeting, and reduces
effective drug toxicities. Nanomaterials provide alternatives to conventional transdermal drug
delivery including patches, gels, sprays, and lotions, but it is crucial to understand the transport
mechanisms involved. This article reviews the recent research trends in transdermal drug delivery
and emphasizes the mechanisms and nano-formulations currently in vogue.

Keywords: nanomaterials; transdermal drug delivery; transdermal mechanisms

1. Introduction

Targeted medication comprises selective deployment of pharmaceutically active
components at predetermined sites to reduce adverse effects and enhance treatment
efficacy [1–3]; essentially, these methods increase therapeutic indices. Targeted approaches
have been significantly advanced by colloidal carrier forms centered on biocompatible
and biodegradable polymerics, including nanoparticles (NPs) [4]. According to one def-
inition [5,6], nanoparticles are small solid colloidal substances of 1–1000 nm diameter,
made from polymers, lipids, or metals. Active particles in NP may be dissolved, encapsu-
lated, entrapped, or absorbed [7]. Preferred NPs for nanomedicine are loosely regarded as
less than 200 nm [8]. Particle size plays a crucial role on drug distribution, release rates,
targeting abilities, and toxicities [9]. NPs can be classified according to their properties,
shapes, sizes [10], or into nanospheres (matrix structure for dispersing functional biological
materials) and nanocapsules (membrane structure using an oil or aqueous core to contain
drugs) [11].

NPs modify permeability [12], half-life [13], cytotoxicity [14,15], pharmacokinetics
of medications, and diagnostic agents [16]. They can be nanosensors [17,18], drug carri-
ers [19,20], and diagnostic agents [21,22]. Research has emphasized improving absorption
through the skin to maintain homeostasis [23–25] using micelles [26], liposomes [27], or
polymers [28]. NPs can infiltrate the skin via intracellular, intercellular, or transcellular
pathways [29–31] where penetration depths are determined by particle size [32,33] initiated
by hair movement within the follicle; 600 nm particle size may be optimal for some NPs [34];
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however, permeation will depend on NP composition. Permeability images for 30 nm
cadmium selenide/zinc sulfide (CS/ZnSO4) NPs through mouse skin after ultraviolet light
(UV)-B radiation-induced epidermal disturbance [35] revealed that these NPs in sebaceous
glands and in the skin are aggregated. NPs in this study tended to be localized in the
epidermis interstitium [35–37].

2. Important NP Physical Compositions
2.1. Micellular

Micelles are amphiphilic spherical structures with hydrophobic and hydrophilic re-
gions [38] varying from 5 to 100 nm [39]. The hydrophilic region of micelle allows intra-
venous administration, whereas hydrophobic regions tend to be for cargo storage [40].
These micellar NPs can deliver macromolecules as they offer a sustained and controlled
release of biomolecules, physicochemical stability of the embedded molecules, enhanced
drug pharmacokinetics, and drug bioavailability [41]. Micellar NPs promote small NPs,
good entrapment efficiency, and are inexpensive relative to other nanocarriers (liposomes
and niosomes) [42].

Micellar NP formulations have revolutionized transdermal therapeutics [43], enabling
high concentrations of drugs to permeate the skin, forming a drug depot in the epider-
mis [44]. This route of administration minimizes gastrointestinal contact and hepatocyte’s
first-pass effects, and it is more cosmetically tolerable to patients [42]. Physiochemical
characteristics of micellar NPs formulations can be modified for various routes of adminis-
tration [45], e.g., by changing miscibilities to optimize transdermal penetration, combining
a mucoadhesive for vaginal administration, changing the particulate size, or adjusting
the zeta potential versus in suspension [42,46]. The following are illustrative examples of
micellular formulations.

Polymeric micelles from hyaluronic acid (HA) of 200 nm did not stay on the epidermis
but permeates it. Optical microscopy images revealed HA was in keratinocytes and
fibroblasts and micelle disruption begins at approximately 10 mm deep in the skin [47].

Vinpocetine (VPC)-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS)
and alpha lipoic acid (ALA) (VPC-TPGS-ALA) film was used for transdermal drug de-
livery [48]. This film enhanced VNP penetrability in the epidermis compared to raw
VNP-loaded transdermal film; optimized TPGS-ALA gave improved penetration in the
epidermis after 0.5, 2.0, and 4.0 h compared to the raw VNP-loaded transdermal film [48].

Azole antifungal agents-loaded micellar NPs increased in skin which led to deposition
in hair follicles as revealed by confocal microscopy. Skin absorption using methoxy-
poly(ethylene glycol)-di-hexyl-substituted lactide (MPEG-dihexPLA) micelles can enhance
epidermal drug bioavailability, which might result in increased efficacy of in vivo treat-
ment [49].

2.2. Magnetic NPs

Super paramagnet magnets (Fe3O4) and magnetite (Fe2O3G), commonly used in medi-
cal applications [50], have particle sizes of 3–30 nm and size distributions of ~10–20% and
they dissolve in water [51,52]. Iron oxide (Fe3O4) magnetic NPs of a small size are favored
for biomedical and biological applications [53].

Magnetic NPs used in pharmaceutical applications have small sizes [54], good bio-
compatibilities [55,56], are easy to process [57], and can be endowed with unusual charac-
teristics [58]. The number of research papers on magnetic NPs has dramatically increased
over the last two decades [59–64]. Their magnetostrictive responses enable biomolecules to
be magnetically detected, allowing new exciting perspectives on bio-separation [65,66], bio-
detection [67,68], and targeted drug administration [69]. Furthermore, external magnetic
fields can heat them, providing treatment options via magnetic fluid hyperthermia [70].

In one illustrative study [71], Fe3O4 NPs were used as a core coating, followed by cre-
ating laser-sensitized magnetic nanoparticles (LMNs) loaded bacteria cellulose membrane
(LMN/BC). Furthermore, the results reveal that laser-activatable and magnetostrictive
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LMNs synergistically impact breast cancer inhibition, making it an alternative treatment
option for superficial cancer [71].

A recent report described how cobalt ferrite magnetic (CoFe2O4) NP could be used
to remove azithromycin, an antibiotic for treating infectious diseases such as COVID-19,
from hospital effluents via UV illumination [72]. CoFe2O4 NPs are attracted to magnetic
fields and generate heat when they move; this magnetic fluid hyperthermia is central to
these noninvasive cancer treatments [73]. Similarly, nickel (Ni) NP have a high surface
area relative to their size, allowing for a large capacity of drugs to be carried in the drug
delivery system, imaging, and cancer treatment [74].

2.3. Hollow NPs

Hollow NPs with penetrable and porous shells have unique properties relative to
solid ones: a high surface area, high loading capacity [75], less expensive [76], and low
density [77]. Research shows that hollow NPs with a high surface area could effectively
accommodate strain throughout a chemical reaction while promoting complete electrolyte
penetration [78]. The following are illustrative studies featuring hollow NPs.

Semiconductor hollow copper sulfide nanoparticles (HCuSNPs) are synthetic photo-
absorbers [79] with a diameter ranging from 3 to 11 nm [80]. Furthermore, the photo-
thermal [76,81] features of the HCuSNPs enable them to capture near-infrared light and
reach temperatures of around 40 ◦C before partially damaging the stratum corneum and
allowing the drug to deliver safely [76]. Thus, HCuSNPs have been used to deliver chlorine6
(Ce6, a photosensitizer) and doxorubicin (DOX) to the 4T1 mouse mammary cells [82]. The
thermo-responsive degradation of HCuSNPs can trap drugs for controlled release via light-
induced thermal stimuli. This resulted in the minimal clearance of drugs non-specifically
in the circulation, thereby increasing drug bioavailability in tumor tissues by improving
permeability and retention effects [82].

Recently, Zan et al., 2022, incorporated copper sulfide nanodots (CuSND) into the in-
travenous thermo-responsive hydrogel to elicit alleviating remodeling via transdermal mild
photo-thermal therapy on the transdermal white adipose depot. Meanwhile, mirabegron
was also co-administered with CuSND hydrogels, resulting in a substantial therapeutic
synergistic effect. The result demonstrated that in vivo CuSND hydrogel treated with
high-fat diet mice were found to have lower triglyceride serum levels, insulin, cholesterol,
and glucose, and enhanced insulin sensitivity compared to the untreated group [83].

Another study shows reactive oxygen species (ROS)-responsive hollow mesoporous
silica nanoparticles (HMSNs) loaded with Glabridin were investigated by [84] as a nanocom-
posite for transdermal drug delivery and anti-pigmentation. The results demonstrated that
HMSN-CD/1-adamantanemethylamine tagged polyarginine peptides (Ada-R8) (HMSN-
CD/Ada-R8) loaded with Glabridin improved the broadening of Glabridin usage and
achieved a great photoprotection ability. The NPs were highly stable in aqueous solu-
tions and demonstrated good biocompatibility while releasing Glabridin in a controlled
ROS-responsive way [84].

In previous study, (Wang et al., 2021) has produced glucose-responsive polymer
grafted hollow mesoporous silica (HMSNs-PAPBA) NPs for in vivo culture for diabetes
Sprague Dawley (SD) rats. The results show that drug diffusion was effectively inhibited
and fast released under typical hyperglycemia conditions in an average blood glucose
level [85].

Likewise, Zhang et al., 2018, developed the polydopamine/lauric-acid-coated (PDA/LA-
coated) hollow mesoporous SiO2 for transdermal delivery. The result showed that the
PDA/LA-coated hollow mesoporous SiO2 exhibits a good photothermal-response, and is
non-toxic in in vivo type II diabetes SD rats [86].

2.4. Hydrogel NPs

Hydrogels have a high water absorbing capacity [87,88] which can be integrated as
drug carriers for transdermal drug delivery [88] due to their adhesion ability to the skin
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surface [89]. The porosity of the semisolid morphology of a hydrogel matrix allows a higher
rate of drug loading and release [90,91].

Hydrogels can be biocompatible and biodegradable, particularly if made from natural
materials. They are often used as biopolymers in transdermal drug delivery due to their
hydrophilic properties and sensitivity to external stimuli [90,92]. Transdermal drug delivery
using hydrogels has unique features including prolonged release behavior [89,93,94]], low
toxicity [95], and liver damage prevention [89]. Table 1 summarizes the recent studies of
hydrogel in transdermal drug delivery.

Table 1. The applications of hydrogel in transdermal drug delivery.

Hydrogel Application Results References

Polyethylene glycol
diacrylamide

(PEG-DA) hybrid
hydrogel

Mouse embryonic
fibroblast cell lines

(NIH 3T3)

Good mechanical property,
excellent swelling capacity

biocompatibility, and non-toxic
to skin

[96]

Gelatin-
polyacrylamide

(Gel-PAAm) hydrogel
Human skin

Non-toxic to human cells,
highly stretchable, and good

swelling properties
[89]

Polyacrylamide-
grafted-chondroitin
sulfate (PAAm-g-CS)

hydrogel

Rat abdominal skin

No inflammatory cell
infiltration, small degradation

of skin, and decreased
pore size

[97]

Chitosan-azelaic acid
(CS-AZ) hydrogel L929 mouse fibroblast

Excellent swelling, water vapor
permeability, high porosity,

and low cytotoxicity
[98]

Carboxymethyl
chitosan-silk fibroin
peptide/oxidized

pullulan
(CMCS-SFP/OPL)

hydrogel

Newborn
porcine Tskin

Good swelling, water retention
properties, skin permeability,

water absorption ability,
excellent mechanical

properties, and
biocompatibility

[99]

Carboxymethyl
chitosan-grafted-2

hydroxyethyl acrylate
(CmCHT-g-pHEA)

hydrogel

Micropig dorsal skin

Good pH sensitivity, pores size
decreased when ratio of
grafting agent increased,

improved skin penetration,
and non-toxic to skin

[100]

2.5. Poloxamer Hydrogels

Poloxamers hydrogels are thermosensitive polymers commonly employed in situ [101].
Poloxamer 407 (P407) is widely used in transdermal applications due to its good absorbing
ability [102], prolonged drug release [101], low toxicity [103], and high biocompatibil-
ity [104]. P407 hydrogels have been studied as potential nanocarriers in drug delivery
systems owing to their non-irritating action on cellular membranes and sustained release
of drugs with minimal side effects [105,106].

According to transdermal research, a P407 hydrogel matrix loaded with carboxymethyl
cellulose sodium (CMCs) has been developed to investigate the transdermal permeability
in porcine ear skin [107]. As observed in the study, CMCs improved the porosity of a P407
hydrogel structure, and the developed P407/CMCs hydrogel enhanced the overall drug
penetrability into porcine ear skin without using chemical effectors [107]. P407/CMCs
hydrogels have also been developed to treat atopic dermatitis (AD) and the results showed
that the hydrogel exhibited favorable percutaneous [108]. The FESEM images showed
that the porosity of the P407/CMCs hydrogel was increased due to the presence of CMCs,
which consequently facilitated the drug release across the skin, as shown in Figure 1 [107].
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Figure 1. FESEM images of P407/CMCs hydrogel across the skin (a) blank hydrogel (PC200),
(b) 2% P407/CMC loaded hydrogel, (c) 4% P407/CMC loaded hydrogel (PC204) (Reprinted from [107]
Wang, W. Wat, E. Hui, P.C.L. Chan, B. Ng, F.S.F. Kan, C.W. Wang, X. Hu, H. Wong, E.C.W. Lau, C.B.S.
Leung, P.C. Dual-functional transdermal drug delivery system with controllable drug loading based
on thermosensitive poloxamer hydrogel for atopic dermatitis treatment. Images reproduced with per-
mission from Scientific Report (2016), https://creativecommons.org/licenses/by/4.0/ (accessed on
16 February 2023)).

2.6. Acrylic Acid Copolymer Hydrogels

Furthermore, VACPH hydrogel was produced by copolymerizing acrylic acid (AA),
vinyl benzyl trimethylammonium chloride (VBTMACl), polyvinylpyrrolidone (PVP), and
choline ionic liquid (ChMACl) [109]. The strong polarization of ammonium cations in
VBTMACl means microwaves enhance their thermal conversion capabilities, resulting in
the heat killing of S. aureus and methicillin-resistant Staphylococcus aureus (MRSA) [109].
In another application, fluconazole and functionalized gold nanorods were conjugated
and incorporated into a P407 hydrogel to produce a nano complex structure for non-toxic
transdermal delivery to human dermal fibroblasts CCD-1064Sk cells [110].

Polyacrylamide (PAAm)-grafted-pectin (PCT) (PAAm-g-PCT) hydrogel was produced
by free radical polymerization and alkaline hydrolysis techniques as rate-controlling mem-
branes (RCMs) in an electro-sensitive transdermal drug delivery system [111]. The result
reveal that drug permeability reduced with an increase in glutaraldehyde concentration
and drugs in electro-sensitive transdermal drug delivery systems increased with an applied
electric stimuli. The same group produced a polyacrylamide–graft–pullulan (PAAm-g-
PLN) hydrogel and showed that drug permeation was minimal when no electric stimulus
was applied but diffusion rates increased with electric stimulation [112].

3. Poly(lactide-co-glycolide) (PLGA) NPs

PLGA NPs [113,114] are particularly important due to their biodegradability [115],
biocompatibility [116], lack of toxicity [117], and capacity to protect biomolecules from
degradation [114]. PLGA NP sizes vary from 100 to 5000 nm [118] and the average intra-
cellular delivery range is from 107.7 nm to 245.7 nm [119]. They hydrolyze in the body to
produce innocuous smaller synthetic polymeric materials comprising lactic and glycolic
acids [117,120], Figure 2.
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PLGA NPs are attractive for drug delivery and tissue engineering. Size of PLGA NPs
can be tailored to suit particular drug delivery applications [121]. Smaller nanoparticles
(<100 nm) deliver drugs to cells or tissues [122], while larger nanoparticles (>500 nm)
deliver drugs to targeted organs or the entire body [123]. According to one reference [124],
nanoprecipitation of PLGA NPs alters their sizes, causing increased intracellular delivery.

PLGA NPs can be functionalized using agents targeting moieties [125–127] or polyethy-
lene glycol (PEG) [128–130] to improve stabilities. According to [131], PEGylated PLGA
NPs and folate-functionalized PLGA NPs have been used to deliver chemotherapy drugs
to targeted cancer cells. Moreover, the PLGA NPs are biodegradable in the body [132]; this
is useful for sustained release, eg to treat glaucoma [133,134] or osteoarthritis [135–137].

The skin permeability of rat abdomen skin via indomethacin (IM)-loaded PGLA NPs
was studied using antisolvent diffusion. It revealed that skin penetration indomethacin
of 50 nm and 100 nm PLGA NPs with iontophoresis was substantially higher after 2 h
administration. The use of iontophoresis resulted in a greater penetration of 50 nm PLGA
nanoparticles into rat skin as compared to 100 nm PLGA nanoparticles [138]. The same
group of researchers developed 17 β-estradiol (E2)-loaded PGLA NPs. The results show
higher density skin permeability in E2-loaded PGLA NPs than polyvinyl alcohol (PVA)-
coated NPs; it also enhanced bone mineral density of the cancellous bone in an osteoporosis
animal model [139]. Both studies conclude that transdermal delivery of PLGA NPs com-
bined with IP will deliver the drug deep into the rat hair follicles [140]. Table 2 summarizes
the recent studies of PGLA in transdermal drug delivery.

3.1. Ethylene-Vinyl Acetate Flims

Solvent casting has been used to incorporate selegiline hydrochloride (SGN)-loaded
PLGA NPs in ethylene-vinyl acetate (EVA) transdermal film. Field emission scanning
electron microscopy (FE-SEM) analyses showed these NPs were smooth spherical surfaces.
In rat’s brain tissues, a small dose of reserpine initiates symptoms of Parkinson’s disease by
increasing monoamine oxidase B (MAO-B) level, and decreasing dopamine [141].

3.2. Poly(lactic-co-glycolic acid) Coating

The same group of researchers created PLGA-coated rasagiline mesylate-nanoparticles
(RM-NPs) and loaded gellan gum in the transdermal film via solvent evaporation and a
solvent casting method. They reported that gellan gum with 1.127 g transdermal hydrogel
aids in non-chronic drug self-administration for >72 h without skin inflammation [142].

Table 2. Recent study of PLGA in transdermal drug delivery.

Drug Delivery System Method Application Result References

PGLA/collagen scaffold Electrospinning Human dermal fibroblast
and human keratinocyte

High mechanical strength,
good surface adhesion on both

cell lines
[143]

Poly(dl-lactide-co-glycolide)-
poly(ethylene

glycol)-poly(dl-lactide-co-
glycolide) copolymers

(PLGA-PEG-PLGA) NPs

Antisolvent
diffusion method Rat skin

High thermodynamic activity,
skin permeability and low

irritation in
PLGA-PEG-PLGA NPs

[144]

Gentamicin loaded PLGA
(GM-PLGA) NPs

Solvent evaporation
method Rabbit

No sign of inflammation and
non-toxic to all groups

of rabbit
[145]

Hyaluronate-PGLA (HA-PGLA)
NPs

Solvent evaporation
method Rat skin

No cytotoxicity,
biocompatibility in cell

viability, and high efficiency of
transdermal delivery

[146]

Dictamnine-PGLA-nanocarrier
(Dic-PGLA-NC) Ultrasonication Mouse dermatitis model

Dic-PGLA-NC can penetrate
the dermal layer effectively

and achieve sustained
drug release

[147]
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4. Chitosan NPs

Chitosan is a natural polymer that emerged as one of the useful nanocarriers for
various therapeutic agents in transdermal drug delivery. Functional properties such as
biocompatibility and biodegradability [148] have facilitated the development of chitosan-
based nanocarriers for medicinal applications [149,150]. Slow polymer erosion in chitosan
allows effective drug encapsulation [151] for sustained and controlled drug release with low
toxicity. For example, the functional properties (amine and hydroxyl functional groups) of
chitosan can be altered by adding synthetic materials to fabricate microneedles for transder-
mal applications as it does not create an unwanted immune response in the body. Therefore,
chitosan is notable for its role as a nanocarrier of hydrophilic therapeutic drugs [152].

4.1. Chitosan-Sodium Alginate

In research carried out by [153], chitosan-sodium alginate (CHI-SA) nanogel was
synthesized to perform the transdermal delivery of the drug pirfenidone to treat pulmonary
fibrosis. According to their observation, the loading capacity of the nanogel was ≈50% and
the encapsulation efficiency was as high. The permeation of the drug pirfenidone across
the skin has been remarkably enhanced using CHI-SA nanoparticles in an ex vivo study. In
any case, the in vitro drug release profile has demonstrated the burst release of the drug
pirfenidone in the first 5–7 h (≈12%) followed by sustained drug release behavior [153].

4.2. Chitosan-Chondroitin

An antimalarial agent called artemether has been encapsulated into chitosan-chondroitin
sulfate nanoparticles and subsequently loaded into transdermal patches to treat acute
malaria, as reported by [154]. The positively charged chitosan were interacting with nega-
tively charged chondroitin sulfate through the ionic gelation method to form nanoparticles
that offer less toxicity, high stability, encapsulation efficiency, and loading capacity for
transdermal delivery. The ex vivo study showed that using olive oil increased the drug
permeability of the transdermal patch as a permeation enhancer. Moreover, a high cumula-
tive drug release at a pH of 7.4 in contrast to a slow drug release rate at a pH of 5.5 was
reported in their in vitro drug release study.

4.3. Chitosan-Nanoelmusion Films

Nanoemulsions have proven to enhance the transport of drug molecules in trans-
dermal analgesic patch systems. For instance, da Silva et al., 2020, have incorporated
nanoemulsions into chitosan films to carry methyl salicylate, which displayed a homoge-
nous formulation with no phase separation. The chitosan-nanoemulsions films were
reported to have a higher loading capacity of methyl salicylate and moisture levela as
compared to physical mixture films [155]. In another study, chitosan (CS) and polyvinyl
alcohol (PVA) was combined and crosslinked with vanillin (VA) to form a matrix transder-
mal system (Figure 3) to deliver the enrofloxacin drug, as reported by [156]. From their
research findings, CS-PVA films can be produced by a simple solvent-casting method and
the CS-PVA-VA nanocomposite has demonstrated sustained enrofloxacin release in the
in vitro drug release profiles. The released kinetic study has confirmed that by altering the
vanillin concentration, the diffusion mechanism and drug release rate can be controlled. As
reported, the drug loading capacity was successfully increased by crosslinking 3% vanillin
with the CS-PVA films. The controlled release of the enrofloxacin drug was achieved due to
the lower swelling ratio of the 3% vanillin crosslinked films which also reduced the initial
burst release [156].
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4.4. Chitosan-Coated Lipid Carriers

In previous research [157], chitosan-coated nano lipid carriers (Ch-NLC) were used in
the transdermal delivery of tetrahydrocurcumin (THC) to treat triple-negative breast cancer
(MD-MBA-231). THC-Ch-NLC is proven to demonstrate high skin permeation through
an artificial membrane and enhanced cellular uptake with significant cytotoxicity to the
MD-MBA-231 breast cancer cells. The THC-Ch-NLC also showed the sustained release of
the drug through an in vitro release study which was confirmed by the Korsmeyer–Peppas
model [157]. In another interesting study carried out by [158], nanoparticles made from
chitosan whisker (CSWK) with oligo(lactic acid) (OLA) were used to transport lidocaine in
the reticular dermis. They claimed that the CSWK-OLA nanocarriers offered high drug
permeability into the skin without penetration enhancers and active strategies such as
microwave technology and iontophoresis. It is due to the nano size of CSWL-OLA particles
with amphiphilic properties, allowing the lidocaine-loaded nanocarriers to penetrate deep
into the reticular dermis [158].

Table 3 below summarizes the incorporation of chitosan with different nanocomposites
in various transdermal delivery systems.

Table 3. The development of various nanoconjugates from chitosan in the past decade.

Nanocomposite Transdermal Drug Findings/Results References

Polyelectrolyte complexes (PEC)
with carboxymethylagarose
(CMA) and chitosan (CS) as

pH-responsive carriers

Diclofenac sodium (DS)

Immortalized human keratinocyte (HaCat)
cells showed approximately 100% survival

with 67% cumulative drug release after 72 h
at 37 ◦C and pH 6.0 through the Fickian

diffusion mechanism.

[159]

Chitosan microneedle patches
(85% deacetylated, molecular

weight: 1526.464 g/mol)
Meloxicam

A higher concentration of acetic acid
displayed greater resistance to compressive

force as temperature increased and the
penetration study indicated sustained
insertion of microneedles in cow’s ear

cadaver skin.

[160]

Chitosan/hyaluronan
transdermal film Thiocolchicoside

Easy and reliable administration with high
efficiency in drug release; flexible dosage,

minimal drug dosage/frequency to reduce
side effects.

[161]
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Table 3. Cont.

Nanocomposite Transdermal Drug Findings/Results References

Chitosan and phytagel (gellan
gum) transdermal hydrogel Ibuprofen

Chitosan improved the drug permeability to
skin and increased the transdermal release

rate of ibuprofen by a factor of 4.
[162]

Chitosan/phospholipids
nanofibers

Curcumin, diclofenac, and
vitamin B12

Cytotoxicity studies confirmed the good
biocompatibility of the nanofibers, the drug

release rate relied eminently on the
drug solubility.

[163]

Carboxymethyl
chitosan-grafted-2 hydroxyethyl

acrylate (CmCHT-g-pHEA)
hydrogel

Micropig dorsal skin

Good pH sensitivity, pores size decreased
when ratio of grafting agent increased,

improved skin penetration, and non-toxic
to skin

[100]

Carboxymethyl
chitosan/oxidized pullulan

hydrogel-based microneedles
Salvia miltiorrhiza extract

Good mechanical strength, high water
absorbing capacity, good skin permeability,

and rapid drug release into the targeted
porcine skin.

[99]

N-methacryloyl chitosan
(N-MAC) microgels

Bovine serum albumin
(BSA)

High cell viability in N- MAC hydrogel.
Rapid transdermal curing hydrogels (in vivo)
for localized and sustained protein delivery.

[164]

N,N,N-trimethyl chitosan
(TMC), polyethylene

glycolate hyaluronic acid
(PEG-HA), and

polysaccharide-based
nano-conjugate of hyaluronic
acid, chitosan oligosaccharide

and alanine
[HA-Ala-Chito(oligo)]

Chinese medicine
CortexMoutan (CM)

The ex vivo transdermal release results
showed significant drug permeability into

the skin. The MTT assay results showed high
cell viability of human HaCaT keratinocytes,

suggesting no cytotoxicity on skin cells.

[165]

Chitosan-coated
poly(dl-lactide-co-glycolide)

(PLGA) nanoparticles

Donepezil hydrochloride
(DP)

Chitosan-coated PLGA nanoparticles
delivered drugs to the deep hair follicles
more efficiently through iontophoretic

transdermal delivery, as compared to the
bare PLGA nanoparticles.

[166]

Polyvinyl alcohol-Chitosan
(PVA/CS) bioconjugate Colchicine

Significant colchicine deposition in the skin
with remarkable cytotoxicity against a

melanoma cell line.
[167]

Chitosan-coated nanoemulsion
(NE2-CS), uncoated

nanoemulsion (NE1), and
quaternized chitosan (QCS)

Zingiber cassumunar Roxb
(Plai extract)

QCS improved the stability and transdermal
properties of the Plai extract, as compared to
NE1 and NE2-CS. NE2-QCS showed higher
cytotoxicity to the breast (BT474) and oral
cavity (KB) cancer cell lines than the Plai

extract alone and had 1.5-fold higher
permeability and cumulative release of the

Plai extract than NE1.

[168]

Chitosan sponges
Hormonal drug

17β-estradiol (E2) with a
purity of 99%

High drug loading was reported.
Uniform distribution of E2 crystallites in the

chitosan sponge volume was observed,
improving the bioavailability of the drug.

[169]

PLGA chitosan transdermal
Pluronic nanogel Temozolomide

The in vitro drug release showed 85%
transdermal release at a mildly acidic pH
mimicking the skin microenvironment. Ex
vivo studies displayed a penetration rate

with 80% Temozolomide uptake in porcine
epidermal tissue.

[170]
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Table 3. Cont.

Nanocomposite Transdermal Drug Findings/Results References

Carboxymethyl
chitosan/2-hydroxyethyl

acrylate hydrogel
Nobiletin

Mechanism of the nobiletin from the
hydrogel was confirmed to be Fickian

diffusion. In vitro skin permeation
experiments showed that the hydrogel

improved the transdermal delivery
of nobiletin.

[100]

ZnO nanorods with chitosan
hydrogels crosslinked with

azelaic acid
Acetylsalicylic acid

The controlled drug release behaviors of
nanocomposites according to the first-order

kinetic model and was confirmed to be
non-toxic to L929 mouse fibroblasts by

XTT assay.

[98]

Chitosan nanoparticles
mucoadhesive gel Propranolol hydrochloride

High encapsulation efficiency and drug
loading improved systemic bioavailability

and therapeutic efficacy of propranolol-HCl
in a transdermal delivery system.

Thixotropic behavior with prolonged drug
release properties was observed.

[171]

5. Carbon Nanotubes CNTs

These have gained enormous research attention in the past decades for drug delivery
applications, but there have been only applications in transdermal drug delivery. This
may be due to poor skin penetration ability without the application of mechanical stress.
Therefore, functionalized CNTs (f-CNTs) have been developed for greater biocompatibility
and enhanced transdermal properties.

5.1. Functionalized Multi-Walled Carbon Nanotubes

The f-MWCNTs-KP-ES nanocomposite was reported high in drug loading rate, stabil-
ity, and encapsulation efficiency as compared to CNTs or ES alone. Ex vivo results showed
a fast skin penetration rate. Anyway, the f-MWCNTs-KP-ES nanocarriers had successfully
prolonged the release of ketoprofen in vivo and caused no adverse effect on the observed
rat skin [172].

5.2. Controllable CNT Membranes

A controllable CNT membrane device has been created for the transdermal delivery
of nicotine in guinea pigs [173,174]. This CNT membrane device had successfully delivered
nicotine fluxes when switched ON and OFF, respectively, according to an in vitro flow-
cell test; meanwhile, nicotine flux has been detected through in vivo microdialysis with a
membrane implanted in the guinea pig’s skin. Nevertheless, the CNT membrane has low
flexibility and tends to flatten the skin contact area which requires applying a small amount
of hydroxyethyl cellulose gel on the skin surface underneath the membrane device [173,174].

5.3. “Bucky Paper”

Carbon nanotube film, also known as “buckypaper”, has been proposed for use in
actuating, structural, and filtration systems, owing to their distinct and robust mechanical
properties [175]. Bucky papers [176] assembled into functionalized single-walled CNTs
(f-SWCNTs) and multi-walled CNTs (f-MWCNTs) in the transdermal delivery of four model
drugs namely clonidine hydrochloride (CHC), selegiline hydrochloride (SHC), flurbiprofen
(FB), and ketorolac tromethamine (KT). According to the in vitro transdermal test carried
out in the study, using electrical bias can control the drug release rate and direction,
where polarities rely on the charge of the drug. CNTs–bucky papers loaded with drugs
demonstrated passive drug release behaviors which are highly dependent on the types of
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drugs used and the electromodulation was successfully applied to accelerate and decelerate
the drug release rate [176].

5.4. CNT Gold NPs

Another similar study using electro-permeabilization was reported by [177], where
CNT was incorporated with gold nanoparticles (GNP) into a transdermal patch matrix of
polyvinyl alcohol/poly(dimethyl siloxane)-g-polyacrylate to deliver the drug diclofenac
sodium (DS). The results showed a significant transdermal effect from the 1.5%-GNP-CNT
patch at an applied bias of 10 V with no initial burst release. The 1.5%-GNP-CNT patch had
the highest drug encapsulation efficiency, as compared to the other patches. Overloading of
GNP-CNT will decrease the drug encapsulation efficiency remarkably due to the particle’s
agglomeration. The cell viability assay on HaCaT cell lines showed no cytotoxicity to the
cells, suggesting good biocompatibility when applied to human skin [177].

5.5. CNT Hydrogel Hybrid

Another group of researchers suggested embedding double-walled carbon nanotubes
(DWCNTs) into hydrogel for potential transdermal drug delivery applications through
electro-permeabilization [178]. In their study, hydrogel nanocomposites combining agarose
(AG) and DWCNTs were prepared at different concentrations (DWCNTs-AG) and an
agarose hydrogel without DWCNTs was used as the control (CTRL-AG). Due to the higher
concentrations of DWCNTs in the hydrogels that shorten the electron jumping distance
across the applied electric field, their results show the DWCNTs-AG nanocomposite had
higher conductivity across the applied electric field as compared to the CTRL-AG nanocom-
posite, having the potential to increase skin permeability for transdermal delivery. Nev-
ertheless, there was no show of in vitro and in vivo tests in the same study to verify skin
permeability results [178].

6. Nanocellulose NPs

Nanocellulose (NC) is a cellulosic polysaccharide [179] widely used in antimicrobial
applications in various industries. This material can be formulated into drug carriers [180]
for transdermal drug delivery [181], and wound dressings. It has a large surface area [182],
but remains light-weighted, biodegradable [183], biocompatible [182,184], and has a low
production cost [185]. NC can combine with other biopolymers such as chitosan to enhance
the structural properties of the composite structure due to its high tensile strength [186,187].

NC transdermal drug delivery is favored because it provides pain-free application [188–190],
high water permeation [191], prolonged response [192,193], and therapeutic effectiveness
in a low amount of dosages [194,195].

6.1. Bacteria Nanocellulose

Bacterial nanocellulose (BNC) is a natural biomaterial [196] with unique characteristics,
including low toxicity [197], biocompatibility [198], high purity [199], and a nano-porous
structure. BNC-based products have been approved by the Food and Drug Administration
(FDA) and Conformité Européenne (CE) for biomedical applications [200]. Numerous
studies found that BNC membranes can be effectively loaded with diverse biological
molecules with varying permeability and hydrophilicity [201]. Moreover, BNC membranes
have previously been combined with drugs and bioactive compounds, including lido-
caine [202], ibuprofen [203], and amoxicillin [204], or developed as ionic liquids [205,206]
for transdermal drug delivery.

The recent work proposed by [207] was to develop patches using hyaluronic acid (HA),
microneedles (MNs), and bacterial nanocellulose (BC) (HA-BC MNs). HA was utilized as a
biomacromolecule with moisturizing, regenerative, and hydrating properties, while BC
was used to protect the inclusion of another bioactive molecule such as rutin to illustrate
the system’s efficacy. The HA-BC MNs patches exhibit appropriate morphology, mechan-
ical resistance, and biocompatibility. The in vivo patches applied on human volunteers
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show tolerability as a dermo-cosmetic system and open up new opportunities for the
incorporation of different active ingredients to broaden their application [207].

Another study (Abba et al., 2019) produced a crocin-BNC membrane for transdermal
drug delivery. The swelling analyses and resonance peaks of FTIR analysis revealed that
BNC had good crocin uptake. The crocin-BNC surface morphology indicated that the
fibers were unchanged, with no fiber damage. The Franz diffusion tests showed that
drug permeability was steady and long-lasting [208]. A nanocomposite film of bacterial
cellulose (BC) modified with dopamine (DPM) and incorporating reduced graphene oxide
(rGO)/silver (Ag) (BC-DOPA/rGO/Ag) NPs was successfully produced by [209] for an-
timicrobial patches. The result demonstrated that Ag NPs in the nanocomposite promote
cell development and migration in NIH 3T3 fibroblast cells and A549 human lung epithelial
cells, resulting in a faster wound-healing process. Another recent research study discovered
that incorporating Fe3O4 NPs coated with DOX on BC could be used in the treatment of
breast cancer because they can permeate through the epidermis under magnetic flux and
laser radioactivity [71]

Recent research investigated the depot stability of BNC membranes loaded with
various APIs such as caffeine, lidocaine, ibuprofen, and diclofenac, and showed all systems
were stable, with no morphological changes or differences in the drug release profile under
optimal storage conditions. Moreover, the caffeine-loaded BNC membrane was selected for
in vivo epidermal studies and the results revealed the APIs-loaded BNC membranes’ good
storage stability [201].

6.2. Cellulose Nanofibers

Cellulose nanofibers (CNFs) provide large areas for drug–CNF interaction and me-
chanical characteristics that improve the dosage from mechanical stability [210]. Moreover,
CNF films have excellent water vapor permeability properties at low humidity [211], which
improves the storage stability of oxygen-sensitive drugs during storage and allows them
to be used effectively as excipients [193,212]. Recent CNF research focuses on producing
environmentally sustainable nanocomposites which do not exhibit any adverse outcomes
associated with the synthetic nanomaterials widely used for reinforcements [213,214].

6.2.1. With Poly(N-isopropyl acrylamide)-Graft-Guar Gum (GG-g-PNIPAAm)

In another study [215], CNF produced from jute fiber was reinforced with a poly(N-
isopropyl acrylamide)–graft–guar gum nanocomposite to test the controlled release of
diltiazem hydrochloride in transdermal drug delivery. Compared to GG-g-PNIPAAm,
the nanocomposite films demonstrated greater thermal resistance and barrier properties.
The nanocomposite film containing 1wt% CNF performed better than other films. The
toxicity test confirmed that the GG-g-PNIPAAm nanocomposite film is non-toxic to rat
skin. Furthermore, the ideal nanocomposite’s in-vitro release study revealed a controlled
diltiazem hydrochloride release capability. As a result, GG-g-PNIPAAm contains 1wt%
CNF nanocomposite that can be used as a transdermal patch due to its outstanding physi-
comechanical, bio-interfacial, as well as permeability properties.

6.2.2. With CNF Transdermal Films

In a previous study, an electrospinning method was used to produce polyurethane/
hydroxypropyl cellulose (PU/HPC) electrospun nanofibers [216]. In vitro studies across
the skin imitating a polymeric membrane demonstrated model drug flux. The MTT as-
say showed the PU/HPC electrospun nanofiber non-toxic to mouse fibroblast cell line
(BALB/3T3). These findings revealed that an PU/HPC electrospun nanofiber could
be used as a transdermal drug delivery system [216]. Recent research isolated CNF
from jute fibers and nano-collagen (NCG) from waste fish scales to form a CNF-NCG
biocomposite by the electrospinning method to test the sustained release of ketorolac
tromethamine (KT), as shown in Figure 4. In vitro drug release results revealed that
the CNF-NCG (1wt%)-loaded polyvinyl alcohol/methylcellulose/polyethylene glycol
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(PVA/MC/PEG) bio-nanocomposite demonstrated an excellent sustained drug release of
ketorolac tromethamine, making it an ideal biocomposite for transdermal drug delivery
systems [217]. Another study (Sarkar et al., 2017) proposed using a CNF/chitosan transder-
mal film to deliver ketorolac tromethamine. According to the release profile, researchers
discovered that CNFs effectively resulted in prolonged drug release. The XRD analysis
revealed the rise in crystallinity with the addition of CNFs in CNF/chitosan transdermal
films [218].
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6.3. Cellulose Nanocrystal

Cellulose nanocrystals (CNCs) are promising due to their remarkable properties such
as biocompatibility [219], non-toxicity [220], and high mechanical strength [221]. It is also
utilized in transdermal preparations to improve clinical outcomes and the possibilities
and potential benefits of developing various management strategies in interdisciplinary
research [222].

6.3.1. With Methylcellulose

In a recent study, CNCs derived from jute fibers were used to develop a non-toxic
bio-nanocomposites transdermal patch formulated with methylcellulose (MC) and chitosan
(CH) via the solvent evaporation method to analyze the sustained drug release of ketorolac
tromethamine [223]. The results showed that adding CNC nanofillers in MC/CH improved
the thermal properties of the bionanocomposite patches. Furthermore, incorporating CNCs
into the MCCH blend improved the permeability, water absorption, mechanical properties,
and sustained drug release ability than the pure matrix. The toxicity assay of the formulated
bio-nanocomposite (MCCH1) revealed that it has a low cytotoxicity and performed good
outcomes for transdermal drug delivery systems [223].

6.3.2. CNC-Hydrogels

The most recent method proposed by [224] used inversion and tilting methods to
produce a crosslinked CNC/donepezil hydrochloride (cCNC/DPZ) hydrogel to evaluate
long-acting drug delivery through subcutaneous injection and reported that the addition
of DPZ to the CNC dispersion caused gel aggregation, and pH control of the CNC/DPZ
hydrogel increased elastic modulus. In any case, the cCNC/DPZ hydrogel showed a longer
half-life, high mean residence time, and lower Cmax values compared to the DPZ and
CNC/DPZ hydrogel in a pharmacokinetic study [224].

https://www.biorender.com/
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6.3.3. Lanoconazole (LCZ)-Loaded CNC

LCZ-loaded CNC grafted with polyphosphoesters (LCZ-loaded CNC-PEs) were pro-
duced by [225] to improve the chronic inflammation efficiency of LCZ on mouse ear skin.
The result revealed a high LCZ efficiency and small mean droplet size in CP-PEs. The
long-lasting local action was assured by the sustained LCZ release and better transdermal
delivery of the LCZ-loaded CP-PEs, probably due to the oil droplets’ rigidity. Furthermore,
a mouse ear model of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation
showed excellent anti-inflammatory efficacy of the LCZ-loaded CP-PEs [225].

7. Ionic Liquids (ILs)

Ionic Liquids (ILs) are organic salts comprised of an organic cation and an organic or
inorganic anion that, when mixed in 1:1 molar ratio (true ionic liquid), give rise to a room-
temperature ionic liquid (RTIL). Ionic liquids can solubilize amphipathic molecules and
increase drug solubility and can favor topical drug delivery. The ionic liquid molecules are
likely to slip through the fatty compounds that make up skin cells, creating small transient
openings through which bioactive molecules (carried by ionic liquid) can permeate.

7.1. Choline Geranic Acid (CAGE)

In particular, choline and geranic acid (CAGE) has been used to enhance the transder-
mal delivery of several small and large molecules including proteins such as bovine serum
albumin (BSA, molecular weight: ≈66 kDa), ovalbumin (OVA, molecular weight: ≈45 kDa)
as well as insulin (INS, molecular weight: 5.8 kDa) [226].

Two major applications of CAGE are biofilm-disruption and enhanced antibiotic deliv-
ery across skin layers. Relatively few papers describe both these applications concomitantly,
but the first was the use of neat ILs as antimicrobial agents and transdermal drug-delivery
agents [227]. In another study, CAGE increased the delivery of cefadroxil, an antibiotic,
by >16-fold into the deep tissue layers of the skin and is able to induce >95% bacterial death
after a 2 h treatment. Further research on CAGE revealed that it exhibits broad-spectrum
antimicrobial activity against several drug-resistant bacteria, fungi, and viruses including
clinical isolates of Mycobacterium tuberculosis, Staphylococcus aureus, and Candida albicans
and laboratory strains of Herpes Simplex Virus. CAGE affords negligible local or systemic
toxicity, and an approximately 180–14,000-fold improved efficacy/toxicity ratio over the
currently used antiseptic agents in human keratinocytes and mice studies. CAGE penetrates
deep into the dermis and treats pathogens located in deep skin layers. Thus, CAGE have
been used in vivo to treat Propionibacterium acne. Overall, these studies demonstrate the
promise of CAGE as transformative platforms for antiseptic agents used prophylactically
as well as therapeutically [228].

Low percentage-loaded CAGE-IL (viz. 2.0%, w/w) are effective for facilitating the
passage of curcumin to transiently disrupt the skin barrier [229]. It emerged that the anion–
cation ratio is fundamental in the design of suitable ionic liquids. This parameter can
significantly alter their physical properties and interactions with biological tissues. Trans-
port enhancement is also composition-dependent, since when different ratios of CAGE:
1:1, 1:2, 1:4, and 2:1 components exhibited variable dermal insulin delivery [230]. Similarly,
choline oleate ionic liquid-based CAGE-promoted transdermal insulin permeation depends
on the choline geranate rations, with 1:2 being the best found (better efficacy with less cyto-
and geno-toxicity [231].

7.2. Surface Active Ionic Liquid (SAIL)

Besides that, IL has been used in formulations of nano-drug delivery system. Re-
searchers from Japan developed ionic liquid (IL)-in-oil microemulsion formulations (MEFs)
for transdermal insulin delivery using choline-fatty acids ([Chl][FAs])-comprising three
different FAs (C18:0, C18:1, and C18:2) for biocompatibility). The MEFs were developed
using [Chl][FAs] as surfactants, sorbitan monolaurate (Span-20) as a cosurfactant, choline
propionate IL as an internal polar phase, and isopropyl myristate as a continuous oil phase.
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MEFs significantly enhanced the transdermal permeation of insulin via the intercellular
route by compromising the tight lamellar structure of SC lipids through a fluidity-enhancing
mechanism. The in vivo transdermal administration of low insulin doses (50 IU/kg) to
diabetic mice showed that MEFs reduced blood glucose levels (BGLs) significantly com-
pared with a commercial surfactant-based formulation by increasing the bioavailability of
insulin in systemic circulation and sustained the insulin level for a much longer period
(half-life > 24 h) than subcutaneous injection (half-life 1.32 h) [232].

Another research study reported an advantageous carrier for the transdermal deliv-
ery of paclitaxel (PTX) comprising a new micelle formulation (MF) that consists of two
biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic
liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that
PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding
and cation–pi and pi–pi interactions between PTX and SAIL[Cho][Ole] [233]. A similar
group of researchers developed a protein-containing nanocarrier (PCNC) comprising an
antigenic protein (ovalbumin/OVA) stabilized by a combination of surfactants, i.e., a lipid-
based surface-active ionic liquid (SAIL) and Tween-80. The PCNC was biocompatible both
in vitro and in vivo, and is suitable for use in therapeutic transdermal drug delivery. The
skin permeability of the PCNC was significantly (p < 0.0001) enhanced, and the transdermal
distribution and transdermal flux of the OVA delivery system were 25 and 28 times greater,
respectively, than those of its aqueous formulation. The PCNC disrupted the order of lipid
orientation in the skin’s SC and increased intercellular protein delivery. It demonstrated
effective antitumor activity, drastically (p < 0.001) suppressed tumor growth, increased
mouse survival rates, and significantly (p < 0.001) stimulated the OVA-specific tumor
immune response. The PCNC also increased the number of cytotoxic T cells expressing
CD8 antibodies on their surfaces (CD8 + T-cells) in the tumor microenvironment. These
findings suggest that PCNCs may be promising biocompatible carriers for transdermal
antigenic protein delivery in tumor immunotherapy [234].

8. Natural Rubbers

Rubber can be natural from rubber trees [235], or synthetic from petroleum byprod-
ucts [236,237]. Natural rubbers are widely used in biomedical industries [238] and transder-
mal drug delivery systems [239] due to their biocompatibility [240], excellent mechanical
properties [241], flexibility, and ability to form films easily [242]. It is a colloidal suspension
composed of particles with poly(cis-1,4-isoprene) chains [238]. The most common natural
rubber-based transdermal patches are nanocomposites, which serve as the polymer matrix,
and the properties of transdermal patches depend on the type of penetration enhancers
used [237].

Natural Rubber Layers

A previous work by Marcelino et al., 2018, used the casting method to produce a
fluconazole-loaded NRL to examine the Candida albicans (C. albicans) antifungal suscep-
tibility. The release of fluconazole inhibited the growth of C. albicans for 48 h, indicating
good properties for use as transdermal patches. Furthermore, adding fluconazole to NRL
did not significantly alter the mechanical properties of the latex, resulting in a promising
biomaterial for transdermal applications [243]. On the other hand, [244] used the casting
method to produce a voriconazole–NRL (VCZ-NRL) membrane to evaluate the antifungal
susceptibility of Candida parapsilosis (C. parapsilosis)-infected ulcers, and the results revealed
no hemolytic effects or mechanical adaptability for dermal application. Anyway, the VCZ
was released in two stages: a burst release of 13.2% of an initially incorporated VCZ in 1 h,
followed by a slow release of 11% VCZ up to 48 h. The VCZ-NRL membrane performed
well in mechanical, antifungal, and physiochemical tests, making it an intriguing alternative
to treating Candida-infected wounds [244]. In addition, [245] discovered ketoprofen–NRL
membranes for the treatment of tendinitis. The results showed that biocompatible NRL
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membranes demonstrated a 60% sustained ketoprofen release in 50 h. Furthermore, adding
ketoprofen into the NRL membrane was non-toxic to red blood cells [245].

Poly(p-phenylenevinylene) (PPV) was incorporated into a natural rubber latex (PPV-
NRL) composite for electromechanical transdermal drug delivery [246]. Ibuprofen was
used as doped for PPV, which acted as the drug polymeric carrier. The findings indicate that
ibuprofen-NRL patches and ibuprofen-doped PPV/NRL matrices were successfully pro-
duced under ultraviolet (UV) radiation at various crosslinking metrics. In any case, using
an electric flux will improve the penetration of drugs in the synergic effect by developing
the PPV chain, changing the conductive polymer’s oxidation condition, and the intravenous
administration impact, as well as the continuation of pore size in keratinocytes. The NRL
patches had a higher capacity modulus value and better physicochemical characteristics
than transdermal drug delivery patches made from hydrogels.

9. Conclusions

NP-based carriers are a safe and efficient media for transdermal drug delivery. NP car-
riers can have high stabilities, reduced toxicities, biodegradability, high loading capacities,
good storage stabilities, and can also be incorporated with hydrophilic and hydrophobic
materials for controlled, time-dependent drug delivery [247]. They have provided viable
treatment options for a variety of diseases, particularly to deliver drugs to cancer legions.
For example, NPs are extensively studied as potential carriers to transport drugs to the lin-
ing of blood vessels to treat arteriosclerosis and myocardial infarction [248,249]. At present,
the most promising NP-based carriers are from polylactic acid (PLA-NP) or polyethylene
glycol (PEG-NP). These have been used for controlled drug delivery to the liver and brain,
and as multi stimuli-responsive entities to treat inflammation in rheumatoid arthritis or
asthma. However, the slower biodegradation of polymeric NP carriers is a “double-edged
sword” with regards to the chronic accumulation of toxic metabolites associated with
causes of systemic toxicity.

10. Future Perspective

Optimal particle sizes for NP-based drug delivery systems could be further investi-
gated as they are crucial in drug distribution, release rates, targeting efficacies, and toxicities;
current understandings are probably overgeneralized as follows. Relationships between
particle sizes and skin permeability are such that nanovesicles with 70 nm diameter or less
are effective in delivering contents to epidermal and dermal layers, as compared to those
with a diameter of 300 nm [250]. On the other hand, nanovesicles 600 nm diameter or more
tend to remain on skin surfaces without penetrating deeper layers.

NPs have the potential to treat skin diseases such as alopecia, melanoma, and psori-
asis [251] Their penetration via intracellular, intercellular, or transcellular pathways are
vastly affected by the particle size, composition [250], and skin conditions. Particles with a
diameter smaller than 6–7 nm can be absorbed through the lipidic trans-epidermal routes,
while those with a size below 36 nm can pass through aqueous pores. Particles of 10–210 nm
tend to penetrate through trans-follicular routes. More research is required to fully un-
derstand inter-subject variability before they can be suitable for widespread medical use.
Particle sizes are affected by encapsulation frequency, zeta potential, molecular weight, and
degree of chitosan deacetylation [252]. These parameters can be further studied regarding
their effects on the performance of transdermal drug delivery.

While NPs have shown great promise as drug carriers, it is important to thoroughly
evaluate their long-term safety and efficacy. Future research could focus on preclinical
and clinical studies to determine the optimal dosages, administration routes, and potential
adverse effects of NP-based drugs.

Other research could focus on developing NP-based tools to increase sensitivity and
specificity in detecting different types of biomarkers or diseases. Existing advances include
NP-based lateral flow immunoassays to detect infectious agents and diseases [253], dextran
NPs for diagnosing cardiovascular disorders, fumagillin and docetaxel loading to lipid-
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based micelles for asthma management [254], NP-based platforms for magnetic resonance
imaging (MRI) and photothermal therapy (PTT) tumor imaging [255], and NP-mediated
combinatorial phototherapy to chemo-resistant ovarian cancerous tumors [256]. Even so,
there is much more to be discovered about NP-assisted diagnostic tools [257].
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