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Abstract: Chronic kidney disease (CKD) has emerged as one of the most progressive diseases with
increased mortality and morbidity. Metabolomics offers new insights into CKD pathogenesis and
the discovery of new biomarkers for the early diagnosis of CKD. The aim of this cross-sectional
study was to assess metabolomic profiling of serum and urine samples obtained from CKD patients.
Untargeted metabolomics followed by multivariate and univariate analysis of blood and urine
samples from 88 patients with CKD, staged by estimated glomerular filtration rate (eGFR), and
20 healthy control subjects was performed using ultra-high-performance liquid chromatography
coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry. Serum levels
of Oleoyl glycine, alpha-lipoic acid, Propylthiouracil, and L-cysteine correlated directly with eGFR.
Negative correlations were observed between serum 5-Hydroxyindoleacetic acid, Phenylalanine,
Pyridoxamine, Cysteinyl glycine, Propenoylcarnitine, Uridine, and All-trans retinoic acid levels
and eGFR. In urine samples, the majority of molecules were increased in patients with advanced
CKD as compared with early CKD patients and controls. Amino acids, antioxidants, uremic toxins,
acylcarnitines, and tryptophane metabolites were found in all CKD stages. Their dual variations
in serum and urine may explain their impact on both glomerular and tubular structures, even in
the early stages of CKD. Patients with CKD display a specific metabolomic profile. Since this paper
represents a pilot study, future research is needed to confirm our findings that metabolites can serve
as indicators of early CKD.
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1. Introduction

Chronic kidney disease (CKD) is a progressive disease with increased mortality and
high prevalence, affecting 11.7–15.1% of the population in developed countries, and has
emerged as one of the most significant progressive diseases of the twenty-first century [1].
A specific clinical and biological pattern and multiple comorbidities characterize CKD. As
a result, identification of the underlying pathogenic mechanisms and of possible treatment
options has become a challenge for modern medicine. CKD is a condition characterized
by a wide range of pathological abnormalities, from kidney damage with normal kid-
ney function to end-stage renal disease (ESRD). Hemodynamic and metabolic factors,
inflammation, proteinuria, podocyte loss, proximal tubule dysfunction, dyslipidemia,
the renin-angiotensin-aldosterone system, and oxidative stress represent the underlying
mechanisms involved in CKD development and progression [2].

The classification of CKD is based on the evaluation of kidney damage markers (albu-
minuria) and estimated glomerular filtration rate (eGFR). In clinical practice, measurement
of serum creatinine concentration is mandatory for eGFR assessment. There are certain
drawbacks to this approach, such as the fact that serum creatinine levels vary with muscle
mass and age [3]. On the other hand, fever and infection can cause kidney damage and
increase albuminuria. Therefore, the resolution of kidney dysfunction does not correspond
with the resolution of albuminuria and can increase the risk of unnecessary treatment in
patients with underlying kidney pathologies [4]. Therefore, the discovery of new mark-
ers for earlier and more accurate diagnosis of CKD and new therapeutic options have
become mandatory.

Omics sciences (epigenomics, genomics, proteomics, lipidomics, and transcriptomics)
have provided important breakthroughs in understanding the pathophysiology of kidney
diseases [5–7]. “The apogee” of omics research, known as metabolomics, seeks to elucidate
and to provide a comprehensive view of the biochemical events that occur in cells, as well
as the relationships between these processes in biological specimens. Hence, biomarker
discovery in CKD has focused on metabolomic profiling. With a view to achieving a better
understanding of biological systems, interest has shifted to a new powerful technology in
order to discover potential diagnostic and therapeutic biomarkers. Emerging evidence has
revealed that commonly applied techniques in metabolomic analysis are mass spectrometry
(MS)-based techniques, including gas-chromatography/mass spectrometry (GC/MS), liq-
uid chromatography/mass spectrometry (LC/MS), and magnetic resonance spectroscopy
(MRS) [8].

Recent studies have shown that circulating levels of several metabolites (the tryp-
tophane metabolic pathway, uremic toxins, amino acids, acylcarnitines, and various an-
tioxidants) are altered by the kidney. Interestingly, the kidney has an important role in
glomerular uptake, tubular secretion, and catabolism of the majority of metabolites. Several
longitudinal studies have been applied for metabolomic profiling in CKD patients [9,10].
For example, a Korean study that followed up 1741 subjects for 8 years showed a positive
correlation between kynurenine and kynurenine/tryptophane ratio and new-onset CKD.
The authors also observed that several acylcarnitines, such as C3, C4, C7-DC, and C8, were
associated with eGFR decline [9]. The Chronic Renal Insufficiency Cohort (CRIC) study
is a prospect study that monitored CKD progression, defined as a 50% reduction in eGFR
in a 6-year period, and included patients with eGFRs between 20 and 70 mL/min per
1.73 m2. This study measured both serum and urinary levels and found that 11 metabolites
were associated with CKD progression. Therefore, it seems that kidney clearance of these
metabolites can offer supplementary information in the assessment of kidney function [11].
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Yuana D. et al., in a study performed on patients with end-stage renal disease (ESRD),
defined as eGFR < 15 mL/min per 1.73 m2 and depression, were able to identify 57 metabolites
from 19 metabolic pathways that were significantly different between ESRD patients with
or without depression. In conclusion, they showed that oxidative stress, abnormal energy,
and inflammation play a significant role in the development of depression in patients with
ESRD [12].

Shima et al. showed that methionine, sulfoxide/methionine, and oxidative stress-
related metabolites were associated with CKD [13]. Furthermore, metabolites seem to
predict kidney dysfunction [14]; thus, a decrease in eGFR could alter the concentration of
metabolites [15]. The evaluation of renal function is made with biomarkers, such as serum
creatinine and blood urea, but these biomarkers have low specificity and sensitivity and
they become relevant only in more advanced stages of CKD. Therefore, it is mandatory to
discover more sensitive biomarkers for the early detection of kidney diseases.

The aim of the current study was to identify and characterize new potential blood
and urine metabolomic biomarkers involved in the early diagnosis of CKD and to discover
new therapeutic approaches using ultra-high-performance liquid chromatography coupled
with electrospray ionization-quadrupole-time of flight-mass spectrometry.

2. Materials and Methods
2.1. Patients and Compliance with Ethical Standards

The protocol of the study, which included the study design, the collection of serum
and urine samples, participant information, and written consent from all subjects en-
rolled, was approved by the Ethics Committee for Scientific Research of the “Victor Babes, ”
University of Medicine and Pharmacy Timis, oara (no. 54/09.11.2020) and by the Ethics
Committee of County Emergency Hospital Timis, oara (no. 222/04.02.2021). A cohort of
88 non-diabetic CKD patients (group P), defined and staged according to the KDIGO
Guideline for the Diagnosis and Management of CKD [16] and recruited form the De-
partment of Nephrology, County Emergency Hospital Timis, oara, and 20 healthy control
subjects (group C) recruited from the general physicians’ records were included in the
study from 1 February 2021 through to 31 July 2022. The CKD patients were divided
into five groups based on the KDIGO CKD classification [13], as follows: group 1 (G1)
included 15 patients with an eGFR of 90 mL/min/1.73 m2 or higher; group 2 (G2) included
15 patients with an eGFR of 89–60 mL/min/1.73 m2; group 3 (G3a) included 17 patients
with an eGFR of 59–45 mL/min/1.73 m2; group 4 (G3b) included 15 patients with an
eGFR of 44 to 30 mL/min/1.73 m2; group 5 (G4) included 15 patients with an eGFR of
29 to 15 mL/min/1.73 m2; and group 6 (G5) included 14 patients with an eGFR of less
than 15 mL/min/1.73 m2. The exclusion criteria were diabetic kidney disease and the
requirement of renal replacement therapies. Blood and urine samples were taken in the
morning and after a 12 h fasting period. For both groups, additional clinical and biological
measurements were simultaneously collected and registered (Table 1).

Table 1. Demographic, clinical, and biological data for group C and the CKD groups.

P Group
C Group G1 Group G2 Group G3a Group G3b Group G4 Group G5 Group

Participants 20 12 15 17 15 15 14
Sex (M) 12 7 9 6 7 8 6
Age (y) 55.85 ± 7.25 39.92 ± 10.8 53.6 ± 15.4 55.1 ± 15.2 58.9 ± 14.4 61.2 ± 14.8 63.6 ± 12.6

BMI (kg/m2) 25.35 ± 8.5 26.42 ± 3.1 26.9 ± 1.7 27.9 ± 1.9 28.5 ± 2.3 27.3 ± 3.2 28.6 ± 2.2
Glomerulonephritis 0 3 5 1 0 5 3

Hypertension 0 12 15 17 15 15 14
Acquired solitary kidney 0 0 0 0 0 2 1

Serum creatinine (mg/dL) 0.73 ± 0.08 1.46 ± 2.1 1.4 ± 0.3 1.6 ± 0.7 1.7 ± 0.3 6.5 ± 13 5.19 ± 0.8
eGFR(ml/min/1.73 m2) 97.93 ± 11.71 101.9 ± 12.2 65.1 ± 12.9 49 ± 10.6 39.9 ± 5 21.3 ± 11.6 12.9 ± 11.8

uACR (mg/g) 14.67 ± 6.4 449.7 + 1177.3 1252.3 + 1625.7 630.6 + 709.2 672.9 + 1509.1 747.9 + 884 1102.9 + 1365.6

Legend: M: male; BMI: body mass index; e-GFR: estimated glomerular filtration rate; uACR: urine albumin-
creatinine ratio.
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2.2. Sample Collection and Processing

Blood was collected by venepuncture in sterile vacutainers without anticoagulant,
and the serum was stored at −80 ◦C until analysis. The first morning urine samples were
collected in sterile vials. All samples were labelled using confidential numerical codes. A
volume of 0.8 mL of a mix of pure HPLC-grade Methanol and Acetonitrile (2:1 v/v) was
added for each volume of 0.2 mL of serum and 0.2 mL urine. In each case, the mixture
was vortexed to precipitate proteins, ultrasonicated for 5 min, and kept for 24 h at −20 ◦C
to increase the protein precipitation. The supernatant was collected after centrifugation
at 12,500 rpm for 10 min (4 ◦C) and filtered through nylon filters (0.2 µm). Finally, the
supernatant was placed in glass micro-vials and introduced into the autosampler of the
ultra-high-performance liquid chromatograph (UHPLC) before injection.

2.3. UHPLC-QTOF-ESI+−MS Analysis

The metabolomic profiling was performed by ultra-high-performance liquid chro-
matography coupled with electrospray ionization-quadrupole-time of flight-mass spec-
trometry (UHPLC-QTOF-ESI+−MS) using a Thermo Fisher Scientific (Waltham, MA,
USA) UHPLC Ultimate 3000 instrument equipped with a quaternary pump, a Dionex
(Sunnyvale, CA, USA) delivery system, and MS detection equipment with MaXis Impact
(Bruker Daltonics, Billerica, MA, USA). The metabolites were separated on an Acclaim
C18 column (5 µm, 2.1 × 100 mm, pore size of 30 nm; Thermo Fisher Scientific, Waltham,
MA, USA) at 28 ◦C. The mobile phase consisted of 0.1% formic acid in water (A) and 0.1%
formic acid in acetonitrile (B). The elution time was set for 20 min. The flow rate was set at
0.3 mL·min−1 for serum samples and 0.8 mL·min−1 for urine samples. The gradient for
serum samples was: 90 to 85% A (0–3 min), 85–50% A (3–6 min), 50–30% (6–8 min), 30–5%
(8–12 min), and afterwards increased to 90% at min 20. The gradient for urine samples was:
90 to 85% A (0–3 min), 85–30% A (3–6 min), 30–10% (6–8 min), isocratic until min 12 and
then increased to 90% at min 20. The volume of injected extract was 5 mL, and the column
temperature was set at 25 ◦C. Several QC samples obtained from each group were used in
parallel to calibrate the separations. Doxorubicin hydrochloride (m/z = 581.3209) solution
(0.5 mg/mL) was added in parallel to QC samples as an internal standard.

The applied MS parameters were: ionization mode positive (ESI+), MS calibration
with Natrium format, capillary voltage 3500 V, the pressure for the nebulizing gas set at
2.8 bar, drying gas flow of 12 L/min, and drying temperature of 300 ◦C. The m/z values to
be separated were set between 60 and 600 Daltons. The control of the instrument and the
data processing was performed using the specific software packages TofControl 3.2, HyStar
3.2, Data Analysis 4.2 (Bruker Daltonics, Billerica, MA, USA), and Chromeleon.

2.4. Statistical Analysis

The Bruker software Data Analysis 4.2, attached to the instrument, was used to
process the acquired data. By using the peak dissect algorithm, details of the molecules
separated were obtained. Using the algorithm Find Molecular Features (FMF), a first
advanced bucket matrix was generated. This included the retention time, the peak area,
the peak intensity, and the signal/noise (S/N) ratio for each m/z value. From the total
ion chromatograms, using specific algorithms, the TICs (total ion chromatograms) and
BPCs (base peak chromatograms) were obtained. The number of separated molecules
(m/z values) ranged between 320 and 420 in serum samples and reached up to 550 in
urine samples.

In a first step, the molecules with retention times below 0.8 min, the molecules with
S/N values < 5, the molecules with m/z values over 480 Daltons (Da), and the minor
molecules and residues with peak intensities under 1000 units were eliminated. The
number of molecules selected for statistics decreased to 200–250.

In a second step, the alignment of common molecules (with the same m/z values) in
all samples was performed, keeping for the final matrix the molecules common to more
than 80% of samples. Therefore, in the final matrices, the numbers of common molecules
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(m/z values) from serum and urine were 130 and 194, respectively. The alignment was
performed using online software available at: www.bioinformatica.isa.cnr.it/NEAPOLIS
(accessed on 15 July 2022). Next, these molecules were introduced in the Metaboanalyst 5.0
platform (https://www.metaboanalyst.ca/, accessed on 15 July 2022) and multivariate and
univariate analysis was performed.

The untargeted metabolomic analysis was performed by multivariate analysis compar-
ing group C with the whole group P, based on the final matrices.csv for each type of sample
(serum and urine). The discriminations between these 2 groups included fold changes,
volcano tests, PatternHunter analysis, partial least squares discriminant analysis (PLSDA),
sparse PLSDA (sPLSDA), and variable importance in the projection (VIP) values, including
cross-validation parameters. Then, the random-forest-based prediction test was applied,
and calculations of p-values were performed by t-tests. The heatmaps of correlations were
also built. Finally, using the biomarker analysis, the receiver operating curves (ROCs) and
the values of the areas under the ROC curves (AUCs) were obtained, and the m/z values
were ranked according to sensitivity/specificity.

Univariate analysis allowed comparison of the subgroups G1–G5 with the control
group. The statistical analysis was performed for each type of sample (serum and urine)
using one-way ANOVA, PLSDA and sPLSDA score analyses, HunterPattern, random
forests, and heatmaps.

The results were presented graphically, and the putative biomarkers of differentiation
were identified. The identification of molecules, based on their m/z values and retention
times, was performed in agreement with our database and other international databases
for metabolomics: the Human Metabolome Database (http://www.hmdb.ca, accessed
on 15 July 2022), Lipid Maps (http://www.lipidmaps.org, accessed on 15 July 2022), and
PubChem (https://pubchem.ncbi.nlm.nih.gov, accessed on 15 July 2022).

3. Results
3.1. Multivariate Analysis of Serum Samples
3.1.1. PLSDA Score Plot and VIP Scores

The homogeneity of the groups and the discrimination between groups C and P is
presented in the PLSDA score plot (Figure 1a). With a covariance of 23.3%, the discrimina-
tion is significant and can be explained by the significance of the differences between some
metabolites, the first 15 being mentioned in the VIP score plot (Figure 1b).
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According to the PLSDA plot, a division of group P into two subgroups was observed—
an aspect which suggested certain molecular features which may explain this discrimina-
tion. According to VIP scores (>1.8) and MDA values (>0.004), in group P, significantly
decreased molecules with m/z values of 340.2809 (Oleoyl glycine), 207.1736 (Alpha-Lipoic
acid), 171.1608 (Propylthiouracil), and 121.9741 (L-Cysteine) were observed, along with
increased levels of molecules with m/z = 183.0079 (Sorbitol), 216.0103 (Propenoylcarnitine),
179.0162 (Cysteinylglycine), and 192.9925 (5-Hydroxyindoleacetic acid). Using the cross-
validation algorithm, high accuracy (close to 1), high R2 values (>0.5), and a significant Q2
value (>0.4) for the first four components was identified. Therefore, the model could be
considered predictive.

3.1.2. Biomarker Analysis and Prediction by Random Forest Analysis

According to Metaboanalyst software, the biomarker analysis included the represen-
tation of the receiver operating characteristic (ROC) curve and the area under the curve
(AUC). Therefore, the sensitivity vs. specificity of each molecule identified as a potential
biomarker was evaluated. In good agreement with all previous studies, the biomarker
analysis confirmed that molecules which can be considered biomarker candidates are the
ones with the highest AUC values (>0.85). Table 2 shows the AUC value, p-value, and
log2FC value for each molecule identified and the variations between group P and group
C. Table 2 summarizes the data obtained and lists the most significant molecules to be
considered, according to VIP and MDA values. The identification of these molecules was
made considering their m/z values in the HMDB database.

Table 2. The m/z values for the most significant metabolites from serum samples and their identifica-
tion according to the HMDB database. These metabolites were considered predictive given their VIP
and MDA values.

m/z Identification HMDB ID VIP MDA AUC p-Value Log2 FC

340.2809 Oleoyl glycine HMDB0013631 D 2.629 0.016 0.961 6.59 × 10−14 0.773
207.1735 Alpha-Lipoic acid HMDB0001451 D 2.009 0.017 0.904 6.57 × 10−8

141.9693 Ethanolamine Phosphate HMDB0000224 I 1.838 0.009 0.903 1.07 × 10−6 −2.113
301.161 All-trans retinoic acid HMDB0001852 I 1.849 0.008 0.907 9.16 × 10−7 −2.133

183.0079 Sorbitol HMDB0000247 I 2.003 0.007 0.891 7.57 × 10−8 −1.146
121.9741 L-Cysteine HMDB0000574 D 1.841 0.007 0.851 1.03 × 10−6 0.363

216.0103 Propenoy
lcarnitine HMDB0013124 I 1.989 0.006 0.869 9.55 × 10−8 −1.104

166.0979 Phenylalanine HMDB0000159 D 1.840 0.005 0.828 7.39 × 10−5 −0.490
190.0629 Kynurenic acid HMDB0000715 I 1.608 0.004 0.831 2.57 × 10−5 −0.628

These data confirm that Oleoyl glycine, Alpha-Lipoic acid, All-trans retinoic acid,
Sorbitol L-Cysteine, Propenoylcarnitine, and Kynurenic acid can be considered potential
biomarkers for a significant discrimination between group C and group P.

3.2. Univariate Analysis of Serum Samples
One-Way ANOVA Applied for the Identification of Biomarkers of CKD Progression
(G1–G5)

By one-way ANOVA analysis, the significant molecules which may explain the pro-
gression of CKD, according to eGFR, as seen in differences between the subgroups G1–G5
and group C, were identified.

The classification and discrimination of blood molecules was made with the PLSDA
score plot (Figure 2a), followed by the VIP score (Figure 2b) and random forest score plots
(Figure 2b). The PLSDA score plot had a covariance of 20.1% that was able to discriminate
between the CKD subgroups G1–G5 and group C. The VIP scores show the ranking of
the first 15 molecules to be considered responsible for the discrimination, as presented in
Figure 2b. The cross-validation plot shows the low accuracy of the results: R2 values were
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higher than 0.1, but Q2 values were <0 for all components. By random forest analysis, we
identified 15 molecules as potential biomarkers for CKD subgroups (Figure 2c).
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Figure 2. (a) PLSDA score plot representing the discrimination between group C and subgroups
G1–G5 in blood serum. (b) VIP score plot for the top 15 molecules, with VIPs > 1.6. (c) MDA values
for the top 15 molecules to be considered as potential biomarkers of progression from G1 to G5.

In agreement with the VIP and MDA scores (Figure 2b,c), the most significant molecules
to be considered predictive for the discrimination between group C and subgroups G1–G5
and with progressive decrease in levels from group C to the groups with lower eGFRs,
namely, subgroups (G1 to G5), were Oleoyl glycine (340.2809), N-Butyrylglycine
(m/z = 144.9693), Propylthiouracil (m/z = 171.1608), Glutamine (m/z = 147.1197), and
Ketoleucine (m/z = 131.1162). The opposite ranking shows molecules with increased
levels in subgroups G1 to G5 as compared to group C, e.g., 5-Hydroxyindoleacetic acid
(m/z = 192.9925), Phenylalanine (m/z = 166.0979) Pyridoxamine (m/z = 169.1529), Cysteinyl-
glycine (m/z = 179.0152), Propenoylcarnitine (m/z = 216.0103), and Uridine (m/z = 245.0952).

3.3. Multivariate Analysis of the Urine Samples
3.3.1. PLSDA Score Plot and VIP Scores

For urine samples, the PLSDA score plot (Figure 3a) shows a covariance of 20.1% and
a good discrimination between groups C and P. Meanwhile, according to the VIP scores
(Figure 3b), the first 15 molecules ranked were considered responsible for the discrimination.
The cross-validation plot showed an acceptable accuracy level for the results: R2 values
were higher than 0.5, but Q2 values were <0 for all components.

According to the VIP scores, in group P, increased levels for almost all molecules
(excepting Gluconolactone with m/z = 180.0697) were observed, the most significant
(VIP > 2.4) being the molecules with m/z values of 214.2524 (Indoxyl sulfate), 235.1712
(Methoxytryptophan), 301.1441 (All-trans retinoic acid), 329.0086 (Glycylprolylarginine),
275. 1642 (Serotonin sulfate), and 279.1616 (Leucyl-phenylalanine).

3.3.2. Biomarker Analysis and Prediction by Random Forest Analysis

The biomarker analysis included the representation of the ROC curve and AUC values.
The most significant biomarker candidates, the ones with the highest AUC values (>0.900)
and with higher MDA values, according to random forest analysis, were proposed. Table 3
shows the AUC, VIP, and MDA values, as well as the p-value and log2FC value for each
molecule identified and variations between group P and group C. The identification of
these molecules was made considering their m/z values in the HMDB database.
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Figure 3. (a) The PLSDA score plot highlights the good discriminations between the C group
and group P for urine samples. (b) VIP values and ranking of top 15 molecules according to
PLSDA analysis.

Table 3. The m/z values for the most significant metabolites from urine samples and their identifica-
tion according to the HMDB database. These metabolites were considered predictive given their VIP
and MDA values.

m/z Identification HMDB ID VIP MDA AUC p-Value Log2 FC

329.0086 Glycylprolylarginine HMDB0252828 I 2.409 0.009 0.955 5.53 × 10−9 −0.758
253.1817 Deoxyinosine HMDB0000071 I 2.338 0.006 0.932 3.52 × 10−8 −0.56
279.1616 Leucyl-phenylalanine HMDB0013243 I 2.389 0.006 0.92 1.12 × 10−8 −0.771
230.2496 Butenoylcarnitine HMDB0249460 I 2.283 0.006 0.919 3.58 × 10−8 −0.844
301.1441 All-trans retinoic acid HMDB0001852 I 2.484 0.008 0.918 2.39 × 10−9 −1.091

235.1712 Methoxy
tryptophan HMDB0002339 I 2.508 0.008 0.918 1.62 × 10−9 −1.114

275.1642 Serotonin sulfate HMDB0240717 I 2.380 0.002 0.907 7.30 × 10−9 −0.754
214.2544 Indoxyl sulfate HMDB0000682 I 2.823 0.014 0.968 1.34 × 10−2 −1.128

3.4. Univariate Analysis of Urine Samples

The same steps were performed for the urine samples: one-way ANOVA was used to
determine significant molecules which may explain the differences between the subgroups
G1–G5 and group C in urine samples.

Urinary molecules were categorized and distinguished using the PLSDA scores
(Figure 4a), which had a PLSDA covariance of 19.8%. Figure 4b presents the ranking
of the first 15 molecules proposed as representative for the discrimination considering the
VIP scores. By random forest analysis, we identified 15 molecules as potential biomarkers
for CKD subgroups G1–G5 (Figure 4c).

According to the VIP values above 2.0 and MDA values above 0.007, almost all
molecules showed increased levels in groups G4–G5 (having lower eGFR levels) as com-
pared to controls and groups G1–G3 with higher eGFR levels. The most significant
molecules were Indoxyl sulfate (m/z = 214.2544), All-trans retinoic acid (m/z = 301.1441),
Glycylprolylarginine (m/z = 329.0086), Leucyl-phenylalanine (279.1616), Methoxytrypto-
phan (m/z = 235.1712), Methylarachidic acid (m/z = 327.0114), Serotonin sulfate
(m/z = 275.1642), and Butenoylcarnitine (m/z = 230.2496).
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Figure 4. (a) PLSDA score plot representing the discrimination between group C and subgroups
G1–G5 in urine samples (covariance of 19.8%). (b) VIP score plot for the top 15 molecules, with
VIPs > 1.6. (c) MDA values for the top 15 molecules to be considered as potential biomarkers of
progression from G1 to G5.

In order to integrate the data obtained by non-targeted analysis, the selection of the
most representative molecules considered as potential biomarkers in serum vs. urine is
presented in Table 4. Considered were the data released by multivariate analysis (P vs. C,
columns 2 and 4), as well the trends of such molecules, which are dependent on eGFR
(decreased values from subgroup G1 to G5, respectively) (columns 3 and 5).

Table 4. Serum and urine metabolites selected by untargeted analysis as potential biomarkers for
the discrimination between group P and group C, considering the data released from multivariate
analysis (P vs. C, columns 2 and 4), as well the trends of such molecules dependent on eGFR
(decreased values from G1 to G5 subgroup, respectively; columns 3 and 5).

Serum Metabolites P vs. C Subgroups vs.
Controls Urine Metabolites P vs. C Subgroups vs.

Controls

Oleoyl glycine D G5 < G1 < C Indoxyl sufate I G5 > G1 > C

Alpha-Lipoic acid D G5 < G1 < C Glycylproly
lArginine I G5 < G1 < C

All-trans retinoic acid I G5 > G1 Deoxyinosine I G3 > G1
Sorbitol I G5 > G1 Leucyl-phenylalanine I G5~G3 > G1 > C

L-Cysteine D G5 < G1 < C Butenoylcarnitine I G5 > G1 > C
Propenoylcarnitine I G4~G2 > G1 > C All-trans retinoic acid I G5~G3 > G1 > C

Phenylalanine D G4 < G1 < C Methoxy
tryptophan I G5~G3 > G1 > C

Kynurenic acid I G5 > G1 > C Serotonin sulfate I G5~G3 > G1 > C

According to the data presented above (multivariate and univariate analysis by dif-
ferent algorithms), the selection of the molecules was made based on their statistical
significance (p < 0.05) and correlated with data from the literature. The classification of
these molecules was made using their retention times, m/z values, and peak intensities.

4. Discussion

The results of this study provide an insight into various metabolic pathways involved
in the pathogenesis of CKD. The metabolites identified in CKD patients may impact both
glomerular and tubular structures, even in the early stages of CKD. The findings of this
study show that patients with CKD display a specific metabolomic profile, which may
serve as an indicator of CKD initiation and progression.
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4.1. Molecules to Be Considered as Potential Biomarkers Which Allow the Identification of Early
Stages of CKD

Our data complete the existing reports and underline specific categories of molecules
involved in the pathogenesis of CKD, such as amino acids (e.g., phenylalanine and L-
cysteine), acylated amino acids (oleoyl glycine), and derivatives of tryptophan (methoxytryp-
tophan and kynurenic acid), peptides (glycylprolyl arginine and leucylphenylalanine),
sorbitol, and all-trans retinoic acid.

Specifically in urine, increases in indoxyl sulfate and in serotonin as serotonin sulfate
can be considered significant signals for the early diagnosis of CKD and its progression
from high to low eGFR. Therefore, we consider these metabolites as prognostic candidates
for CKD diagnosis and progression monitoring.

4.1.1. Amino Acids

Amino acids (AAs) regulate proteolysis and hemodynamics to maintain the integrity
of the kidney. In 99 percent of cases, amino acids are filtered by the kidney and reabsorbed
by the renal tubule. In our study, we observed decreased serum levels for serine, taurine,
cysteine, ornithine, tyrosine, and L-tryptophan and increased serum levels for proline,
valine, threonine, and phenylalanine. Regarding urinary levels of AA metabolites, we ob-
served that these were significantly increased as compared to their plasma levels. Garibotto
et al. showed that AA levels are significantly altered in both plasma and urine in CKD
patients, with significantly lower plasma levels vs. urinary levels [17].

Phenylalanine, an essential amino acid that is not normally synthesized by the human
body, decreases progressively in CKD [18]. Phenylalanine hydroxylase, located in the
kidney, liver, and pancreas, also decreases in CKD.

In the present study, we found that phenylalanine correlated positively with eGFR. These
findings are in contradiction with several previous studies that showed increased plasma
levels of phenylalanine in patients with CKD and IgA nephropathy. Psihogios et al. [18], in
a study performed on patients with glomerulonephritis, found decreased urine levels of
phenylalanine [19].

Interestingly, we observed that circulating levels of phenylalanine were higher in
patients classified as having CKD with normal eGFRs compared with group G4. Li et al. also
found that serum levels of phenylalanine were slightly increased in patients with CKD but
normal kidney function and that levels continued to increase as CKD progressed [20]. Based
on these observations, we believe that phenylalanine can be used as an early biomarker for
CKD, though further studies are needed.

Cysteine (CysSSP) is a non-essential amino acid that can be acquired from food or by
methionine cleavage. CysSSP is involved in protein synthesis, protein structural stabiliza-
tion, glutathione formation, and the synthesis of intracellular metabolites and signaling
molecules (e.g., taurine, coenzyme A, hydrogen sulfide, and cysteine persulfate) [21]. How-
ever, cysteine appears to play a part in metabolic syndrome, obesity, and insulin-like
effects on adipocytes. By producing reactive oxygen species and reducing endothelial
vasodilatation, it has been linked to inflammation and endothelial dysfunction.

Our data showed that Cysteine levels were increased in the plasma of patients classi-
fied as G1 and G2, as compared with group C and sub-groups G3a and G3b. Similar results
were also observed in the patients’ urine.

Sumayao et al. provided insights into the distribution of significant amounts of
cysteine, glutathione, and cysteine disulfides along the proximal tubule and pointed to
the fact that lysosomal uptake serves as the mechanism for reabsorption [22]. While
simultaneously acting as a secure method for cysteine storage, high levels of CysSSP can
cause protein misfolding and endoplasmic reticulum stress [23]. In a study performed on
adult rats, it was shown that plasma levels of cysteine were controlled by the liver–kidney
axis and that the kidney cysteine-to-glutathione ratio grew four times as compared to two
to three times in the liver, thus demonstrating that either the kidney or the liver utilize and
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store cysteine. A change in senile kidney ability to absorb cysteine seems to be the cause of
elevated plasma levels of CysSSP in CKD patients [24].

Interestingly, our study found a correlation between blood levels of cysteine and
renal function: the group of patients classified as having G3b had the lower ratio, and the
concentration in the urine rose with the decline in eGFR, indicating that the tubular cells
were unable to reabsorb and store cysteine.

5-methoxytryptohan (5-MTP) is an endogenous molecule synthetized from trypto-
phane breakdown. Among other metabolites, 5-MTP was one of the metabolites that was
strongly correlated with eGFR and kidney disease progression, these data being consistent
with previous studies [25]. Furthermore, the anti-inflammatory [26] and protective effects of
5-MTP in vascular injuries associated with CKD were demonstrated by several studies [27].
In our study, 5-MTP levels were decreased in serum and increased in the urine in patients
with CKD compared with the control group. These findings are supported by other studies
performed on patients with CKD and by in vivo studies performed on mice with unilat-
eral ureteral obstruction. Interestingly, several studies showed that supplementation with
5-MTP can ameliorate tissue injury, fibrosis, and inflammation [25].

Furthermore, 5-MTP can be used as an early biomarker for CKD and also as a potential
treatment for CKD progression by attenuating inflammation and kidney fibrosis. Therefore,
5-MTP can be considered to be the leading compound for the development of novel anti-
fibrotic drugs.

Based on these observations, we may conclude that increased urinary levels and de-
creased serum levels of AAs in CKD patients are explained by the fact that the Na+−coupled
reabsorption of AAs by the proximal tubule is altered. These findings are supported also
by the fact that, as kidney dysfunction progresses, urinary levels of AAs increase. Thus,
L-Cysteine concentration in the urine increased gradually with the decline in eGFR. AA
metabolites could be used as serum and urinary biomarkers for early detection and moni-
toring of the progression of CKD.

4.1.2. Acylcarnitines

A specific class of molecules reported to be significant in CKD are the acylated car-
nitines involved in mitochondrial transport of lipids. Acylcarnitines are involved in lipid
metabolism, inflammation, amino acid metabolism, and mitochondrial activity [28]. The
function of long-chain acylcarnitines is to carry fatty acids through the mitochondrial inner
membrane for beta-oxidation. Therefore, they are considered intermediate products of
beta-oxidation. In contrast, the role of short- and medium-chain acylcarnitines appears
to be connected to the metabolism of amino acids [29]. Since the glomerulus is primarily
responsible for acylcarnitine excretion, decreased kidney function is linked to both an
increase in the blood levels of acylcarnitine and a decrease in its excretion [30]. Long-chain
acylcarnitines are the first products of β-oxidation and, as such, mitochondrial dysfunction
due to lipotoxicity may contribute to the formation of long-chain acylcarnitines and the
development of kidney dysfunction. Acylcarnitines have been linked to a higher risk of
developing diabetes mellitus and have been shown to be able to predict the development
of cardiovascular disease [31].

Our research demonstrated the significance of acylcarnitines as a group of key metabo-
lites in kidney disease. Moreover, we observed a significant correlation between eGFR
and plasma and urinary levels of short- and medium-chain acylcarnitines (L-carnitine,
L-Acetylcarnitine, Propionylcarnitine, and Butenylcarnitine). The most significant were
identified as propenoylcarnitine and butenoylcarnitine, the serum and urine levels of which
were increased in the CKD group of patients as compared with the C group.

Our findings are supported by other studies which showed that short- and medium-
chain acylcarnitines (C3-propinylcarnitine, C4-butyrylcarnitine, C7-DC-Pimelylcarnitine,
and C8-Octanoylcarnitine) were linked to decline in eGFR [9]. Mitochondrial dysfunc-
tion is correlated with the development of various diseases. Therefore, blood levels of
acylcarnitines could provide a better understanding of how alterations in mitochondrial
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metabolism are involved in the progression, manifestation, and severity of different dis-
eases, including CKD.

We assume that the accumulation of acylcarnitines in plasma is due to glomerular
dysfunction. This observation is supported by the fact that the levels of L-carnitine, L-
Acetylcarnitine, and Propionylcarnitine in serum increased gradually as renal function
declined. In summary, we showed that acylcarnitines are good candidates as plasma and
urinary biomarkers for the early diagnosis of CKD, though additional targeted metabolomic
studies are required for validation.

4.1.3. Uremic Toxins

In the past decade, a number of uremic molecules have been categorized and identified
and their functions in the onset and course of CKD and its complications have been
established. Protein-bound uremic toxins are of gastrointestinal origin due to the ability of
the intestinal flora to break down aromatic acids [32].

In our study, the uremic toxins identified included indoxyl sulfate, xanthine, hippuric
acid, and uridine, which data are consistent with other studies regarding the numbers of
uremic toxins that occur in patients with renal dysfunction.

Production of hippuric acid begins in the gut when dietary polyphenols are con-
verted by the gut microbiota into benzoic acid, and it is completed in the liver or kidney
when glycine is conjugated to hippuric acid [33]. In our study, increased serum levels
of hippuric acid were observed in patients with CKD vs. group C, with higher levels
in urine vs. plasma. Univariate analysis showed that patients in groups G1 and G2 had
higher serum levels compared with groups C, G3a, and G3b. Regarding urinary levels, we
observed that patients in group G1 and group G3b had increased excretion of hippuric acid
compared to group G2 and group G3b.

Hippuric acid is a protein-bound uremic toxin that is bound to albumin and correlates
with disease progression in CKD patients. The full mechanisms of renal toxicity have
not been characterized, despite several findings showing the role of hippuric acid in the
progression of renal fibrosis and induction of oxidative stress and accumulation of ROS,
with subsequent endothelial dysfunction. Moreover, according to a recent study, hippuric
acid can disturb redox equilibrium and increase the expression of several genes which have
been linked to the development of renal fibrosis and extracellular matrix imbalance [33].

Presumably due to the fact that hippuric acid is a protein-bound uremic toxin, we
believe that increased urinary levels of hippuric acid in CKD patients occur both in relation
to increased protein loss and altered glomerular filtration. In addition, we assume that
these patients have increased renal fibrosis and significant proximal tubule dysfunction,
thus allowing large amounts of hippuric acid to be secreted into the urine. These findings
suggest that hippuric acid can be used as a urinary biomarker for the assessment of
CKD progression.

In the intestinal flora, tryptophane is broken down into indole by intestinal bacteria,
which begins the synthesis of indoxyl sulfate (IS). Next, cytochrome P450 2E1 uses liver
sulfotransferase 1A1 to hydroxylate indole, resulting in 3-hydroxy indole. The end product
is indole sulfate, which is created when 3-hyrosxy indole is sulfonated [34].

In our research, plasma and urinary levels of IS were increased in CKD patients vs.
controls, being more increased in urine vs. serum, respectively. Furthermore, by performing
univariate analysis we observed that patients in groups G1 and G2 had higher serum levels
as compared with group C and groups G3a and G3b, respectively. Of note, we found
increased levels of IS even in the early stages of CKD.

The nephrotoxic consequences of IS are represented by depletion of antioxidants,
generation of reactive oxygen species, promotion of fibrosis, and inflammation. IS can
affect renal function and cause proteinuria and podocyte dysfunction through the activation
of aryl hydrocarbon receptors in the glomerulus, which downregulates a number of proteins
important in maintaining cell integrity [34]. Basolateral anion transporters 1 and 3 in the
proximal tubule are responsible for IS excretion [35]. In proximal tubule cells, IS can activate
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NF-kB, thus suppressing cellular proliferation and stimulating production of PAI-1 and
promoting TGF-β1-induced fibrosis [36]. In addition, IS can induce the development of
intracellular adhesion molecule-1, which enhances monocyte infiltration into the kidney
and monocyte chemoattractant protein, which increases the recruitment of macrophages
and causes tubulointerstitial inflammation [37].

It has been shown by Fujii et al. that decreased renal function is associated with
higher levels of IS [38]. Dialysis has a minimal impact on IS plasma levels because it is a
protein-bound uremic toxin [39].

In our research, we found higher blood levels of IS in patients with early-stage CKD
as compared to controls, and higher urine levels were associated with a decline in renal
function. As a result, we assume that there are two main reasons that can explain these
findings. On the one hand, IS is highly bound to albumin, and therefore glomerular impair-
ment leads to increased filtration, while, on the other hand, proximal tubule dysfunction
can result in increased excretion. Moreover, we found that uremic toxins, such as IS and
hippuric acid, may be used as plasma biomarkers for CKD.

Sorbitol is a component of the tricarboxylic acid (TCA) cycle and a carbohydrate-
related metabolite that can be produced naturally or synthetically from glucose. Previous
studies showed that sorbitol is a molecule considered as a potential biomarker in diabetic
nephropathy, where the elevated extracellular concentration of glucose disturbs cellular
osmoregulation and sorbitol is synthesized intracellularly via the polyol pathway and is
also considered a potential uremic toxin [40]. In this study, we found that circulating levels
of sorbitol were directly correlated with eGFR. These findings are in disagreement with
those of Roshanravan et al., who found that sorbitol levels were decreased in patients with
CKD. It is well documented that sorbitol accumulates intracellularly, inducing osmotic
swelling, as well as in the renal cortex in hyperglycemic states [38,41]. CKD is characterized
by insulin resistance/altered glucose metabolism, and this seems to play a significant
role in the development and progression of pathological changes in the kidney, the main
compartments affected being vascular and tubulointerstitial. Due to the fact that glucose
reabsorption and concentration happens in the proximal tubule, it can be considered the
most predisposed segment of the renal tubules to injury. Ishii et al. showed that prescribing
aldose reductase inhibitors can decrease tissue damage as well as the excretion of different
urinary enzymes [42]. Interestingly, we found that circulating levels of sorbitol increased
gradually from group C to group G5. Given these findings, we believe that sorbitol
accumulation occurs also in non-diabetic CKD patients, the main reason being that CKD is
characterized by altered glucose metabolism and proximal tubular dysfunction.

4.1.4. Antioxidants

Alpha-Lipoic acid (ALA), also known as thioctic acid, is a compound that contains
sulfur and can be found in plants, animals, and humans. ALA is also a vitamin-like an-
tioxidant which was reported recently to have an impact on CKD pathogenesis [40,43].
In this study, we observed that serum levels of ALA correlated negatively with eGFR.
ALA has been used in in vitro and in vivo studies [44–46]. It has been proven that ALA
is a strong antioxidant that can increase vitamin E, vitamin C, catalase, and glutathione
activity, and it can also act as a free radical scavenger and a metal chelator and restore
oxidative injury and antioxidant defense [46,47]. Other relevant benefits of ALA supple-
mentations are related to its anti-inflammatory actions, improving endothelial nitric oxide
syntheses by acting on different signaling cells, and contribution to metabolic pathways
correlated with mitochondria [48]. Therefore, this metabolite has become useful in the
management of several vascular diseases and diabetic complications, such as retinopathy
and neuropathy. Zang et al. [49] showed that ALA supplementation can be useful in acute
kidney prevention [50]. Takaoka et al. proved that supplementation with ALA can also
prevent glomerular injury due to diabetes mellitus [51]. In addition, other studies per-
formed on mice showed that ALA supplementation can prevent toxic injuries induced by
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methotrexate and cisplatin in the kidney [52] and that mice with unilateral obstruction had
minimal fibrosis and moderate histological renal damage [53].

As mentioned above, we observed that circulating levels of ALA decreased gradually
in group C and group G1 to group G5. We assume that a correlation between impaired
nutrition in patients with advanced CKD and the fact that ALA has a short life and
decreased bioavailability due to hepatic degradation, decreased solubility, and instability in
the gastro-intestinal system can explain the progressive decrease in circulating levels of ALA
as kidney function declines. ALA levels are age-dependent, and therefore this observation
could explain the fact that ALA levels are more decreased in CKD. Another plausible
explanation can be offered by the fact that in humans ALA is found in mitochondria and
that CKD is characterized by mitochondrial dysfunction from its early stages. We believe
that lipoic acid supplementation as a natural antioxidant could be used as a therapeutic
approach for CKD progression.

Our study has several limitations. First, this is a cross-sectional study which does not
allow the establishment of relations of causality between phenomena. Second, the small
sample size and the heterogeneity with regard to the causes of CKD could have induced
bias in the interpretation of data and decreased the statistical power of the study.

The strengths of our study reside in the identification of a group of metabolites
belonging to various metabolic pathways related to CKD pathogenesis. Additionally, the
metabolites found in serum and urine displayed a particular behavior according to CKD
stage, allowing for the characterization of a specific metabolic profile of patients even in
the early stages of CKD.

5. Conclusions

In conclusion, in our study, high levels of acylcarnitines, antioxidants, tryptophane
metabolites, uremic toxins, and amino acids have been found in all CKD stages. Their dual
variations in serum and urine may explain their impact on both glomerular and tubular
structures, even in the early stages of CKD. The particular metabolomic profile found in our
study could label the metabolites identified as potential biomarkers useful in the diagnosis
of early CKD. Further longitudinal studies applying targeted metabolomic analyses of
blood and urine metabolites are required in order to establish relations of causality between
these metabolites and CKD progression.
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