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Abstract: BCR-ABL1 is a fusion protein as a result of a unique chromosomal translocation (producing
the so-called Philadelphia chromosome) that serves as a clinical biomarker primarily for chronic
myeloid leukemia (CML); the Philadelphia chromosome also occurs, albeit rather rarely, in other types
of leukemia. This fusion protein has proven itself to be a promising therapeutic target. Exploiting the
natural vitamin E molecule gamma-tocotrienol as a BCR-ABL1 inhibitor with deep learning artificial
intelligence (AI) drug design, this study aims to overcome the present toxicity that embodies the
currently provided medications for (Ph+) leukemia, especially asciminib. Gamma-tocotrienol was
employed in an AI server for drug design to construct three effective de novo drug compounds for
the BCR-ABL1 fusion protein. The AIGT’s (Artificial Intelligence Gamma-Tocotrienol) drug-likeliness
analysis among the three led to its nomination as a target possibility. The toxicity assessment
research comparing AIGT and asciminib demonstrates that AIGT, in addition to being more effective
nonetheless, is also hepatoprotective. While almost all CML patients can achieve remission with
tyrosine kinase inhibitors (such as asciminib), they are not cured in the strict sense. Hence it is
important to develop new avenues to treat CML. We present in this study new formulations of
AIGT. The docking of the AIGT with BCR-ABL1 exhibited a binding affinity of −7.486 kcal/mol,
highlighting the AIGT’s feasibility as a pharmaceutical option. Since current medical care only
exclusively cures a small number of patients of CML with utter toxicity as a pressing consequence, a
new possibility to tackle adverse instances is therefore presented in this study by new formulations
of natural compounds of vitamin E, gamma-tocotrienol, thoroughly designed by AI. Even though
AI-designed AIGT is effective and adequately safe as computed, in vivo testing is mandatory for the
verification of the in vitro results.

Keywords: Philadelphia chromosome-positive leukemia; chronic myeloid leukemia; artificial
intelligence; gamma-tocotrienol; toxicity; asciminib

1. Introduction

Chronic myelogenous leukemia (CML) is caused by a chromosomal translocation
t(9;22)(q34;q11.2), which consequences in the BCR-ABL1 chimeric gene as the carcinogenic
trigger of (Ph+) leukemia or CML [1]. This fusion gene is a clinical biomarker for CML in
addition to a viable treatment approach. In the case of children (CML), it makes up 15% of
all instances of myeloid leukemia. Its prevalence rises with age, reaching 1.2 instances per
million annually in teenagers [2]. The Philadelphia chromosome (Ph) is what distinguishes
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CML from other myeloproliferative neoplasms; however, albeit rarely, the Ph+ may also
be seen in MPN other than CML [3]. CML can manifest in one of three stages—chronic,
accelerated, or blast—and is typically identified in the chronic stage in developed nations.

Asciminib is an allosteric inhibitor that binds to a myristoyl region on the BCR-ABL1
protein. Both natural and altered BCR-ABL1, including the intermediary T315I mutant, are
targeted by asciminib [4]. This mechanism of asciminib is different from that of all other
ABL kinase inhibitors, as it locks the BCR-ABL1 into an inactive conformation. It exhibits
low activity against unmutated BCR-ABL1 and all clinically identified ATP-site mutations,
including T315I, though it has significant selectivity for only ABL1 and, presumably, ABL2
kinases. This is due to the unique shape of the myristoyl pocket [5].

Existing ABL inhibitors can be divided into those that target the active conformation
of the kinase domain and those that target the inactive kinase domain. These inhibitors
compete at the ATP binding sites of these proteins. Since asciminib is distinctive in that it
functions as an allosteric inhibitor, attaching to the BCR-ABL1 protein’s myristoyl pocket
and immobilizing it in an inactive conformation, it is widely administered for the treatment
of (Ph+)leukemia [6]. The health risks of an overdose are likely to coincide with asciminib’s
adverse effect profile; therefore, these might include serious hematological abnormalities
and/or gastrointestinal side effects, among other concerns.

This study intends to overcome the existing toxicity that prevails in the already
administered drugs for (Ph+)leukemia by the utilization of the natural vitamin E compound
gamma-tocotrienol as a BCR-ABL1 inhibitor. The artificial intelligence deep learning
algorithm application for the de novo drug design of tocotrienol was implemented, and a
further toxicity comparison study was performed with asciminib. The AIGT was docked,
and furthermore, analysis of AIGT has been proved vital in this study.

2. Materials and Methods
2.1. 3D Structure Retrieval of Protein

DeepMind developed an artificial intelligence application AlphaFold for the prediction
of 3D structures of proteins using the deep learning model [7]. The BCR-ABL1 fusion
protein of (CML) was accessed from AlphaFold (https://alphafold.ebi.ac.uk/, accessed on
12 December 2022). AlphaFold is witnessing rapid research, including almost all biological
disciplines, and is capable of accurately predicting the 3D models of protein structures
with precision.

2.2. Binding Sites Identification

A deep neural network-based modulator of protein binding pockets is called DeepSite.
A machine learning algorithm that relies on DCNNs for predicting ligand-binding sites
in proteins and demonstrates that, given enough training data, consumers can capture
binding site characteristic features by providing a comprehensive test set based on more
than 7000 proteins from the scPDB database [8]. DeepSite was accessed for free online at
(www.playmolecule.org, accessed on 12 December 2022). Through a WebGL graphical
interface, the PDB file of the BCR-ABL1 fusion protein was uploaded to the NVIDIA
GPU-equipped server for pocket identification and discovery.

2.3. Selectivity Search against HCK Gene

The Harvard Program in Therapeutic Sciences (HiTS), in collaboration with the Na-
tional Institutes of Health (NIH), created the Small Molecule Suite (SMS; https://lsp.
connect.hms.harvard.edu/smallmoleculesuite/, accessed on 12 December 2022), a free,
open-access platform. It undergoes a technique to evaluate and generate libraries utilizing
chemical structure, stage of preclinical studies, user choice, binding selectivity, target cover-
age and induced cellular phenotypes [9]. The selectivity of molecules against the HCK gene
was predicted with this tool. The resultant molecule was further interpreted accordingly.

https://alphafold.ebi.ac.uk/
www.playmolecule.org
https://lsp.connect.hms.harvard.edu/smallmoleculesuite/
https://lsp.connect.hms.harvard.edu/smallmoleculesuite/
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2.4. Post-Refining by MMGBSA Method

Post-refinement of the screening and selection of compounds was done by g_mmgbsa
software (https://rashmikumari.github.io/g_mmpbsa/, accessed on 13 December 2022)
which is a high-throughput method to validate whether the screening method used earlier
is accurate or there are some inactive compounds that could not be detected or screened by
the HiTS platform. In this step, docking scores from the Charkasov were also included as a
reference [10].

2.5. Drug Design by Artificial Intelligence (AI)

The WADDAICA web server is designed to take advantage of both classical and
deep learning models for drug design. WADDAICA (https://heisenberg.ucam.edu:5000/,
accessed on 13 December 2022) features deep learning models for the scaffold hopping of
compounds to alter or generate revolutionary new pharmaceuticals in the first module [11].
The candidate molecule of the vitamin E family, tocotrienol Pubchem id 5282349, was
employed as input, and 3 resultant new drug molecules, designed by an AI approach,
were regained, respectively. Based on the PDBbind database, the deep learning model
implemented in WADDAICA exhibits strong scoring power.

2.6. Lipinski’s Rule of 5

Utilizing the Molinspiration tool (https://www.molinspiration.com/, accessed on 14
December 2022) which aids in the prediction of target molecules’ probability of becoming
pharmaceutical drugs, the AIGT molecule was investigated [12]. The most important
pharmaceutical targets’ bioactivity scores were predicted using this technique, along with
important molecular properties (such as logP, polar surface area, the number of hydrogen
bond donors and acceptors, and others) were also computed.

2.7. Toxicity Screening

ProTox-II (http://tox.charite.de/protox_II, accessed on 16 December 2022) is a virtual
lab for the prediction of toxicities of small molecules. For the prediction of various toxicity
endpoints, such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity,
immunotoxicity, adverse outcomes pathways (Tox21), and toxicity targets, it combines
molecular correlation, pharmacophores, AIGT propensities, and machine-learning models.
The predictions are based on findings from both in vivo instances and in vitro assays [13].
The toxicity analysis of asciminib and AIGT was interpreted and compared. The result-
ing models have demonstrated high performance and have been validated on separate
external sets.

2.8. ADMET Evaluation

The AIGT and asciminib were employed as input at vnnadmet (https://vnnadmet.
bhsai.org/vnnadmet/login.xhtml, accessed on 16 December 2022) for absorption, distri-
bution, metabolism, excretion, and toxicity (ADMET) [14]. Swiftly evaluation of some
of the most crucial characteristics of possible drug candidates, such as their potential for
producing drug-induced liver damage, microsomal stability, cardiotoxicity, and drug-drug
interactions, were figured.

2.9. Docking Analysis

The non-covalent docking application DockThor (https://dockthor.lncc.br/v2/, ac-
cessed on 17 December 2022), which operates the DockThor-VS web server, uses a pdb file
for the ligand and cofactors and a particular input file in pdb for the protein that contains
the atom types and partial charges from the MMFF94S49 force field [15]. NGL, a WebGL-
based molecular visualization library, creates the visualization of proteins, cofactors, and
compounds, as well as the grid position superimposed with the protein. The docking
results of AIGT and BCR-ABL1 fusion protein were accessed.

https://rashmikumari.github.io/g_mmpbsa/
https://heisenberg.ucam.edu:5000/
https://www.molinspiration.com/
http://tox.charite.de/protox_II
https://vnnadmet.bhsai.org/vnnadmet/login.xhtml
https://vnnadmet.bhsai.org/vnnadmet/login.xhtml
https://dockthor.lncc.br/v2/
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2.10. Validation of Docking

The molecular docking algorithm PatchDock, which was developed in 2002 and is
based on the shape complementarity theory, was chosen as the docking tool and may
be viewed at (https://bioinfo3d.cs.tau.ac.il/PatchDock/, accessed on 20 December 2022).
Users simply have to enter specified protein files and ligands in PDB file format in the
specified columns with a few optional fields in the docking request form on this freely
accessible, highly effective, completely automated online server. The output docking results
link displays the top 20 geometry scores, desolvation energies, size of the interface region,
and the solution’s actual rigid transformation.

2.11. MD Simulations

A platform for comprehending and visualizing three-dimensional biological imaging
data is called IMOD (http://imods.chaconlab.org/, accessed on 23 December 2022). This
service simulates the representation of complex domain dynamics in macromolecules and
discovers potential conformational changes, elastic network possibilities, resolution with
a variety of coarse-grained atomic interpretations, and modeling correctness (C Danita
et al., 2022). Various image visualization approaches are made available by this software.
Models of the image data, which can also be represented as a volume or contour surface,
can produce quantitative information.

2.12. MMPBSA Analysis

For the prediction of binding free energy and post-refinement process for the screening
step, the Molecular Mechanics Poisson Boltzmann Surface Area (MM/PBSA) method was
used with the help of g_mmpbsa script (https://rashmikumari.github.io/g_mmpbsa/,
accessed on 26 December 2022). In this method, molecular mechanics potential energy,
electrostatic forces and van der walls interactions and free energy of solvation, including
non-polar and polar interactions, were accessed. From MD simulations, about 80 shots were
taken at different intervals to calculate the energy terms. The average of these energy terms
was taken to predict the binding free energies. Molecular Mechanics Poisson Boltzmann
Surface Area (MM/PBSA) method uses the following equation to calculate or predict the
binding free energy between the protein and ligand:

∆Gbinding = GAIGT and BCR-ABL1 − (GBCR-ABL1 + GAIGT) (1)

Gx = 〈EMM〉 − TS+〈Gsolvation〉 (2)

EMM = Ebonded + Enon−bonded = Ebonded+ (EvdW + Eelec) (3)

Gsolvation = Gpolar + Gnon−polar (4)

Gnon−polar = γSASA +b (5)

where GAIGT and BCR-ABL1 is the free energy of the whole complex (AIGT and BCR-ABL1),
GBCR-ABL1 is the free energy of BCR-ABL1 protein, GAIGT is the free energy of ligand AIGT,
EMM is the vacuum molecular mechanics potential energy, TS is the entropic contribution
into the free binding energy, T is the temperature, S shows the entropy, and Gsolvation
is the free energy of solvation comprised of both polar and non-polar parts. SASA is
the solvent-accessible surface area, γ is the coefficient of surface tension, and b is the
fitting constant.

3. Results
3.1. Protein Retrieval

The BCR-ABL1 fusion protein with Uniport id of A8E194 was assessed from Uniprot.
The retrieval of the 3D structure was from Alphafold. The 3D structure has been visualized
by Discovery Studio, as shown in Figure 1.

https://bioinfo3d.cs.tau.ac.il/PatchDock/
http://imods.chaconlab.org/
https://rashmikumari.github.io/g_mmpbsa/
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Figure 1. BCR-ABL1 fusion protein 3D structure from AlphaFold.

3.2. Binding Site Prediction

BCR-ABL1 fusion protein binding site predictions were performed with the DeepSite
tool. There are three main binding sites predicted, as depicted by yellow arrows in Figure 2.
The prediction scores and corresponding exact possible binding positions are displayed in
Table 1, respectively.
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Figure 2. The binding sites of the BCR-ABL1 fusion protein predicted by DeepSite are shown by
yellow arrows.

Table 1. The binding sites center positions of BCR-ABL1 fusion proteins and their scores predicted by
DeepSite.

Site No. Scores Centers

1 0.80300872 [1.0499999523162842, −0.8100000023841858, 1.7000000476837158]
2 0.798320159 [1.0499999523162842, 1.190000057220459, 1.7000000476837158]
3 0.43639341 [−6.949999809265137, 11.1899995803833, 1.7000000476837158]

3.3. Selectivity Search against HCK Gene

The target gene for (Ph+) leukemia is HCK. The small molecule suite’s tool selectivity
determined the target molecules that are a direct hit for the HCK gene. The graph below is
an apparent display of various target molecules with binding affinity up to Q1(nM) on the
y-axis and their respective selectivity with the HCK gene on the x-axis. The most selective
molecules are shown in dark blue dots, and the other molecules are in grey dots in the



Biomedicines 2023, 11, 1041 6 of 17

graph below (Figure 3). Only one molecule, dasatinib with chEMBL id “CHEMBL1421,” is
the most selective molecule targeting the HCK gene.
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3.4. Post Refinement by MMGBSA Method

The post-refinement results from MMGBSA (Molecular mechanics with generalized
born and surface area solvation) validated that there was only one compound that was
active while all others were semi-active or inactive compounds, as reported in the upper
section. This ultimately showed that no compound was missing or had not been detected
by the HiTS database. Table 2 depicts the comparative analysis of the docking scores from
the HiTS database and MMGBSA.

Table 2. Comparative docking scores of compounds with targeted protein from HiTS database and
MMGBSA method.

Compounds HiTS Docking Score
Kcal/Mol

MMGBSA Docking Score
Kcal/Mol

TP1589036 or CHEMBL1421 −6.7 −80.78

TJ0975527 −2.5 −78.9

HG08642 −1.7 −67.4

TV54893 −1.5 −64.9

RD5679 −0.6 −54.6

GH0736 −0.5 −52.9

CV6490 −0.2 −34.6

3.5. Literature Search for Currently Administered Drugs

The most recently FDA-approved drug, asciminib, selected as the main target of this
study, was studied for its function as an allosteric inhibitor against BCR-ABL1. The physio-
chemical properties were looked into, as shown in Table 3, and assessed from Pubchem.
The 3D structure of asciminib was retrieved from Pubchem with Puchem id 72165228, as
shown in Figure 4 below.
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Table 3. The physiochemical properties of asciminib retrieved from Pubchem as shown in the Table.

Property Name Property Value

Molecular Weight 449.8
XLogP3-AA 3

Hydrogen Bond Donor Count 3
Hydrogen Bond Acceptor Count 8

Rotatable Bond Count 6
Exact Mass 449.1066235

Monoisotopic Mass 449.1066235
Topological Polar Surface Area 103 Å2

Heavy Atom Count 31
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3.6. Natural Antineoplastic Agent Search

Gamma-tocotrienol is a tocotrienol that has a farnesyl chain at position 2 and methyl
groups at positions 2, 7, and 8 of a chroman-6-ol. It is a member of the vitamin E family with
powerful anti-cancer capabilities that can fight a variety of malignancies. Gamma-tocotrienol
was retrieved from Pubchem with Pubchem id 528249, as shown in Figure 5 below.
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3.7. Drug Design with Artificial Intelligence

WADDAICA platform was assessed, and its drug design by AI tool was implemented
on gamma-tocotrienol to convert the natural candidate compound into three eligible drug
candidates by applying the breakthrough deep learning model. The three molecules
designed are shown in Figures 6–8 below.
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3.8. Toxicity Comparison Analysis

The calculation of toxic properties of asciminib is examined, and results depict that
there is high predictability against immunotoxicity; moreover, hepatotoxicity and carcino-
genicity are also predicted to be active. Moreover, the cytotoxicity and mutagenicity scores
are low for being inactive, as shown in Table 4 below. Inactivity against the toxic signaling
pathways, as demonstrated in the table, the AIGT has a strong probability of being harmless.
Table 5 below demonstrates that there is a high indication that AIGT will not be hepatotoxic,
mutagenic, or cytotoxic.

Table 4. The toxicity analysis of asciminib from ProTox-II.

Toxicity Model Report of Asciminib

Classification Target Shorthand Prediction Probability
Organ toxicity Hepatotoxicity Dili Active 0.50

Toxicity endpoints Carcinogenicity Carcino Active 0.52
Toxicity endpoints Immunotoxicity Immune Active 0.82
Toxicity endpoints Mutagenicity Mutagen Inactive 0.58
Toxicity endpoints Cytotoxicity Cyto Inactive 0.61

Tox21-Nuclear receptor
signaling pathways

Aryl hydrocarbon Receptor
(AhR) nr_ahr Inactive 0.81

Tox21-Nuclear receptor
signaling pathways Androgen Receptor (AR) nr_ar Inactive 0.98

Tox21-Nuclear receptor
signaling pathways

Androgen Receptor Ligand
Binding Domain (AR-LBD) nr_ar_lbd Inactive 0.98

Tox21-Nuclear receptor
signaling pathways Aromatase nr_aromatase Inactive 0.89

Tox21-Nuclear receptor
signaling pathways

Estrogen Receptor Alpha
(ER) nr_er Inactive 0.85

Tox21-Nuclear receptor
signaling pathways

Estrogen Receptor Ligand
Binding Domain (ER-LBD) nr_er_lbd Inactive 0.94

Tox21-Nuclear receptor
signaling pathways

Peroxisome
Proliferator-Activated

Receptor Gamma
(PPAR-Gamma)

nr_ppar_gamma Inactive 0.92

Tox21-Stress response
pathways

Nuclear factor
(erythroid-derived 2)-like
2/antioxidant responsive

element (nrf2/ARE)

sr_are Inactive 0.93

Tox21-Stress response
pathways

Heat shock factor response
element (HSE) sr_hse Inactive 0.93

Tox21-Stress response
pathways

Mitochondrial Membrane
Potential (MMP) sr_mmp Inactive 0.67

Tox21-Stress response
pathways

Phosphoprotein (Tumor
Suppressor) p53 sr_p53 Inactive 0.88

Tox21-Stress response
pathways

ATPase family AAA
domain-containing protein

5 (ATAD5)
sr_atad5 Inactive 0.92

The green color represents inactive toxicity and red color represents active toxicity in accordance with the
probability score ranging from 0–1.0 with higher score showing lesser toxicity.
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Table 5. The toxicity analysis of AIGT from ProTox-II.

Toxicity Model Report of Drug

Classification Target Shorthand Prediction Probability
Organ toxicity Hepatotoxicity Dili Inactive 0.88

Toxicity endpoints Carcinogenicity Carcino Inactive 0.62
Toxicity endpoints Immunotoxicity Immune Inactive 0.98
Toxicity endpoints Mutagenicity Mutagen Inactive 0.70
Toxicity endpoints Cytotoxicity cyto Inactive 0.53

Tox21-Nuclear receptor
signaling pathways

Aryl hydrocarbon Receptor
(AhR) nr_ahr Inactive 0.90

Tox21-Nuclear receptor
signaling pathways Androgen Receptor (AR) nr_ar Inactive 0.96

Tox21-Nuclear receptor
signaling pathways

Androgen Receptor Ligand
Binding Domain (AR-LBD) nr_ar_lbd Inactive 0.99

Tox21-Nuclear receptor
signaling pathways Aromatase nr_aromatase Inactive 0.93

Tox21-Nuclear receptor
signaling pathways

Estrogen Receptor Alpha
(ER) nr_er Inactive 0.80

Tox21-Nuclear receptor
signaling pathways

Estrogen Receptor Ligand
Binding Domain (ER-LBD) nr_er_lbd Inactive 0.97

Tox21-Nuclear receptor
signaling pathways

Peroxisome
Proliferator-Activated

Receptor Gamma
(PPAR-Gamma)

nr_ppar_gamma Inactive 0.98

Tox21-Stress response
pathways

Nuclear factor
(erythroid-derived 2)-like
2/antioxidant responsive

element (nrf2/ARE)

sr_are Inactive 0.97

Tox21-Stress response
pathways

Heat shock factor response
element (HSE) sr_hse Inactive 0.97

Tox21-Stress response
pathways

Mitochondrial Membrane
Potential (MMP) sr_mmp Inactive 0.89

Tox21-Stress response
pathways

Phosphoprotein (Tumor
Suppressor) p53 sr_p53 Inactive 0.93

Tox21-Stress response
pathways

ATPase family AAA
domain-containing protein

5 (ATAD5)
sr_atad5 Inactive 0.98

The green color represents inactive toxicity and red color represents active toxicity in accordance with the
probability score ranging from 0-1.0 with higher score showing lesser toxicity.

3.9. ADMET Comparison Analysis

The late-stage failure of the candidate drug can be prevented by carefully balancing
drug-likeness and ADMET (absorption, distribution, metabolism, elimination, and toxicity)
during the synthesis of therapeutic molecules, which were analyzed with the help of
VNN-ADMET. Table 6 shows that despite being approved by FDA, it is highly predictable
that asciminib is again proven to be hepatotoxic. Correspondingly, the AMES test for
carcinogenicity is also predicted as positive. Whereas Table 7 depicts that AIGT has no
prominent toxicity and thus can prove to be a potential drug candidate.
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Table 6. The ADMET analysis results of asciminib show it to be hepatotoxic and negative for the
AMES test.

Q
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Liver Toxicity Metabolism (Cyp Inhibitors for) Membrane Transporters Others
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-
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-
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er MMP AMES MRTD
(mg/day)

Yes No Yes No No No No No Yes Yes Yes No Yes 207

Table 7. The ADMET analysis results of AIGT show it to be non-toxic, especially as an hERG blocker.
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-
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B
lo
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er MMP AMES MRTD
(mg/day)

Yes No Yes No No No No No Yes Yes Yes Yes No Yes 25

3.10. Lipinski Rule of 5

The results demonstrated in the table below justify that Lipinski’s rule of five is being
observed by the AIGT. Molinspiration predicted Lipinki’s rule’s characteristics, such as
logP, mass, hydrogen bond donors, hydrogen bond acceptors and molar refractivity. The
results of AIGT for Lipinski Rule of 5 are given below in the Table 8.

Table 8. The results of AIGT for Lipinski Rule of 5.

Lipinski Rule of 5 logP Molecular Weight Hydrogen Bond
Donor

Hydrogen Bond
Acceptor

Molar
Refractivity

Ligand 6.53 381.36 g/mol 1 2 104.7479

3.11. DockThor Docking Analysis

The AIGT and BCR-ABL1 fusion protein were docked with the blind docking option
of DockThor. The results depict that the binding affinity is up to −7 kcal/mol, ensuring a
valid and high binding energy score. Table 7 below shows the complete results, and the
pictorial depiction of docked AIGT and BCR-ABL1 complex is shown in Figure 9. The
docking results of AIGT and BCR-ABL1 are given in the Table 9 below.

Table 9. The docking results of AIGT and BCR-ABL1.

Binding Affinity Total Energy vdW Energy Elec. Energy

−7.486 −1.347 −11.844 −15.364
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3.12. Docking Results Validation

The docking results of AIGT and BCR-ABL1 obtained from DockThor were further
authenticated by means of utilizing the shape complementarity docking server Patchdock.
With a score of 5970 and an ACE value of 701.90, model 1 was chosen as the most reliable
result. Figure 10 below depicts the docked complex from patchdok.
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3.13. MD Simulation

In order to calculate and characterize the docked complex of the AIGT and BCR-ABL1,
iMODS considered a number of parameters. The results were explained. The heat map
shows that there are several locations that are observed to be directly correlated. A low
RMSD value denotes enhanced interactions between the structure’s various residues. The
docked complex’s expected Eigon value was 1.013125 × 10−4. The results calculated below
are shown in Figure 11.
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Figure 11. Docked complex of AIGT and BCR-ABL1 molecular dynamic stimulation. (A) MNA
mobility of 3D structure (B) AIGT and BCR-ABL1 docked complex deformability (C) B-factor of AIGT
and BCR-ABL1 docked complex (D) Docked complex AIGT and BCR-ABL1 Eigenvalues (E) Docked
complex AIGT and BCR-ABL1 variance where individual deviations are shown in purple color, and
collective variances are shown in green (F) Docked complex AIGT and BCR-ABL1 co-variance map
in which the red color shows the correlated area and the blue color depicts anti-correlated motions
(G) Docked complex AIGT and BCR-ABL1 elastic network where more stiff regions are shown as
darker grey in color.

3.14. MMPBSA Analysis

Binding free energy and the post-refinement of the final docked complex were pre-
dicted by the MM/PBSA method. These calculations showed that the electrostatic force
of attraction had dominated the binding energy with a percentage of contribution of 60%
in comparison to the Van der Waals interactions with a 21% contribution. So this implies
that the electrostatic force has exceeded the force of repulsion and is proven as the main
interacting force to be involved in the binding of the protein and the ligand. Thus this
analysis validated the binding affinities present in the docked complex. The energy terms,
their values and the contributions of percentages are given in Table 10.



Biomedicines 2023, 11, 1041 14 of 17

Table 10. Prediction of energy terms, values, and contribution percentages calculated by MM/PBSA
method.

Terms of Energy Values(KJ/mol) Contribution Percentage

Electrostatic force −15.678 60%

Van der Waals interaction −11.74 21%

Solvation (polar) 1001.67 0

Solvation (SASA) −21.78 3%

Binding energy −7.68 100%

4. Discussion

Chronic myelogenous leukemia (CML), a slow-growing malignant hematological
illness, is a result of 15% of instances of leukemia that are caused [16]. The Philadelphia
chromosome, which is formed by a reciprocal translocation that results in a prolonged
chromosome 9 and a shorter chromosome 22, is the cause of this illness. The dysregulated
BCR-ABL1 fusion carcinogen protein is developed as a result of the translocation, which
contributes to the uncontrolled proliferating of white blood cells [17]. Multiple processes
involved in cell growth and division, including receptor endocytosis, autophagy, remodel-
ing of the cytoskeleton and actin, cell motility and adhesion, and cell adhesion, depend on
ABL1. Additionally, ABL1 translocates into the nucleus, where it assists in apoptosis, the
response to DNA damage, and DNA binding activities [4].

The mechanisms of action and toxicity of the medications used to treat CML differ. In
a study conducted by Oliver Henke et al. [18]: it was observed that Imatinib’s utilization in
the management of CML radically altered the way this disease was addressed and spurred
the advent of additional potent targeted protein kinase inhibitors. FDA-approved drugs for
initial therapy comprise imatinib as an initial treatment. Furthermore, dasatinib binds to the
kinases and prevents them from stimulating growth and is also administered as a treatment.
Dasatinib and bosutinib are both regarded as the second line in therapy [19]. Additionally,
nilotinib treatment is linked to the transitory increase in serum aminotransferase levels and
few incidences of clinically evident acute liver damage [20]. Whereas, although the clinical
manifestations of hepatotoxicity are still being precisely defined, occurrences of clinically
evident liver problems, progressing hepatic failure, and fatality have been reported in
ponatinib clinical studies [21]. Despite hepatoxicity and other health hazardous effects of
these drugs, they have been approved by the FDA, and each of these medications is orally
ingested to treat (Ph+)leukemia or CML.

Asciminib works as a therapeutic agent by blocking an oncogenic protein that pro-
motes the growth of CML. It functions to inhibit both the wild-type as well as some
mutation forms of BCR-ABL1, along with the T315I mutation [17]. Upon its administra-
tion, it recognizes and attaches to the myristoyl pocket of the BCR-ABL1 fusion protein,
which is distinctive from the ATP-binding domain. An overdose’s side effects are likely to
correspond to asciminib’s adverse effect profile; therefore, they may furthermore include
severe gastrointestinal problems and hematological abnormalities mainly. Asciminib’s
drug-induced death of the proliferating cells was defined by a power model. Additionally,
the computational analysis of hepatotoxicity along with other toxicities was computed in
this study that validates the administration of asciminib as highly risky. ProTox-II and
VNN-Admet simultaneously justify asciminib as crucial for its role in liver damage.

The vitamin E has eight members: four tocopherols, namely α-, β-, δ- and γ-tocopherol,
and four tocotrienols in the form of α-, β-, δ- and γ-tocotrienols. Tocotrienols are an under-
appreciated isomer of vitamin E that has unmatched health advantages [22]. Tocotrienols
were rarely used in vitamin E studies until recently, despite their relative superiority to
tocopherol and their widespread occurrence in palm oil. This study specifically focuses
on the utilization of gamma-tocotrienol since it functions as an apoptosis inducer, a radi-
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ation protective agent, a plant metabolite, an antioxidant, an antineoplastic agent, and a
hepatoprotective agent [23].

The advanced technique of revolutionary artificial intelligence for drug designing
through deep learning algorithms was implemented by assessing the WADDAICA online
server. Docking is a valuable tool for screening because it allows for the virtual prediction
of how small molecules, such as drugs, will interact with proteins, such as receptors or
enzymes. This simulation can provide valuable information about the binding affinity,
orientation and energetics of the protein-ligand interaction without the need for experimen-
tal techniques. It’s important to note that different scoring functions may have different
strengths and weaknesses, and the choice of scoring function depends on the specific
problem and the desired trade-off between accuracy and speed. While DockThor Vina
may work well for a particular use case, other scoring functions may be better suited for
other situations. It’s always a good idea to test and compare multiple scoring functions to
determine which is the best fit for a given problem. Post-refining schemes are computa-
tional methods that are used to improve the accuracy of protein-ligand docking predictions.
Two commonly used post-refining methods are MM/PBSA (Molecular Mechanics/Poisson-
Boltzmann Surface Area) and MM/GBSA (Molecular Mechanics/Generalized Born Surface
Area). The gamma-tocotrienol was employed for drug design by AI tool for the retrieval
of three competent de novo drug molecules against the BCR-ABL1 fusion protein. The
AIGT was selected as the target candidate based on its drug-likeliness analysis amongst
all three. The comparison study of the toxicity of asciminib and AIGT proves that AIGT
is not only more efficacious but hepatoprotective as well. Moreover, the ADMET analysis
comparison further justifies the findings, The docking of BCR-ABL1-1 with AIGT resulted
in the binding affinity of −7.486 kcal/mol hence proving that AIGT is a potential drug
candidate. The execution of docking with Patchdock to assure the shape complementarity
of the protein and ligand substantially reinforced the docking findings. Thus, the molecular
dynamic stimulation also enhanced the reliability of the efficiency of the results.

5. Conclusions

A high percentage of patients with Ph+ CML in the chronic phase now experience near-
normal life expectancies owing to the availability of BCR-ABL1 tyrosine kinase inhibitors
(TKIs). Nonetheless, a significant shortcoming that has been addressed in this study,
with asciminib in particular, is the pertinent and escalating problem of toxicity of the
currently prescribed drugs. The computational findings indicate that the AIGT is not
only non-toxic; however, it is perfectly suited for BCR-ABL1 inhibitors with high binding
affinity. The results abide by the Lipinski rule of five; moreover, the substantiated ADMET
results are additional arguments in favor of AIGT’s legitimacy as a target medication.
Additionally, toxicity comparison between asciminib and AIGT offers further credence
for the findings. According to the study, additional experimental evaluations in vivo and
in vitro are needed to verify the observations. The research’s outcomes give adequate
computational pharmacological knowledge to permit the regulation of a precisely AI-
designed AIGT.
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