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Abstract: Treatment resistant schizophrenia (TRS) is characterized by a lack of, or suboptimal re-
sponse to, antipsychotic agents. The biological underpinnings of this clinical condition are still
scarcely understood. Since all antipsychotics block dopamine D2 receptors (D2R), dopamine-related
mechanisms should be considered the main candidates in the neurobiology of antipsychotic non-
response, although other neurotransmitter systems play a role. The aims of this review are: (i) to
recapitulate and critically appraise the relevant literature on dopamine-related mechanisms of TRS;
(ii) to discuss the methodological limitations of the studies so far conducted and delineate a theoretical
framework on dopamine mechanisms of TRS; and (iii) to highlight future perspectives of research and
unmet needs. Dopamine-related neurobiological mechanisms of TRS may be multiple and putatively
subdivided into three biological points: (1) D2R-related, including increased D2R levels; increased
density of D2Rs in the high-affinity state; aberrant D2R dimer or heteromer formation; imbalance
between D2R short and long variants; extrastriatal D2Rs; (2) presynaptic dopamine, including low
or normal dopamine synthesis and/or release compared to responder patients; and (3) exagger-
ated postsynaptic D2R-mediated neurotransmission. Future points to be addressed are: (i) a more
neurobiologically-oriented phenotypic categorization of TRS; (ii) implementation of neurobiological
studies by directly comparing treatment resistant vs. treatment responder patients; (iii) development
of a reliable animal model of non-response to antipsychotics.

Keywords: psychosis; clozapine; refractory; positive symptoms; negative symptoms; glutamate;
ultra-resistant

1. Introduction

Schizophrenia is among the most debilitating disorders in psychiatry, with great
impairment of social and individual functioning [1]. Although antipsychotics are the
cornerstone of schizophrenia treatment, 20–45% of patients show partial or no response to
antipsychotic medications [2]. According to the American Psychiatric Association (APA)
practice guidelines [3], treatment resistant schizophrenia (TRS) may be defined as “little or
no symptomatic response to multiple (at least two) antipsychotic trials of adequate duration
(at least 6 weeks) and dose (therapeutic range)”. In agreement with this definition, poor
response to antipsychotics may have a clinical, pharmacokinetic, or pharmacodynamic
origin, the latter being the only mechanism assumed to induce a state of “true” treatment
resistance, which is due to non-modifiable, drug-specific factors.

Schizophrenia treatment may be completely or partially unsuccessful for multiple
clinical reasons, including (but not limited to) the possibility that patients may be receiving
a suboptimal dose of antipsychotics, may suffer from comorbid substance misuse, or may
be under concurrent use of other prescribed medicines or a concomitant physical illness
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that may negatively impact antipsychotic treatment. Genetic or iatrogenic variations in
antipsychotic pharmacokinetics may also lead to inadequate blood levels of the drug and
ineffective drug concentrations at the site of action [4–7]. These causes of non-response to
antipsychotics should always be investigated and ruled out before considering putative
pharmacodynamic mechanisms of resistance.

In a substantial number of non-responder patients, however, clinical variables can be
reasonably excluded, and no pharmacokinetics variations can be suspected. These patients
may putatively represent treatment resistant cases due to pharmacodynamic causes [6].
Nonetheless, despite the clinical relevance of this phenomenon, biological underpinnings
of pharmacodynamic-related mechanisms of non-response to antipsychotics, and more in
general of TRS, are still scarcely understood [8].

Schizophrenia has been prominently, albeit not exclusively, regarded as a dysfunc-
tion of central dopamine neurotransmission [9–11]. From a neurobiological perspective,
schizophrenia is considered a neurodevelopmental disorder with complex genetic architec-
ture and pathophysiology [12]. Multiple genetic loci have been associated to schizophrenia,
although the precise pathophysiological function of several genetic elements is yet to be
determined [13]. However, schizophrenia has been considered a disorder of the transcrip-
tome, and aberrant microRNAs may operate to affect the expression of genes implicated in
neurodevelopment and in specific neurotransmitter signaling [14]. Among the more stud-
ied and corroborated pathophysiological hypotheses of schizophrenia are the dopaminergic
dysregulation and the disturbed glutamatergic neurotransmission hypotheses [15]. The
dopamine dysregulation hypothesis postulates that the presynaptic compartment is the
major site of dopaminergic dysfunction and, specifically, elevated dopamine synthesis and
release capacity [15]. However, several studies have also explored putative dysfunctions of
D2 receptor levels at both pre and postsynaptic sites, as well as disturbance of D2-related
postreceptor signaling [15]. One putative crucial pathophysiological mechanism, which
may also be relevant to TRS, is an imbalance of dopamine–glutamate interplay occurring at
the postsynaptic density, which is a protein mesh of the glutamatergic postsynapse devoted
to integrating synaptic signaling from different afferent neurons [16].

Remarkably, all antipsychotic drugs share a variable degree of dopamine D2 receptor
(D2R) blockade, even if with different affinities and acting as antagonists or partial ago-
nists [17]. More specifically, antipsychotics have been classically subdivided into typical (or
neuroleptics) and atypical agents [18]. A more modern classification refers to these agents
as first, second, and third-generation antipsychotics. Typical, i.e., first-generation antipsy-
chotics are predicted to be efficacious against positive symptoms but to cause high rates of
extrapyramidal side effects (EPS) [18]. Second-generation antipsychotics are demonstrated
to be efficacious against positive symptoms but trigger less severe EPS and have partial
efficacy against other symptom domains of schizophrenia, namely positive and cognitive
symptoms [18]. Despite this schematization, however, differences between antipsychotic
agents are several and difficult to encapsulate into schematic representations. Grossly,
first-generation antipsychotics share a high affinity and selectivity to D2Rs and block a
substantial portion of subcortical D2Rs [19,20]. Second-generation antipsychotics have
lower affinity to D2Rs and have less selectivity, with relevant action on 5HT2A, which
has been considered one of the pharmacological mechanisms to prevent dopamine loss in
the basal ganglia and the occurrence of EPS [20]. Moreover, multiple second-generation
antipsychotics have a multireceptor profile, with several neurotransmitter systems targeted
and possibly responsible both for therapeutic efficacy and adverse effects [20]. A schematic
representation or antipsychotics’ receptor profile in terms of affinity and dissociation
constants is given in Tables 1 and 2, respectively.
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Table 1. Receptors’ affinity profile of antipsychotic drugs.

Antipsychotic D1 D2 D3 D4 5-HT1A 5-HT1D 5-HT2A 5-HT2B 5-HT2c 5-HT6 5-HT7 AchR α1 α2 References

Amisulpride - ++++ ++ - n.t. n.t. - ++ - n.t. - - - - [21,22]

Aripiprazole - ++++ ++ + ++ + +++ ++++ + + ++ n.t. + + [23–26]

Brexpirazole + ++++ +++ ++ ++++ n.t. ++++ +++ ++++ + ++ n.t. ++ +++ [24,27,28]

Cariprazine - ++++ ++++ - +++ n.t. ++ ++++ - n.t. n.t. n.t. +++ +++ [24,27,29]

Chlorpromazine ++ +++ +++ ++ n.t. n.t. ++ n.t. ++ ++ ++ + +++ - [21,30,31]

Clozapine + + + ++ - - +++ +++ ++ ++ ++ +++ +++ + [21,31–34]

Haloperidol + ++++ +++ ++ - - + n.t. - - - - +++ - [31,32,34]

Lumateperone ++ ++ n.t. n.t. n.t. n.t. ++++ n.t. n.t. n.t. n.t. n.t. ++ n.t. [35]

Lurasidone - +++ ++ ++++ +++ n.t. +++ n.t. - n.t. +++ n.t. + ++ [36–39]

Olanzapine ++ ++ + ++ - - +++ ++ ++ ++ - +++ ++ + [31,32,34]

Paliperidone ++ +++ +++ + + - +++ ++ n.t. +++ n.t. +++ ++ [30,40]

Quetiapine - + - - - - ++ ++ - - - - +++ - [31,33,41]

Risperidone + +++ ++ - - + ++++ ++ ++ - +++ - +++ ++ [32,34,42,43]

Ziprasidone + +++ ++ ++ +++ +++ ++++ ++ ++++ + ++ - ++ - [44,45]

Abbreviations: 5-HT = serotonin; D = dopamine; Ach = acetylcholine; α = adrenergic; n.t. = not tested; - = minimal
to none; + = low; ++ = intermediate; +++ = high; ++++ = very high.

Table 2. Antipsychotic dissociation constants (nM) at receptors.

Antipsychotic D1 D2 D3 D4 5-HT1A 5-HT2A 5-HT2B 5-HT2c 5-HT7 M1 α1A/B α2A α2c References

Amisulpride 1.3 1.8 ** 3.2 *** n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. [46–48]

Aripiprazole n.t. 1.8 ** 0.8 † 514 1.7 † n.t n.t. n.t. n.t. 6800 † 26/35 † n.t. 38 † [49–51]

Brexpirazole n.t. 0.3† 1.1 † n.t. 0.12 † 0.47 † 1.9 † n.t. 3.7 † >1000 † 3.8/0.17 † n.t. 0.59 † [52]

Cariprazine n.t. 0.49 † 0.09 † n.t. 2.6 † 18.6 † 0.58 † n.t. 112 † n.t. n.t. n.t. n.t. [53]

Chlorpromazine 16.5 * 1.2 **/$ 1.4 *** 9.6 # n.t. 2 § n.t. n.t. n.t. 378 $ 14.0 £ n.t. n.t. [34,49,54,55]

Clozapine 90 * 76 ** 190 *** 22 # 123 ± 5 4 § n.t. n.t. 42.2 ± 12.0 n.t. 17.5 ± 5.0 147 ± 14 15.6 ± 2.0 [49,55–57]

Haloperidol 55 * 0.74 ** 8.8 *** 2 # >1000
(IC50 value) 74 § n.t. n.t. >1000

(IC50 value) n.t. 17.9 ± 1.5 >1000
(IC50 value)

>1000
(IC50 value) [49,55,57,58]

Lumateperone 52 32 n.t. n.t. n.t. 0.54 n.t. 173 n.t. n.t. 73 n.t. n.t. [35,59]

Lurasidone n.t. 1† 15.7 29.7 6.4 † 0.5 † n.t. 415 0.5 †
>1000

(IC50 value)
†

47.9 ± 7.8 40.7 ± 7.7 10.8 ± 0.64 [57]

Olanzapine 9.2 * 7.4 ** 14 *** 15 # >1000
(IC50 value) 3.4§ n.t. n.t. n.t. n.t. 22.1 ± 7.7 n.t. n.t. [49,55,57,60]

Paliperidone 670 4 7.50 n.t. 380 0.25 n.t. n.t. 1.3 3570 4.0 17 n.t. [61]

Quetiapine 290 * 140 ** 240 *** 2000 # 1000 † 135 § n.t. n.t. 1800 † 1100 † 22/15 † n.t. 29 † [49,60,62]

Risperidone 42 * 1.09 ** 3.5 *** 4.4 # 210 † 0.2 § n.t. n.t. 3.0 † 2800 † 0.60/9.0 † 13.7 ± 1.1 9.1 † [49,55,57,60]

Ziprasidone 9 * 2.7 ** 1.5 *** 8 # n.t. 3 § n.t. n.t. n.t. n.t. n.t. n.t. n.t. [49,63]

Abbreviations: 5-HT = serotonin; D = dopamine; M = muscarinic; α = alpha-adrenergic; n.t. = not tested;
IC50 = half maximal inhibitory concentration. [3 H]ligand used Kd of ligand, nM: * = spiperone; ** = raclopride
(1.9); *** = raclopride (1.6); # = spiperone (0.086); § = ketanserin; † = In vitro binding affinities for human receptors;
$ = rat striatum; £ = rat total cortex.

Based on these considerations, multiple neurotransmitters have also been implicated
in the pathophysiology of schizophrenia [64] and should represent novel targets for fu-
ture antipsychotic drugs [65]. In addition, structural and functional brain changes have
been reported to occur in both first-episode psychosis [66] and multiple-episode chronic
schizophrenia patients [67]. However, a clear role of the above-mentioned mechanisms in
the pathophysiology of schizophrenia and in the therapeutic action of antipsychotic agents
is yet to be fully elucidated.

Despite the possible involvement of other neurotransmitter systems, dopamine dys-
function is still considered the most relevant common pathway leading to schizophre-
nia [68], and all antipsychotic drugs impact dopamine neurotransmission. Therefore,
dopamine-related mechanisms should be considered as one of the main candidates in the
neurobiology of non-response to antipsychotics, at least in the main part of patients who
develop an acute or progressive loss of response to these agents. According to these points,
the aim of this review is to provide an analytical evaluation and a critical appraisal of
emerging putative dopamine-related mechanisms of non-response to antipsychotics, which
is the base for diagnosing TRS.
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2. Materials and Methods

A comprehensive review of the literature was carried out through Medline/Pubmed,
Embase, and Scopus databases. Keywords were searched in the Title/Abstract fields;
no date restriction was set; only publications in the English language were included.
The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [69] were followed in the screening procedure. The search strings included
keywords related to treatment resistance/unresponsiveness, schizophrenia/psychotic
disorders, and dopamine. The search string is reported as follows: ((((((((((((((“treat-
ment resistant”[Title/Abstract]) OR (treatment-resistant[Title/Abstract])) OR (“ultra re-
sistant”[Title/Abstract])) OR “resistance”[Title/Abstract])) OR (“resistant”[Title/Abstract]))
OR (“treatment refractory”[Title/Abstract])) OR (“refractory”[Title/Abstract])) OR
(treatment-refractory[Title/Abstract])) OR (“refractoriness”[Title/Abstract])) OR (“un-
responsive”[Title/Abstract])) OR (non-responsive[Title/Abstract])) OR (“clozapine”
[Title/Abstract])) OR (ultra-resistant[Title/Abstract])) AND (((((“first episode psychosis”
[Title/Abstract]) OR (“schizophrenia”[Title/Abstract])) OR (“psychotic”[Title/Abstract]))
OR (“psychosis”[Title/Abstract])) OR (“first episode”[Title/Abstract]))) AND (“dopamine”
[Title/Abstract]). The latest update of available literature was conducted on 17 February
2023. The search returned 4610 articles. After removing duplicates, 2184 papers were
retrieved. All publications were screened by title and abstract to remove not pertinent
articles. The outcomes at this stage were: (i) any type of direct neurobiological comparison
between treatment resistant and treatment responder patients involving dopamine-related
mechanisms; and (ii) any type of dopamine-related neurobiological correlate of response
to antipsychotics. After this step, a total of 724 publications were selected, and the full
paper of all was read. Again, non-pertinent publications were removed, and the resulting
ones formed the literature base for the present work. These latter steps were carried out
separately and in blind by two experimenters (L.V., G.D.S.). In case of lack of agreement
(publications removed by one and included by the other), the first author was in charge of
deciding. Additional publications were hand-searched based on the references of included
publications. At the end of the screening process, a total of 101 articles were included in the
qualitative synthesis. Figure 1 illustrates the PRISMA flow diagram, showing the different
stages of paper selection. Additional reports on dopamine-related molecular mechanisms
putatively implicated in the pathophysiology of schizophrenia or in the antipsychotic
mechanism of action were included in the manuscript to enlarge the discussion of the
purported dopamine basis of resistance to antipsychotic treatment.
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systematic review.

3. Results

The systematic review of reports yielded 101 studies that met inclusion criteria. Given
the large methodological heterogeneity of studies included, ranging from preclinical cell
culture paradigms to animal models of non-response to antipsychotics to human neu-
roimaging reports on dopamine system dysfunctions in treatment resistant schizophrenia
patients, we were unable to carry out a quantitative synthesis of evidence.

The lack of a well-defined theoretical framework (at least, in relation to the topic of
the present review) in multiple studies also prevented the possibility of proceeding with
a hypothesis-driven approach, i.e., reporting different hypotheses to explain dopamine-
related underpinnings of TRS and listing studies confirming or rejecting each hypothesis.

In the attempt to summarize the data, we provided a qualitative synthesis of re-
ports, subdividing them into four large putative neurobiological sites of dopamine-related
non-response to antipsychotics, namely: 1. dopamine genes related (n = 9 reports); 2. D2 re-
ceptor dynamics related (n = 37 reports); 3. dopamine presynaptic alterations related
(n = 35 reports); 4. dopamine postsynaptic site alterations related (n = 20 reports).

3.1. Genetic Variants in Dopaminergic Genes and Response to Antipsychotics

Multiple pharmacogenomic studies have been carried out to associate the response to
antipsychotics with specific variants in target genes implicated in dopaminergic signaling.
The results, however, are inconclusive to date.

The most replicated studies were based on the evaluation of two genetic loci within
the DRD2 gene, i.e., TaqI and -141C, whose A1 and Del alleles, respectively, were associated
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with a reduction of striatal D2Rs [70]. Inconsistent findings were described throughout the
studies carried out [70] for several methodological challenges: disparity in populations
included differences in antipsychotics investigated and inconsistency in the definition
of response to antipsychotics. However, a well-conducted meta-analysis showed a sig-
nificantly lower response to antipsychotics in -141C locus Del carriers (both hetero and
homozygotes) compared to Ins/Ins subjects [71]. This finding was confirmed in sensitivity
analyses, although it failed to reach significance when studies including first-episode pa-
tients were excluded [71]. In the same meta-analysis, no significant differences in response
to antipsychotics were found between TaqI A1 vs. A2 allele carriers [71].

The large-scale genome-wide association study from the Psychiatric Genomics Consor-
tium (PGC) has found that the top single-nucleotide polymorphism (SNP), i.e., rs2514218,
associated with schizophrenia was located about 47 kb upstream of the DRD2 gene se-
quence [13]. The rs2514218 SNP common variant coded for a C base, while the polymorphic
allele for a T base, with C carriers, showed a higher risk of schizophrenia [13]. The biological
function of this SNP has not been characterized yet, and biological assays from blood and
postmortem brain tissues have not identified a relationship between rs2514218 and D2R gene
expression levels [13]. Nonetheless, a pharmacogenomic study has reported a significant
improvement of positive symptoms in C/C homozygotes first-episode schizophrenia pa-
tients treated with aripiprazole or risperidone for 12 weeks compared to T carriers under the
same conditions [72]. Additionally, C/C homozygote patients were more likely to develop
akathisia under aripiprazole treatment, while male T carriers were more at risk of increased
prolactin levels while taking risperidone [72]. The same polymorphism has also been associ-
ated with the response to a 6-month treatment with clozapine (Table 3) [73]. The biological
mechanisms of these effects are not clear, and it is not to exclude that the rs2514218 SNP
may be merely tagging the effect of other D2R gene variants in the antipsychotic response.

A meta-analytic study has demonstrated an association between the catechol-O-
methyltransferase (COMT) rs4680 (Val156Met) polymorphism and the response to at least
atypical antipsychotics in schizophrenia and schizoaffective patients [74]. Specifically,
Met/Met homozygote patients were more likely to respond and experience greater improve-
ment in positive symptoms compared to Val carriers [74]. Other analysis also suggests the
possibility that the COMT rs4680 polymorphism Val/Val allele could influence the favorable
negative symptom response to clozapine (Table 3) [75]. Notably, Met homozygotes have a
3 to 4 times lower enzymatic activity of COMT than Val homozygotes [76], which trans-
lates into a lower COMT-mediated dopamine degradation in cortical regions and, thus,
in heightened cortical dopamine transmission. Huang et al. [74] explain the association
found in the context of the tonic-phasic dopamine hypothesis [77,78]. They postulate that
schizophrenia symptoms and, possibly, the response to antipsychotics may be linked to
the differential tonic vs. phasic modality of dopamine release, which in turn, differentially
modulates dopamine neurotransmission. However, this hypothesis, at least relative to the
assumptions on response to antipsychotics, still needs to receive experimental support.

Notably, a recent genetic association study has reported that the percentage of treat-
ment resistant patients with the Met allele of rs4680 on the COMT gene and C/C homozygote
of rs3470934 on the glutamate decarboxylase 1 (GAD1) gene was significantly higher than
in treatment responders and healthy control subjects [79]. The authors speculated that the
Met/CC allelic combination may predispose to TRS as a consequence of higher dopamine
levels and lower γ-Aminobutyric acid (GABA) expression in the prefrontal cortex (PFC),
thereby causing an excitation/inhibition imbalance that cannot be reverted by antipsy-
chotics (Table 3).

Other pharmacogenomic studies have been conducted on genetic polymorphisms in
D1R, D2R, D3R, D4R, or dopamine transporter (DAT) genes, whose functional meanings on
gene expression or protein sequence are still not characterized and whose neurobiological
relevance is yet elusive [70].

Recently, an association study in Mexican schizophrenia patients related the single-
nucleotide polymorphism A-241G of the DRD2 gene and the Met/Met allele of COMT
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and Ser/Gly allele of DRD3 genes with resistance to treatment (Table 3) [80]. Nonetheless,
multiple systematic reviews and meta-analyses have failed to find consistent evidence of
high effect size associations [81,82].

As a summary of reports, no firm conclusions can be drawn at the moment from phar-
macogenomic studies on dopamine-related neurobiological mechanisms of response/non-
response to antipsychotics.

Table 3. Comparison of treatment resistant and treatment responder patients on dopamine-related
genetic outcomes.

Study
Design

Model/
Subjects Methodology Main Outcomes Reference

Preclinical human
study

107 TRS
(70 males

37 females)

PCR-based
restriction

fragment length
and direct

sequencing

COMT rs4680 polymorphism
Val/Val allele could

influence the favorable negative
symptoms’ response to clozapine.

[75]

Prospective
human study 208 TRS Real-time

PCR and genotyping
Association between DRD2 rs2514218

and response to clozapine. [73]

Genetic
Association

human study

49 TRS
33 UTRS

88 treatment
responders

Genotyping

Treatment response could associate with the
Val (COMT/

Val158Met) and Ser (DRD3/Ser9Gly) alleles
TRS may correlate with the G allele

(DRD2/A-241G),
UTRS may associate with the Met allele
(COMT/Val158Met) and Gly allele from

Ser9Gly
(DRD3).

[80]

Genetic
Association

human study

171 TRS
592 treatment

responders
447 HC

Genotyping

Rates of treatment resistant patients with the
Met allele of rs4680 on the COMT gene and
the C/C homozygote of rs3470934 on the

GAD1 gene were significantly higher than
treatment responders and HC.

[79]

TRS = treatment resistant schizophrenia; PCR = polymerase chain reaction; UTRS = ultra-treatment resistant
schizophrenia; COMT = catechol-O-methyltransferase; GAD1 = glutamate decarboxylase 1.

3.2. D2R-Related Mechanisms

A poor or absent response to antipsychotics may theoretically derive from heightened
D2R-mediated transmission that conventional D2R blocking agents do not revert. In turn,
multiple mechanisms have been accounted for: increased D2R levels; increased density of
D2Rs in the high-affinity state; aberrant D2R dimers or heteromers formation; imbalance
between D2R short and long variants. In many cases, the same mechanism has accounted
for both schizophrenia and TRS pathophysiology. According to these views, the difference
between schizophrenia and TRS should be quantitative (a larger aberrant D2R-mediated
transmission in TRS than in schizophrenia) rather than qualitative. However, only a few of
these hypotheses have been tested in human subjects. A graphical summarization of the
D2R-related hypothesis for the response to antipsychotics is depicted in Figure 2.

3.2.1. D2R Levels

It has been proposed that schizophrenia patients have higher levels of D2Rs, at least in
the striatum, compared to non-psychotic subjects. The elevated D2R levels would explain
the supposed hyperdopaminergia, in turn leading to positive psychotic symptoms. Along
these lines, non-response to antipsychotics may thus depend on extremely high D2R levels,
causing an increased D2R-mediated dopamine transmission that cannot be reverted by
conventional antipsychotics.
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Figure 2. Putative dopamine D2 receptor (D2R)-mediated molecular mechanisms of treatment
resistance. The figure illustrates some of the most widely studied putative mechanisms of resistance
to antipsychotics associated with D2R dysfunctions. From left to right: (1) dopaminergic synapse
in a condition of complete response to antipsychotics. Antipsychotic molecules occupy and block
most postsynaptic D2Rs, thus hampering downstream signaling; (2) increase of postsynaptic D2R
density. The antipsychotic fails to block a sufficient proportion of D2Rs. Downstream signaling is
allowed despite antipsychotic molecules in the synapse. This mechanism has not been observed in
drug naïve patients, which may be a consequence of the treatment; (3) a high proportion of receptors
is in a high-affinity state, increasing receptor affinity to endogenous dopamine, which competes with
and overcomes antipsychotic molecules to bind D2Rs. As a result, antipsychotics fail in antagonizing
the D2R-mediated downstream signaling pathway; (4) D2R homodimerization, which fosters the
molecular switch from low to D2R high-affinity state, recapitulating the conditions described in point
3; (5) imbalance between the expression levels of the autoinhibitory presynaptic short D2R isoform
(D2Short) and of the postsynaptic long D2R isoform (D2Long). Low expression of D2Short or a ratio
shift toward D2Long isoforms causes the inability to stop dopamine overload in the synapse.

Despite early data reporting an increase in D2R levels in the striatum of schizophrenia
patients compared to controls [83], most subsequent studies failed to replicate this finding
in naïve patients [84,85]. Subsequent meta-analyses showed only a moderate, if any, effect
size for differences between schizophrenia patients and controls [86,87].

In a later meta-analysis, this modest effect size was lost when including only drug-
naïve patients [11], suggesting that a putative increase in D2Rs may represent an adap-
tation to antipsychotic treatments rather than an inherent pathophysiological feature of
schizophrenia. At the moment, no consistent evidence has been provided that D2R levels
may be higher in schizophrenia patients compared to controls. Therefore, even the pos-
sibility that non-response to antipsychotics may derive from abnormally high D2R levels
appears to be erratic.

3.2.2. D2R Low vs. High-Affinity State

One proposed mechanism for psychosis is that the levels of D2Rs in the high-affinity
state (rather than the whole D2R pool) are increased during psychotic conditions [88].
According to this hypothesis, D2Rs may exist in two functional states: a high-affinity one
(D2High), with high affinity for endogenous and exogenous agonists, that is linked to second
messenger cascades and a low-affinity one (D2Low) that is functionally inert [88]. It has
been reported that an up-regulation of D2High represents the final common lesion of all
preclinical models of psychosis [89]. Thereby, excessive D2High-mediated dopamine neuro-
transmission may be at the basis of striatal hyperdopaminergia that has been described in
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schizophrenia [90]. Accordingly, the lack of response to antipsychotics may be caused by
extremely up-regulated D2High.

However, the actual existence of D2Rs in two affinity states in vivo is still debated and
a matter of investigation [91]. Unfortunately, in vivo studies are challenged by the difficulty
of developing a selective radioligand for D2High receptors. One available radiotracer is
[11C]-(+)-PHNO, which is a D2R and D3R agonist reported to bind D2High [56], despite
that this point is questioned [92]. Positron emission tomography (PET) studies by [11C]-(+)-
PHNO failed to find any difference in D2R binding between antipsychotic-naïve patients,
clinical-high-risk subjects, and healthy controls, both in resting conditions or under a
cognitive task considered increased striatal dopamine release [56,93].

However, [11C]-(+)-PHN O is regarded to have a 50-fold higher affinity to D3RS over
D2Rs [94], which may possibly hamper selectivity to detect D2High. For this reason, in
another study, the [11C]-I-2-CH3O-N-n-propylnorapomorphine ([11C]MNPA) was used as
the radioligand, since it has an almost identical affinity to D2RS and D3Rs and may be more
suitable to study D2High density [95]. However, again no significant differences in radioli-
gand binding were found in antipsychotic-naïve patients compared to healthy controls [95].
Nonetheless, this study revealed that the ratio of [11C]MNPA to [11C]raclopride binding in
the putamen of schizophrenia patients was higher than in controls [95], putatively reflecting
a larger proportion of D2Rs in the high-affinity state in patients compared to controls. At
the moment, the possibility that psychosis may depend on heightened levels of D2Rs in the
high-affinity state is still a controversial issue.

3.2.3. Dopamine Supersensitivity

Treatment resistant patients may be empirically divided into two groups: (i) those who
have not responded to antipsychotics since illness onset, and (ii) those who had responded
adequately but experienced a decline in response and psychotic relapses despite stable
long-lasting antipsychotic therapy (Table 4) [96–98]. Part of these latter patients may be
suffering from the so-called dopamine supersensitivity psychosis (DSP) or antipsychotic-
induced supersensitivity psychosis [99], which has been related to a compensatory increase
in postsynaptic D2R levels or enhanced shift of D2Rs to high-affinity states during long-
term antipsychotic treatments [100]. Notably, DSP has been regarded as a pivotal factor in
TRS, at least the acquired subtype (Table 4) [98,101].

In this state, schizophrenia patients with at least 1-year under antipsychotic medication
(excluding quetiapine and clozapine) and who are compliant to the therapy experience: (1) re-
appearance of positive psychotic symptoms despite ongoing adequate antipsychotic therapy;
(2) abnormal involuntary movements; (3) absent or negligible life events that can exacerbate
the psychosis [102]. Generally, this condition is overcome by an increase in the antipsychotic
dose [103], although this strategy is not invariably efficacious. Preclinical studies on animal
models comply with observations in humans. Indeed, ongoing treatments with haloperidol
and olanzapine progressively lose their efficacy in suppressing amphetamine-induced
locomotion and conditioned avoidance responses in rats [104].

One theoretical explanation for acquired dopaminergic supersensitivity could be an
increase in D2R density after long-term treatment with antipsychotics [105], consistent with
the view that the treatment resistance may also depend on high D2R density (Figure 3).
Accordingly, many studies have explored D2R changes after long-term antipsychotic
treatment. Early studies showed an increase in striatal D2R binding in rats treated for up to
one month with typical antipsychotics, such as haloperidol [106–109]. However, after long-
term antipsychotic treatments, the density of D2Rs in the rat striatum generally increases
by 10–40% only. This limited increase appears not to be sufficient to quantitatively explain
the behavioral effects of dopamine supersensitivity [110]. Moreover, several reports of
dopamine supersensitivity in rats without any significant change in D2R density have been
published [111,112]. Notably, it has been recently observed on cellular lines that multiple
antipsychotics, but not clozapine, cause time and concentration-dependent increase in
surface D2R expression (Table 4) [113]. The antipsychotic-mediated enhancement of D2R
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cell surface expression depends on antipsychotic binding to an intracellular D2R pool and
enhancement of its translocation and surface insertion [113]. This mechanism may explain
antipsychotic-induced dopamine supersensitivity and clozapine superiority in resistant
phenotype. Nonetheless, a replication of these findings in other paradigms is necessary.
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Figure 3. Molecular mechanisms of supersensitivity psychosis. Dopamine supersensitivity psychosis
(DSP) is a condition of acquired treatment resistance. An accurate definition requires three clinical
features: (1) re-appearance of positive psychotic symptoms despite ongoing antipsychotic therapy;
(2) abnormal involuntary movements; (3) absent or negligible life events exacerbating the psychosis.
The figure illustrates two different putative mechanisms involved in the pathophysiology of the
DSP-acquired form of TRS. Left panel: chronic or subchronic exposure to antipsychotics yields an
adaptation of postsynaptic sites, which increase D2R expression on the membrane to overcome recep-
tor blockade and diminish D2R-mediated downstream signaling. Right panel: under physiological
circumstances, D2Rs can aggregate in oligomers. The binding of dopamine to one D2R causes, in
turn, the unoccupied receptors to switch to a low-affinity state. The disruption of this mechanism of
“negative cooperativity” is supposed to cause a condition of supersensitivity to dopamine. Indeed,
antipsychotics would no longer be able to block downstream signaling.

Taken together, these reports indicate that the increase in striatal D2R density may
not fully explain the neurobiology of acquired dopamine supersensitivity, although it
may represent a valuable pathophysiological mechanism to account for when prescribing
prolonged antipsychotic treatments.

An innovative model that may account for acquired dopaminergic supersensitivity is
the so-called “cooperativity model” [114,115] (Figure 3). This model relies on the observa-
tion that D2Rs may aggregate in oligomers (composed of two-to-four D2Rs), in which they
are in the high-affinity state unless unoccupied by the agonist. The binding of the agonist
to one of the D2Rs, in turn, reduces the affinity for the agonist of the other unoccupied
receptors composing the oligomer (i.e., the unoccupied receptors switch to a low-affinity
state). This phenomenon has been defined as “negative cooperativity” [89]. Notably, a high
proportion of D2High receptors has been observed in the striatum of supersensitive ani-
mals, possibly as a consequence of impaired negative cooperativity in D2R oligomers [88].
Accordingly, it has been reported that: i) animal models of dopamine supersensitivity
are systematically linked to an elevation of D2High receptor proportion; and ii) prolonged
antipsychotic treatments lead to a considerable increase (i.e., two to four-fold) of the pro-
portion of D2High receptors in the striatum [89]. Considering these clinical and preclinical
data together, it has been proposed that impaired negative cooperativity may represent a
pathophysiological mechanism of acquired resistance to antipsychotic treatment.

However, a recent study has completely reconsidered the putative neurobiology of
this condition (Table 4) [116]. Indeed, the authors manipulated animals to obtain a model
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of long-term antipsychotic-induced D2R blockade and behavioral sensitization. In this
model, they did not find any increase in D2R levels or sensitivity within the ventral
striatum [116]. On the contrary, the major neuropathological lesion that authors observed
was hyperexcitability in the ventral striatum subpopulation of D2R-expressing medium
spiny neurons (MSN), which, in turn, was mainly driven by the insertion of Ca2+-permeable
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and loss of D2R-
dependent inhibitory postsynaptic currents [116]. According to these findings, long-lasting
synaptic plasticity rearrangements leading to an increased glutamatergic transmission onto
D2-MSNs, but not D1-MSNs, may be the more relevant neurobiological mechanism to cause
dopamine supersensitivity and therefore acquired resistance to antipsychotics. If supported
by additional studies, this result may pave the way to multiple unprecedented therapeutic
strategies to prevent or overcome dopamine sensitization and loss of antipsychotic efficacy
during the course of the treatment.

Table 4. Comparison of treatment resistant and treatment responder patients/preclinical paradigms
evaluating D2R-related biological mechanisms of non-response to antipsychotics. AESOP-10: Aetiol-
ogy and Ethnicity in Schizophrenia and Other Psychoses.

Study Design Model/Subjects Methodology Main Outcomes References

Longitudinal
population study

323 FEP patients (at
baseline and after
10-year follow-up)

All patients were drug-naïve or recently
treated at baseline and medicated at

the endpoint
Patients belonged to the AESOP-10

cohort. Medication and clinical history
were assessed longitudinally

TRS definition based on NICE 2014
criteria (Clinical guideline 178)

Most treatment resistant
patients do not respond to

antipsychotic treatment,
even at the time of FEP

It is not clear whether FEP
may be already affected by
dopamine supersensitivity

[97]

Retrospective
population study

246 FEP patients
(with a follow-up
period of 5 years)

All patients were drug-naïve or recently
treated at baseline and medicated at

the endpoint
EPCRs database interrogation allowed

to reconstruct retrospectively
medication and clinical history

TRS definition based on: 1. clozapine
use during the course of the illness; or 2.

NICE 2014 criteria (Clinical
guideline 178)

[96]

Cross-sectional
study

611 patients with
schizophrenia or
schizoaffective

disorder
(DSM-IV-TR)

(147 TRS of which:
106 DSP

41 without DSP)

In outpatient and inpatient settings,
patients suffering from chronic

schizophrenia and in active
antipsychotic treatment

TRS diagnosis was defined according to
the Broadest Eligibility Criteria [117]
DSP diagnosed according to research
criteria proposed by Chouinard [99]

[98]

Retrospective
population study

265 patients with
schizophrenia or
schizoaffective

disorder
(DSM-IV-TR)

(treatment resistant
and treatment
responders)

In outpatient and inpatient settings,
patients suffering from chronic

schizophrenia and in active
antipsychotic treatment

TRS diagnosis was defined according to
the Broadest Eligibility Criteria [117]
DSP diagnosed according to research
criteria proposed by Chouinard [99]

DSP has been regarded as a
pivotal factor in treatment
resistant schizophrenia, at
least the acquired subtype

[101]
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Table 4. Cont.

Study Design Model/Subjects Methodology Main Outcomes References

In vitro
preclinical study

Cultures of
prolactin-secreting
pituitary-derived

MMQ, and
HEK293T cells

ELISA and Western blot analysis

Multiple antipsychotics,
but not clozapine, cause

time and
concentration-dependent

increase of surface
D2R expression.

[113]

In vitro
preclinical study HEK293T Cells NanoBiT®, and Western blot analysis

Distinct D2R antagonists
may differently affect D2R
dimerization levels, which

may have effects on
downstream postreceptor

signaling and may
putatively contribute to

explain differences in
response to antipsychotics.

[118]

Preclinical study WT rats and
transgenic mice

In vivo Ca2+ imaging, Western blot
analysis, ex vivo electrophysiology

Behavioral supersensitivity
results from mechanisms of

synaptic plasticity,
insertion of

Ca2+-permeable AMPA
receptors, and loss of

D2R-dependent IPSCs in
the NA. The chemogenetic

restoration of IPSCs in
D2-MSNs has been shown
to prevent supersensitivity

[116]

TRS = treatment resistant schizophrenia; FEP = first-episode psychosis; EPCRs = electronic psychiatric clinical
records; DSP = dopamine supersensitivity psychosis; WT = wild type; AMPA = α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid; IPSCs = induced pluripotent stem cells; NICE: The National Institute for Health
and Care Excellence; NA = nucleus accumbens; MSNs = medium spiny neurons; ELISA = enzyme-linked
immunosorbent assay. SCAN = Schedules for Clinical Assessment in Neuropsychiatry; ICD-10 = Schedules for
Clinical Assessment in Neuropsychiatry; DSM-IV-TR = Diagnostic and Statistical Manual of Mental Disorders, 4th
Edition, Text Revision.

3.2.4. D2R Dimerization

D2Rs have been described to exist as both monomers and dimers in brain tissues [119].
In human postmortem striatal sections, the expression levels of D2R dimers were sig-
nificantly increased in schizophrenia patients compared to controls and mood disorder
patients [120], while the levels of D2R monomers were significantly decreased. Haloperi-
dol treatment in rats failed to elicit an increase in D2R dimer levels, thereby suggesting
that the increases found in schizophrenia striatum were not a consequence of antipsy-
chotic treatment [120]. Likewise, D2R dimer levels were increased and monomer levels
decreased in the striatum of amphetamine-induced sensitized state (AISS) rats [120], a
model of striatal hyperdopaminergia recalling the purported major dopaminergic lesion
in schizophrenia. In these same AISS rats, the proportion of D2R in the high-affinity state
was significantly higher than in non-sensitized rats [120], raising the possibility that D2R
dimerization may be associated with shifts in the D2R high-affinity state. Theoretically,
an abnormal elevation of D2R dimer-containing D2High, as a consequence of impaired
negative cooperativity, may prevent antipsychotics to revert striatal hyperdopaminergia
and cause a non-response. However, there is no evidence to date that treatment resistant
patients have a larger proportion of D2R dimers than responder patients.

Intriguingly, it has been recently reported that distinct D2R antagonists may differ-
ently affect D2R dimerization levels, which may have profound effects on downstream
postreceptor signaling and may putatively contribute to explaining differences in response
to antipsychotic agents (Table 4) [118].
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3.2.5. D2R-Containing Heteromeric Complexes

D2Rs have been supposed to interact, either physically or functionally, with multiple
dopaminergic and non-dopaminergic receptor subtypes [121,122]. These interactions have
been demonstrated in cellular systems or animal models, while their actual existence
in humans has not been confirmed (Figures 4 and 5). Thereby, the relevance of disease
pathophysiology and pharmacological action is yet to be determined. Nonetheless, aberrant
functions of putative D2R-containing heteroreceptor complexes is an interesting field of
research with alleged relevance for treatment resistant conditions.
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Figure 4. D1R/D2R heterodimerization and the clozapine conundrum. The heterodimerization
of D1Rs and D2Rs has been described to yield a powerful stimulation of unique Gq11-mediated
signaling, which is distinct from the signaling pathways activated by D1Rs and D2Rs, respectively,
when stimulated separately. The effectiveness of clozapine in treatment resistant schizophrenia has
been conceptualized to depend on the simultaneous occupancy of D1Rs and D2Rs and the subsequent
inhibition of their effects on this unique transduction pathway.
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Figure 5. Modulation of D2R-mediated signaling by heterodimerization or intracellular cross-talk.
D2Rs may directly or indirectly interact with different transmembrane or intracellular partner pro-
teins. These interactions are regarded to affect levels of downstream signaling and are supposed to
modify the response to antipsychotic agents. The interaction with DISC-1 potentiates D2R-mediated
signaling, whereas putative interactions with A2AR and NTs1R have been reported to decrease it.
Moreover, there is evidence of a cross-talk between D2R and 5-HT2AR, which enhances D2R-mediated
downstream signaling.
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A functional D1/D2R heteromer complex has been initially reported by
co-immunoprecipitation studies from rat and human striatum [123]. Co-activation
of both receptors in the context of this complex triggered a unique Gq-mediated in-
tracellular signaling leading to increased release of intracellular calcium [124]. This
unique signaling was distinct from those elicited by the constituent receptors once
activated separately [124]. The D1/D2R heteromer complex also showed unique cell
surface localization, internalization, and transactivation features [125]. It has been
hypothesized that D1/D2R heteromers located in cell bodies and presynaptic terminals
attenuate the phosphorylation of the GluR1 AMPARs by modulating Ca2+/calmodulin
kinase II signaling directly in the nucleus accumbens [126]. Of interest, the upregulation
of D1/D2R heteromers has been found in the striatum of amphetamine-treated rats and
postmortem studies of schizophrenia patients also in the globus pallidus, suggesting
its involvement in the psychopathology of schizophrenia and other disorders involv-
ing elevated dopamine transmission [126]. D1/D2R heteromer complex signaling
was found attenuated by the typical antipsychotic-like raclopride [126]. Moreover,
clozapine was found to uncouple D1/D2R heteromer complex in the high-affinity
state [127], suggesting that at least clozapine efficacy may be linked to its action on
this heterocomplex (Figure 4). However, further work has strongly argued against the
actual existence of the D1/D2R heteromer complex in adult rat striatum [128].

One widely studied heterocomplex is formed by adenosine A2A receptors (A2ARs)
and D2Rs (Figure 4). The existence of this complex has been demonstrated in cultured
living cells [129] and in rat ventral striatum [130]. A2AR activation has been described to
reduce agonist binding to striatal D2Rs and attenuate D2R-mediated effects [131]. There-
fore, the A2AR function in the context of the A2AR/D2R heteromer may be to dampen
D2R signaling [132]. According to this view, it has been postulated that a disruption of
this interaction may have causal relevance in the pathophysiology of schizophrenia [121]
and may consequently play a major role in antipsychotic action. Recently, a significant
reduction of A2AR/D2R heteromers in the caudate nucleus of schizophrenia subjects has
been described in a postmortem study [133]. This outcome in humans was confirmed
preclinically in the phencyclidine (PCP) model of psychosis, where authors observed an
upregulation of D2Rs but a significant reduction of striatal A2AR/D2R heteromers, which
was counteracted by chronic haloperidol or clozapine treatment [133]. Moreover, a differ-
ential impact of antipsychotics on temporal dynamics of A2AR/D2R heteromer expression
in HEK293 cells has been described. Namely, 2-h cell incubation with haloperidol and
aripiprazole did not affect heteromer content, while incubation with clozapine diminished
its content in a concentration-dependent manner [134]. On the other hand, heteromer levels
were significantly increased by 16-h incubation with haloperidol and aripiprazole but not
with clozapine [134]. More studies are needed to make inferences on the putative functional
implications of these preliminary reports.

In membranes from HEK293 cells transfected with both D2 and 5-HT2A receptors
(5-HT2ARs) and in mouse striatum, the D2R agonist quinpirole induced a marked increase
in the affinity of the serotonergic agonist 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane
(DOI) for 5-HT2ARs [135], demonstrating a functional cross-talk between these two re-
ceptors (Figure 4). Notably, the increased DOI affinity for 5-HT2ARs by quinpirole was
lost in membranes expressing 5-HT2ARs only. The existence of D2/5-HT2AR heteromers
was demonstrated by co-immunoprecipitation assays on membranes from HEK293 cells
expressing both receptors [135]. Remarkably, DOI-induced agonist activity of 5-HT2ARs
was enhanced in the presence of D2Rs but reduced when D2Rs were stimulated by their
agonist [135], indicating a complex cross-talk rather than mere reciprocal stimulation. Fur-
thermore, the stimulation of 5-HT2AR/D2R heteromers with D2R agonists has been shown
to be suppressed by the co-administration of 5-HT2A-agonists, indicating a 5-HT2AR-
mediated trans-inhibition of D2Rs [136] and suggesting to explore this heteromer as a
potential target for new therapeutic strategies for schizophrenia treatment. The behavioral
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effects of haloperidol in reverting hyperlocomotion in MK-801-treated mice were also lost
in transgenic mice lacking 5-HT2ARs [135].

Moreover, a putative D2R-5HT1AR heterodimer has also been described in the mouse
frontal cortex [137,138]. Notably, low-dose subchronic clozapine increases the levels of
D2R-5HT1AR heterodimer in the prefrontal and frontal cortices of the mouse brain, while
subchronic haloperidol lowers them [138]. Whether this heterodimer is present in human
brains and which functional relevance, also in terms of putative differential neurobiological
effects of clozapine compared to conventional antipsychotics, is yet to be determined.

Neurotensin (NT) has been proposed to modulate dopaminergic transmission by a
direct antagonist interaction between Neurotensin Receptor 1 (NTS1Rs) and D2Rs (Figure 5).
An NT-induced reduction in D2R agonist affinity has been found in both dorsal and ventral
rat striatum and may reflect direct allosteric NTS1R/D2R interactions [139].

These elements appear to indicate that the cross-talk between D2Rs and other recep-
tors may be integral to antipsychotic action. Dysfunctions of these cross-talks may be
theoretically responsible for the lack of antipsychotic efficacy in treatment resistant patients.
Despite the fascinating implications that the research may have for a deeper understanding
of schizophrenia molecular pathophysiology and antipsychotic actions, the major flaw is
represented by the lack of a clear demonstration of the existence and functional relevance of
D2R heteroreceptor complex in humans, although solid evidence of their existence in vivo
in rats has been provided [140]. This field indubitably represents one of the most promising
focuses of research for the next years.

According to the view that greater effort should be provided to demonstrate the
occurrence of D2R-containing heterocomplexes in schizophrenia patients, one study has
postulated the existence of a D2R/Disrupted in schizophrenia 1 (DISC1) heterocomplex in
humans (Figure 4). DISC1 is a known susceptibility gene for schizophrenia [141], whose
products behave as a scaffolding protein interacting with many signaling molecules, in-
cluding glycogen synthase kinase-3 (GSK-3) [142]. The D2R/DISC1 complex was found
to significantly increase in schizophrenia postmortem striatal tissues compared to con-
trols [143]. The potential confounding role of antipsychotic treatment on D2R/DISC1 levels
was ruled out by the observation that acute and chronic haloperidol treatments significantly
diminished, rather than increased, D2R/DISC1 interactions in mice [143]. Notably, quin-
pirole activation of D2Rs significantly increased the D2R/DISC1 interaction in rat striatal
neurons, an effect that was blocked by haloperidol [143]. DISC1 was found to facilitate the
D2R-mediated reduction of GSK-3 Ser 21/9 phosphorylation by quinpirole and to inhibit
agonist-induced D2R internalization [143]. Disruption of the D2R/DISC1 interaction by a
specifically designed interfering peptide prevented the D2R-mediated modulation of GSK-3
Ser 21/9 phosphorylation [143]. These data indicate that DISC1 was recruited by agonist
stimulation of D2Rs and facilitated or even potentiated downstream signaling initiated
by this receptor. Therefore, the D2R/DISC1 heterocomplex may either contribute to or
reinforce a condition of hyperdopaminergia in schizophrenia and possibly be responsible
for the limited response to antipsychotic treatments. Consistently with these suggestions,
the disruption of the D2R/DISC1 interaction has been found to reverse hyperactivity and
prepulse Inhibition (PPI) aberrations in multiple rodent models of psychosis [143]. Fi-
nally, recent studies have demonstrated the involvement of DISC1 × D2R protein-protein
interactions in the mechanisms of cognitive and synaptic plasticity and their modula-
tion as pharmacological targets, contributing further insight into the molecular–cellular
mechanisms of antipsychotic drugs [144].

3.2.6. D2Short/D2Long Levels

D2Rs are formed by two molecularly distinct isoforms, i.e., the short (D2S) and long
(D2L) ones, which are generated by alternative splicing of the same gene [145]. It has been
reported that the D2S isoform exerts presynaptic D2R-mediated functions [146], while the
D2L isoform exerts postsynaptic-mediated effects [145]. This specificity is likely linked to
D2L and D2S propensity to interact with diverging G proteins and different downstream
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signaling pathways [145]. Notably, transgenic mice expressing the short but not the long
D2R isoform still preserved their D2R-mediated autoreceptor inhibitory function [147],
thus supporting the view that D2S receptors exert inhibitory feedback on presynaptic
dopamine release.

In postmortem tissues, mRNA expression of the D2S isoform and the D2S/D2L
ratio was significantly increased in the dorsal PFC of schizophrenia patients compared
to controls [148]. However, the difference between responder and non-responder pa-
tients was not made. No significant differences were found in the caudate-putamen,
which has been considered the most relevant brain region for antipsychotic effects on
dopamine neurotransmission.

An earlier study showed the differential contribution of D2S vs. D2L isoforms to
the actions of antipsychotics [149]. Specifically, the typical antipsychotic raclopride was
less potent in inhibiting locomotor activity and eliciting catalepsy in transgenic mice
lacking the D2L isoform (D2L−/−) compared to wild-type mice. On the other hand, the
atypical antipsychotic clozapine was equally effective in D2L−/− and wild-type mice [149].
Consistently with this study, haloperidol has been described to exert some of its biological
actions by preferentially targeting D2L receptors [150]. These results may indicate that
antipsychotics exert part of their action by targeting more or less selectively one of the two
isoforms. However, the putative relevance of these observations for treatment resistance in
schizophrenia patients is still elusive.

In humans, an intronic single nucleotide polymorphism in the DRD2 gene (i.e., rs1076560,
G > T) has been observed to shift mRNA splicing to the two functionally distinct iso-
forms [151]. Specifically, the T allele has been associated with a reduced expression of
the D2S isoform relative to the D2L in the PFC and striatum of both schizophrenia pa-
tients and controls [151]. The T allele has also been associated with reduced activity of
prefrontal-striatal pathways and impaired working memory performances in schizophrenia
patients [152]. In a study using single photon emission computed tomography (SPECT)
with [123I]IBZM (which binds primarily to postsynaptic D2Rs) and [123I]FP-CIT (which is
known to bind to presynaptic dopamine transporters, whose activity and density is also
regulated by presynaptic D2Rs), a reduced radioligand binding in the caudate-putamen
of healthy subjects carrying the T allele compared to homozygous G allele carriers has
been found [153]. T allele carriers also had a significant negative correlation between stri-
atal D2R-mediated signaling and activity of the PFC during working memory tasks [153].
One possible explanation of these results is that reduced D2S levels in T carriers may
increase synaptic dopamine levels due to reduced autoinhibitory control by presynaptic
D2Rs. In turn, heightened synaptic dopamine may compete with radioligands for binding
to D2Rs [153]. The increased dopaminergic load in the striatum may be responsible for
impaired prefrontal-striatal pathways and defective cognitive performances. Indeed, it
has been conceptualized that striatal hyperdopaminergia may underlie PFC-dependent
cognitive dysfunctions [154]. Accordingly, a seminal work has demonstrated that over-
expression of striatal D2Rs causes persistent abnormalities in PFC functioning, including
cognitive performances [155].

In agreement with these reports, a recent study has demonstrated that the antipsy-
chotic risperidone may ameliorate executive functions in both schizophrenia patients
and mice carrying a genetic variation of the Dysbindin gene reducing dysbindin-1 lev-
els [156]. Dysbindin-1 is a synaptic protein implicated in synaptic vesicles and receptor
recycling that is known to alter D2R availability [157]. Based on these functions, dysbindin-
1 modulates PFC activity and triggers schizophrenia-like behaviors via a D2R-mediated
pathway [158,159]. Notably, the D2S/D2L ratio in the dorsolateral PFC was found to
increase in schizophrenia patients with reduced dysbindin-1 expression who tested posi-
tive in antipsychotic screening [156]. Therefore, the association between low dysbindin-1
levels and antipsychotic treatment led to enhanced presynaptic D2R function within the
PFC, which in turn was predicted to improve executive functions in these patients [156].
According to these reports, abnormally high, putatively genetic dysbindin-1 levels may
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cause diminished presynaptic D2R activity, which may theoretically lead to higher synaptic
dopamine levels and poor response to antipsychotics.

These reports are the first steps in the comprehension of the pathophysiology of
D2S/D2L isoforms in schizophrenia. They appear to comply with the view that one com-
mon dopaminergic dysfunction in schizophrenia may be enhanced presynaptic dopamine
release in the striatum. However, the role of these isoforms in antipsychotic actions and
putatively in treatment resistance is yet to be established.

3.2.7. Extrastriatal D2Rs

Some lines of research have sought to evaluate whether extrastriatal D2Rs may also
play a role in psychosis. Accordingly, several neuroimaging studies have demonstrated
that D2R density in multiple extrastriatal sites, including the anterior cingulate cortex, the
thalamus, the temporal cortex, and the midbrain, is significantly lower in antipsychotic-
free schizophrenia patients compared to controls [160–163]. Behavioral correlates of these
neuroimaging phenotypes are difficult to explicate at the moment. However, there is
some evidence that differences in D2R density in extrastriatal sites may be associated with
cognitive tasks, such as reward valuation [164] or executive functions [165], as well as
with excitement symptoms [166], which may all be part of the complex and heterogeneous
clinical phenotype of schizophrenia.

A few studies have evaluated whether the modulation of extrastriatal (mostly cortical)
dopamine receptors by antipsychotics may be related to symptom improvement. A SPECT
study used the D2/D3R ligand [123I]epidepride to evaluate D2/D3R binding potential in
antipsychotic-naïve first episode schizophrenia subjects at baseline and after a 3-month
treatment by risperidone or zuclopenthixol. No significant association was found between
D2/D3R occupancy in extrastriatal sites and improvement in the Positive and Negative
Syndrome Scale (PANSS) positive subscale score at the 3-month follow-up evaluation [167].
However, a significant positive correlation between baseline D2/D3R availability in the
cortex and post-treatment improvement in positive symptoms was found, although this
was limited to the risperidone group only [167]. Notably, in a previous study on the same
cohort, no significant differences in frontal D2/D3R availability between patients and
controls were found [168], therefore excluding the possibility that D2/D3Rs may be higher
in patients as an inherent effect of the disease. In summary, patients with higher D2R levels
in the cortex appear to be more responsive to antipsychotic agents, although this was seen
with risperidone but not with zuclopenthixol. These findings replicated what was observed
in striatal sites [169].

3.3. Presynaptic Dopamine Synthesis
Baseline and Stimulated Dopamine Levels

Pivotal studies on the amphetamine-mediated displacement of radiolabeled D2/D3R
ligands have shown that amphetamine-induced efflux of dopamine in the striatum is ab-
normally high in schizophrenia patients, even prior to antipsychotic treatment [170–172].
[123I]IBZM binding to striatal D2Rs was also significantly higher in schizophrenia patients
compared to healthy controls after dopamine depletion by alpha-methyl-para-tyrosine [169],
indicating higher D2R availability in schizophrenia patients than in controls. Accordingly,
schizophrenia patients exhibited a significantly higher increase in D2R availability as a
percentage of baseline levels [169]. Changes in D2R availability after dopamine depletion
were considered to be indirectly indicative of synaptic dopamine levels at baseline, based
on the consideration that the higher the synaptic dopamine levels, the higher the percentage
of D2Rs available for radioligand binding after dopamine depletion. Therefore, dopamine
appears to occupy a larger proportion of striatal D2Rs in schizophrenia patients than in
controls at baseline, and dopamine release by stimulation of presynaptic sites appears to
be heightened in schizophrenia compared to controls. These results strongly suggest that
presynaptic levels of dopamine in schizophrenia patients’ striatum may be higher than
in controls (Figure 6). Indirect support and expansion to this suggestion have recently
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come from a preclinical study [173]. Intriguingly, the selective activation of dorsal striatum
dopamine transmission in transgenic mice impaired working memory and social inter-
action, which are behavioral processes related to the negative and cognitive symptoms
of schizophrenia. These behavioral deficits were not reverted by haloperidol, while they
did not occur following treatment with the non-selective brain-wide dopamine releaser
amphetamine [173]. These findings suggest that non-responsive cognitive and negative
symptoms of schizophrenia may also depend on striatal hyperdopaminergia, putatively
restricted to the area of the dorsal striatum, which has large connections with the PFC [173].
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has been associated with non-significantly different levels of presynaptic dopamine compared to
non-affected controls.

According to these reports, studies using radiolabeled 3,4-dihydroxyphenylalanine
(DOPA, a powerful marker of presynaptic vesicular dopamine stores) consistently
demonstrated an accumulation of presynaptic dopamine in schizophrenia patients’ stria-
tum [174,175]. Notably, the accumulation of presynaptic dopamine was also found in
antipsychotic-naïve patients [176,177], thereby implicating that accumulated dopamine
may not be a consequence of antipsychotic treatments, whereas it may putatively predis-
pose to antipsychotic response (Figure 5).

In agreement with these suggestions, it has been observed that DOPA levels were sig-
nificantly higher in both first-episode psychotic and at-risk-mental-state patients compared
to controls [68]. It has been demonstrated that dopamine release was also enhanced in
both clinical-high-risk and antipsychotic-naïve schizophrenia patients compared to healthy
volunteers in a model of psychosocial stress [178]. These studies supported the view that
abnormally high presynaptic levels of dopamine are one of the major neurobiological
lesions in schizophrenia (Figure 5).

Notably, a meta-analysis of PET and SPECT studies investigating DAT density in
schizophrenia patients’ striatum found no significant differences with matched controls,
indicating that the density of striatal dopamine terminals does not differ between patients
and controls [179] and rejecting the hypothesis that presynaptic hyperdopaminergia may
be due to the increased number of dopamine terminals rather than dopamine accumulation
in presynaptic sites (Table 5).
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In summary, there is consistent evidence that accumulation of presynaptic dopamine
may underlie psychotic symptoms and even predate the onset of these, or of those predis-
posing to relapse.

Under these lines, in an early study, in the decrease in positive symptoms (PANSS
positive subscale score changes after 6 weeks), antipsychotics correlated with a larger
percentage increase in D2R availability triggered by presynaptic dopamine depletion [169].
This finding indicated that response to antipsychotics may be larger in patients with higher
baseline dopamine levels. Therefore, high dopamine levels at baseline may predispose to
(or predict) antipsychotic response.

In agreement with this earlier study, a further SPECT study with [123I]iodobenzamide
showed that there was a significant negative correlation between low striatal D2R binding
potential at baseline (which was considered to indicate higher synaptic dopamine lev-
els) and amelioration of positive symptoms after a 6-week treatment with amisulpride
in antipsychotic-naïve schizophrenia patients [180]. Responder patients had significantly
lower D2R binding potential than non-responder ones, a finding that provided indirect
support to the observation (discussed in the next paragraph) that treatment resistant pa-
tients had decreased dopamine synthesis capacity compared to responder patients [181].
Moreover, a putative biological signature differentiating treatment resistant and treatment
responder patients and involving dopamine synthesis capacity has been recently described
in a [18F]-DOPA PET and diffusor tensor imaging (DTI) combined study [182]. Specifi-
cally, treatment responder patients exhibited a significant negative correlation between
the dorsolateral PFC-associative striatum connectivity and dopamine synthesis capacity
of the associative striatum, while no significant correlation was found in treatment resis-
tant patients and healthy controls [182]. In partial agreement, another multimodal study
reported that treatment responder patients had a negative correlation between prefrontal
grey matter volume and striatal dopamine synthesis capacity, but this was not evident in
treatment resistant subjects (Table 5) [183]. While these results support the idea that striatal
dopamine disturbances may be driven by cortical abnormalities in schizophrenia, the lack
of correlation in treatment resistant patients may be consistent with the suggestion that
TRS and non-TRS are two neurobiologically-separated entities [184], at least in terms of
dopamine dysfunctions.

An intriguing and somewhat different point of view has been recently suggested [185,186],
based on the observation that antipsychotic efficacy in rat models declined in concert with
extracellular striatal dopamine levels rather than insufficient D2R occupancy [186]. Indeed,
antipsychotic efficacy was associated with a suppression of DAT activity via direct block-
ade [186], while the loss of efficacy was associated with reduced dopamine neuron firing
and restored dopamine transporter activity [186]. Therefore, antipsychotic efficacy may be
driven by dynamic interactions between endogenous dopamine and presynaptic D2Rs and
should depend on high striatal extracellular dopamine [186], whose interaction with presy-
naptic D2Rs may cause an autoinhibitory control on dopaminergic neurons. Accordingly,
and in countertrend with mainstream opinions, Amato and colleagues propose that the
antipsychotic-mediated reduction in dopamine reuptake via direct dopamine transporter
blockade allows accumulation of dopamine in the synaptic cleft, which increases efficiency
by which phasically discharged dopamine triggers presynaptic autoinhibition [185]. There-
fore, a therapeutic antipsychotic response would be obtained by blockade of an adequate
proportion of D2R and sufficiently elevated extracellular dopamine levels to trigger autoin-
hibition [185]. On the other hand, non-response to antipsychotics would develop when
extracellular dopamine rather than D2R blockade decreases [186], which may occur in
conditions where DAT molecules are reduced or hyposensitive to antipsychotics. Further-
more, dopamine transporter (DAT) blockade has been proposed to restore initial synaptic
dopamine levels as a therapeutic option to improve the efficacy of antipsychotics in chronic
treatment [186], extending the conventional view of postsynaptic D2R antipsychotic block-
ade to the presynaptic dopaminergic terminal involvement via inhibition of voltage-gated
sodium channels and indirect stimulation of the D2R autoreceptor reserve [185]. These
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findings could be relevant to elucidate antipsychotic-induced synaptic changes and to
shed light on DAT blockade as an adjuvant treatment in non-response to antipsychotics
condition, such as TRS. Despite the fact that initial experimental support has already been
given to this hypothesis [186], stronger evidence should be provided.

Some studies have investigated the effects of antipsychotics on dopamine synthesis
capacity in schizophrenia patients based on the consideration that the antipsychotic effect
may not be entirely attributed to the blockade of postsynaptic D2Rs. Indeed, similar
occupancy of D2Rs in the striatum has been observed in both responder and non-responder
patients in an early study [187], suggesting that blockade of striatal D2Rs may be a necessary
but not sufficient mechanism of antipsychotic action. Therefore, it may be hypothesized
that an antipsychotic-induced reduction of dopamine synthesis capacity may play a role in
antipsychotic action (Figure 6).

According to this idea, in a PET study on nine schizophrenia patients, 5-week haloperi-
dol therapy caused a significant decrease in DOPA decarboxylase relative activity in the
caudate, the putamen, the thalamus, and the orbital and frontal cortices [188]. These data
are in agreement with the hypothesis that chronic antipsychotic regimens may decrease
presynaptic dopamine synthesis, in opposition to acute antipsychotic administration, which
has been associated with an increase in dopamine synthesis [189]. Therefore, antipsychotic
efficacy may be linked to an efficacious reduction of dopamine synthesis capacity.

Data from human studies are reinforced by preclinical observations. Repeated admin-
istration of antipsychotics to rodents is known to trigger depolarization block, i.e., a state
of dopamine neuron inactivation [190]. In non-manipulated rats, these effects take weeks
to occur. On the contrary, in a developmental model of schizophrenia (i.e., prenatal methyl-
azoxymethanol acetate exposure) associated with a hyperdopaminergic state, the acute
administration of both first and second-generation antipsychotics induced an immediate
reduction of the number of spontaneously active dopamine neurons [78]. The activity of
dopamine neurons continued to decrease with repeated administrations of both agents [78],
thereby mimicking the early and late efficacy of antipsychotics in schizophrenia patients.

As higher dopamine synthesis capacity has been associated with better response
to antipsychotics [169], the possibility may arise that non-response to these agents may
alternatively depend on exceptionally high striatal dopamine synthesis capacity that cannot
be blocked by antipsychotics or on low levels of presynaptic synthesis. Based on these
hypotheses, a neuroimaging study sought to evaluate dopamine synthesis capacity by
[18F]-DOPA PET scanning in treatment resistant or treatment responder schizophrenia
patients as compared to healthy controls [181]. [18F]-DOPA uptake was significantly higher
in responder vs. resistant patients in the associative and limbic striatum. Notably, [18F]-
DOPA uptake was also higher in responder vs. controls, while no significant differences
were found between resistant and controls [181]. The same observations were replicated
in a sample of first-episode patients since [18F]-DOPA uptake was significantly higher in
responders compared with non-responders and controls and showed significant positive
correlations with improvements in PANSS-positive negative and total scores after 4-week
antipsychotic treatment [191].

Taken together, these data suggest that non-response to antipsychotics may be due to
the fact the psychotic symptoms in these patients are not caused by elevated presynaptic
dopamine synthesis (Figure 6). Since patients included in the studies were stable on psy-
chotic symptoms and had not experienced acute symptom relapse in the six months prior to
the study, it remains unclear whether the differences in [18F]-DOPA uptake would still be
evident during psychotic re-exacerbation. However, it should be noted that treatment resis-
tant patients in this study were extremely more symptomatic than responder patients [181],
raising the possibility that the observed differences in dopamine synthesis may depend
on symptom levels. To respond to this issue, a later study evaluated dopamine synthesis
capacity in treatment resistant vs. responder patients who were also matched for symp-
tom severity [192]. Again, resistant patients showed significantly lower striatal dopamine
synthesis capacity than responder ones [192]. These neuroimaging results matched earlier
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immunocytochemical reports investigating tyrosine hydroxylase (TH) labeling (a marker of
dopaminergic synapses) on postmortem tissues from both treatment resistant and treatment
responder schizophrenia as well as control brains [193]. Indeed, TH-labeled axodendritic
synapses’ density was significantly greater in treatment responders than in either treatment
resistant ones or controls [193].

An interesting approach has been to evaluate whether treatment resistant patients
had higher heterogeneity in striatal dopamine function compared to treatment resistant
patients, a feature investigated in a subgroup meta-analysis of interindividual variance
in multiple outcomes of dopamine function [194]. Although TRS and non-TRS were not
comparable directly for dopamine synthesis capacity, some indirect inference can still be
made. Notably, in the whole group of schizophrenia patients vs. healthy controls com-
parison, no significant variability was found between groups, but schizophrenia patients
had mean lower dopamine synthesis capacity than controls [194]. Higher dopamine syn-
thesis capacity was also found in the subgroup analysis of treatment responsive patients,
but not in the subgroup analysis of treatment resistant patients compared to controls, as
expected [194]. No significant variability of this measure was found in both treatment
resistant and treatment responder groups compared to controls [194].

Subsequent data suggested that treatment resistant patients may have normal striatal
dopamine synthesis capacity but elevated anterior cingulate glutamate levels [195], as
opposed to responder patients who have elevated striatal dopamine synthesis but normal
glutamate levels in the anterior cingulate cortex [196,197]. A recent report indicated that
glutamatergic metabolites in the anterior cingulate cortex were also significantly higher in
clozapine-resistant TRS patients compared to healthy controls [198]. The possibility of the
involvement of non-dopaminergic systems in TRS has also been suggested by a functional
resonance imaging study in which treatment responder patients, but not treatment resistant
ones, showed a significant attenuation of reward prediction error-related activation, a
putative measure of dopamine circuits dysfunction, in multiple brain areas compared
to controls [199].

Table 5. Comparison of treatment resistant and treatment responder patients/preclinical paradigms
evaluating presynaptic dopamine-related biological mechanisms of non-response to antipsychotics.

Study Design Model/Subjects Methodology Main Outcomes References

Prospective
human study 10 schizophrenia patients [18F]N-methylspiroperidol

PET

Similar D2R striatal occupancy
in both responder and
nonresponder patients.

[187]

Cross-sectional
human study

18 treatment responders
18 HC SPECT

Higher dopamine synthesis
capacity associated with better

response to antipsychotics.
[169]

Postmortem
study Human brain tissue Immunocytochemical

TH labeled axodendritic
synapses’ density was greater in

treatment responders than in
either treatment resistant ones

or HC.

[193]

Cross-sectional
human study

12 treatment resistant
12 treatment responders

12 HC
[18F]-DOPA PET

Responder patients had lower
D2R binding potential than

non-responder ones.
[181]

Prospective
human study

28 antipsychotic-naïve
schizophrenia patients

26 HC

SPECT with
[123I]iodobenzamide

Negative correlation between
low striatal D2R binding
potential at baseline and
amelioration of positive

symptoms after a 6-week
treatment with amisulpride in

antipsychotic-naïve
schizophrenia patients.

[180]
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Table 5. Cont.

Study Design Model/Subjects Methodology Main Outcomes References

Cross-sectional
human study

21 treatment resistant
20 treatment responders H-MRS

Treatment responders have
elevated striatal dopamine

synthesis but normal glutamate
levels in the anterior

cingulate cortex.

[197]

Cross-sectional
human study

12 treatment resistant
12 treatment responders

12 HC
[18F]-DOPA PET

Treatment resistant showed
lower striatal dopamine
synthesis capacity than

treatment responder ones.

[192]

Cross-sectional
human study

21 treatment resistant
21 treatment responders

24 HC
fMRI

Attenuation of reward
prediction error-related

activation in multiple brain areas
of treatment resistant patients

compared to HC.

[199]

Cross-sectional
human study

27 treatment resistant
26 UTRS

21 treatment responders
26 HC

H-MRS

Glutamatergic metabolites in the
anterior cingulate cortex are
higher in treatment resistant

patients compared to HC.

[198]

Prospective
human study

20 FEP or
antipsychotic-naïve
psychotic patients

[18F]-DOPA PET

[18F]-DOPA uptake is higher in
responders compared to
non-responders and HC

Significant positive correlations
with improvements in

PANSS-positive, negative, and
total scores after 4-week

of antipsychotics.

[191]

Meta-analysis 983 schizophrenia patients
968 HC Meta-analysis of variance

Higher dopamine synthesis
capacity is found in treatment

responders, but not in treatment
resistant patients compared

to HC.

[194]

Cross-sectional
human study 40 patients with psychosis [18F]-DOPA PET

MRI

Treatment responders have a
negative correlation between

prefrontal grey matter volume
and striatal dopamine synthesis
capacity, but this is not evident
in treatment resistant patients.

[183]

Multicenter
cross-sectional

study

92 patients across 4 sites
(44 treatment resistant

48 treatment responders)
54 patients at 2 sites

(29 treatment resistant
25 treatment responders)

H-MRS
[18F]-DOPA PET

Treatment resistant patients may
have normal striatal dopamine
synthesis capacity but elevated

anterior cingulate
glutamate levels.

[195]

Cross-sectional
human study

24 schizophrenia patients
12 HC

[18F]-DOPA PET
DTI

Dopamine synthesis capacity
may represent a putative

biological signature to
differentiate treatment resistant

from treatment
responders patients.

[182]

HC = healthy controls; SPECT = single-photon emission computed tomography; TRS = treatment resistant
schizophrenia; DOPA = L-3,4-dihydroxyphenylalanine; PET = positron emission tomography; DTI = diffusion
tensor imaging; MRI = magnetic resonance imaging; TH = tyrosine hydroxylase; H-MRS = in vivo proton magnetic
resonance spectroscopy; fMRI = functional magnetic resonance imaging.
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Indirect support for these findings comes from a recent study on gene expression and
protein levels of dopamine-related molecules in the postmortem midbrain of schizophre-
nia patients. In this study, DAT mRNA expression was found significantly decreased
in schizophrenia patients compared to controls, in agreement with the hypothesis of a
presynaptic dysregulation leading to striatal hyperdopaminergia in schizophrenia [200].
However, DAT protein levels were found to significantly increase in putatively treatment
resistant patients (i.e., patients treated with clozapine) compared to patients treated with
other antipsychotics [200], which may represent a compensatory adaptation to the blunted
dopamine synthesis capacity found in treatment resistant patients.

In partial agreement with these data, in a small sample of schizophrenia patients with
comorbid mixed substance dependence, a blunting rather than an increase in presynaptic
striatal dopamine release has been observed [201]. These patients, however, still exhibited
the patterns of amphetamine-mediated enhanced dopamine release and positive symptoms
worsening observed in other samples of schizophrenia patients without comorbid sub-
stance dependence [201]. As blunted dopamine release may derive from neurobiological
adaptations to prolonged substance use, authors suggest that in these patients, the pre-
dominant dopaminergic alteration may not be excessive presynaptic dopamine synthesis
but hypersensitive postsynaptic D2Rs to dopaminergic stimulations, possibly related to
postreceptor factors implicated in signaling cascade [201].

3.4. Postsynaptic D2Rs

Human studies on dopamine-related postsynaptic mechanisms of response to an-
tipsychotics are currently limited by methodological challenges. Preclinical findings have
pointed to several potential molecular processes that affect striatal dopamine neurotrans-
mission, and that may be implicated both in the mechanism of action of antipsychotic agents
and in the failure of their efficacy, including disrupted mammalian target of rapamycin
(mTOR) Complex 2 (mTORC2) signaling [202]; abnormal neuregulin1/ErbB signaling [203];
defective trace amine-associated receptor 1 (TAAR1) activity [204]. However, studies in
humans are lacking or limited at the moment. In the following paragraphs, we will focus
on the most studied receptor and postreceptor mechanisms implicated in dopaminergic
signaling and proposed as molecular targets of antipsychotic action.

3.4.1. Modulation of D2R Internalization

D2R signaling strength may be modulated by internalization and degradation pro-
cesses. A deficit in internalization/degradation processes may predispose to aberrantly
high D2R-mediated neurotransmission, and theoretically, to the lack of response to antipsy-
chotic agents (Figure 7).

The neural cell adhesion molecule (NCAM) is a transmembrane postsynaptic protein
that interacts with D2Rs via its third intracellular loop [205]. Genetic manipulations that
affect NCAM functions have been found to cause schizophrenia-reminiscent behaviors
(i.e., impaired prepulse inhibition of startle; enhanced basal locomotor activity; enhanced
responses to amphetamine) [206,207]. Moreover, reduced polysialylated NCAM levels
and increased NCAM fragments have been found in the brain and cerebrospinal fluid
(CSF) of schizophrenia patients compared to controls [208,209]. Notably, NCAM interaction
with D2Rs is enhanced on dopamine stimulation and is followed by an NCAM-mediated
internalization and degradation of D2Rs [205]. Deficits of NCAM expression in NCAM−/−

mutant mice have been associated with increased membrane expression of D2Rs, exces-
sive D2R-mediated postsynaptic signaling, enhanced locomotor activity in response to
dopamine-agonists, and lower response to a D2R antagonist in terms of locomotor activity
reduction [205]. Therefore, it can be speculated that the production of defective NCAM
molecules may be one possible postsynaptic mechanism predisposing to antipsychotic
resistance (Figure 7).
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Figure 7. Putative postsynaptic molecular mechanisms of treatment resistance: the β-arrestin-2
pathway and the NCAM. β-arrestin-2 pathway may promote D2R-mediate postsynaptic signaling.
The interaction of D2R with β-arrestin promotes the recruitment of PP2A, which in turn disables
AKT1. The lack of inactivation of GSK-3 causes hyperactivity of D2R-mediated signaling. Ex-
cessive activation of this pathway has been considered a putative mechanism of non-response to
antipsychotics. NCAM is a transmembrane protein that interacts with D2Rs and mediates their
degradation. NCAM−/− mutant mice showed an increased membrane expression of D2Rs and
excessive D2R-mediated postsynaptic signaling, which may counteract the effects of antipsychotic
agents predisposing to non-response.

Notably, the rs1801028 polymorphism of the DRD2 gene corresponds to a Ser/Cys
alternative phenotype in the aminoacidic sequence located in the area of NCAM-D2R
interaction. This polymorphism has been considered a risk factor for schizophrenia, al-
though recent meta-analysis did not confirm this view [210] and has been investigated
in relation to response to risperidone [211]. Compared to wild-type mice carrying a Ser
residue in position 311 of the aminoacidic sequence, 311Cys mutants showed a 35% de-
crease of D2R binding to NCAM [205], which may correspond to an increase in surface
D2Rs and possibly to augmented D2R-mediated responses to dopamine. According to this
possibility, it has been observed that Cys allele carriers had significantly higher PANSS total
and subscale scores compared to Ser/Ser patients [212]. Since patients included in this study
were all under antipsychotic treatment, the differences in PANSS scores may also depend
on inefficacious treatment.

3.4.2. β-arrestin Signaling

Striatal D2Rs have been considered to exert part of their downstream action in a cyclic
adenosine monophosphate (cAMP)-independent manner by the formation of a signaling
complex comprising AKT1, protein phosphatase 2 (PP2A), and β-arrestin-2 [213]. Forma-
tion of this complex in response to dopamine agonists requires β-arrestin-2, which in this
case appears to promote D2R-mediate postsynaptic signaling, rather than contributing
to terminating it [214]. D2R-mediated recruitment of β-arrestin-2 and PP2A leads to the
inactivation of AKT1 by dephosphorylation of distinct target sites [214], which in turn
prevents the inactivation of the constitutively active GSK-3 by AKT1-mediated phosphory-
lation and contributes to the expression of dopamine-related behaviors [213]. Therefore,
AKT1 hypoactivity and GSK-3 hyperactivity may represent postsynaptic mechanisms of
heightened D2R-mediated dopaminergic tone, as is supposed to occur in schizophrenia
(Figure 7). Disturbances in the function of these molecules may also represent postsynap-
tic mechanisms of non-response to antipsychotic agents (Figure 7). Notably, significant
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alterations in gene expression of β-arrestin-1 and 2, along with D2R, metabotropic gluta-
mate receptors (mGluR) 1, and mGluR5, were reported in a G-protein coupled receptor
(GPCR) signaling pathway finder study used to assess the action of the TRS gold standard
medication clozapine in a model of acute and subchronic ketamine treatment in rats [215],
indicating that this molecular machinery may take part to the neuropharmacological actions
of clozapine and putatively be among molecular targets for overcoming the resistance to
antipsychotic treatment.

Indeed, AKT1 protein levels were found to be significantly reduced in lymphocyte-
derived cell lines and in the frontal cortex and hippocampus of postmortem brains of
schizophrenia patients compared to controls [216]. Additionally, the relative phosphory-
lation at Ser9 of GSK-3 was significantly lower in schizophrenia patients’ tissues (both
ex vivo lymphocytes and postmortem frontal cortex) compared to controls [216]. AKT1
protein levels were not found to be significantly different in the frontal cortex of haloperidol-
treated mice compared to untreated controls [216], presumably excluding the confounding
effect of antipsychotic treatment on AKT1 levels. When assessed on a relatively larger
sample, a significant association was found between the diagnosis of schizophrenia and
an AKT1 haplotype which was predictive of lower AKT1 protein levels [216]. Consis-
tent with this genetic observation, sensorimotor gating was significantly more disrupted
by amphetamine in transgenic mice that did not express the AKT1 gene compared to
wild-type littermates [216].

Notably, antipsychotic treatments significantly increased AKT1 and GSK-3 phospho-
rylation in the rodent brain [216,217], possibly indicating that antipsychotics may revert
the putative alterations in these two molecules in schizophrenia patients. Accordingly, en-
hanced striatal AKT activation has been described in D2R knock-out mice [218]. Moreover,
GSK-3 activation appears to be also regulated by serotonergic receptors since stimulation
of 5-HT2A and 5-HT1ARs increased and decreased GSK-3 activation, respectively [219].
Since most antipsychotics are antagonists at 5-HT2ARs and, to a lesser extent, agonists
at 5-HT1ARs, GSK-3 may represent a site of convergence of most antipsychotic actions.
Remarkably, antipsychotics appear to exert different actions on these molecules. Indeed,
levels of phosphorylated AKT1 in the rat frontal cortex rapidly returned to baseline af-
ter an acute haloperidol exposure, while AKT1 remained phosphorylated after an acute
clozapine treatment [220].

It has been demonstrated that a series of typical and atypical antipsychotics share the
property to potently antagonize β-arrestin-2 recruitment by D2Rs after their stimulation
by quinpirole [221]. Interestingly, these same antipsychotics range from inverse agonism
to full antagonism at the canonical D2R-mediated Gi/o protein signaling [221], suggesting
that antipsychotics may share inhibition of the D2R-b-arrestin-2 interaction rather than
cAMP inhibition as a common molecular mechanism.

A preclinical study has described the generation of unprecedented β-arrestin-biased
D2R ligands [222]. These compounds showed potent antipsychotic-like activity without
motor side-effects in amphetamine-treated mice, a model of hyperdopaminergia [222], and
were able to revert several psychotic-like behaviors in PCP-treated and in NR1 subunit
knock-down mice [223], and two models of NMDA receptor hypofunction-dependent
psychosis. Intriguingly, genetic deletion of the gene coding for β-arrestin-2 transformed
these compounds into typical antipsychotics, with high liability to induce catalepsy [222].

All these reports indicate that the β-arrestin-2/AKT1/GSK-3 pathway may repre-
sent a major target for existing and future antipsychotics [224]. Indeed, the β-arrestin-
2/AKT1/GSK-3 pathway has been found to be affected under conditions of D2R hyperstim-
ulation, as those hypothesized in schizophrenia. Modulation of surface receptors to revert
these defects may represent one major mechanism of action of antipsychotic agents. How-
ever, dopamine-dependent psychotic-like behavioral phenotypes have also been observed
in intact D2R animals that exhibited primary impairments in the β-arrestin-2/AKT1/GSK-3
pathway. Transgenic mice overexpressing GSK-3 showed increased general locomotor activ-
ity and increased acoustic startle response [225]. Overexpression in mice striatum of a D2R
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with preferential binding to β-arrestin-2 was associated with potentiation of amphetamine-
induced locomotor response similar to that obtained by overexpression of wild-type D2R
and significantly higher than that exhibited by mice overexpressing a D2R preferentially
binding Gi/o [226]. Putative postreceptor dysfunctions in the β-arrestin-2/AKT1/GSK-3
pathway may be responsible for the lack of antipsychotic efficacy.

3.4.3. D2R-Mediated Action on Scaffolding Proteins

Scaffolding proteins are enriched at the postsynaptic density (PSD) of medium-sized
spiny neurons, an ultrastructure located in the proximity of membrane surface and whose
main biological function is to integrate receptor-mediated signaling with intracellular effec-
tors and to mediate cross-talk among different transduction systems [227]. Despite the fact
that PSD is mainly deputed to the integration of glutamatergic signaling, multiple reports
have indicated that scaffolding proteins are also implicated in the cross-talk of dopamine-
mediated signaling [228]. Moreover, dopamine-mediated stimuli, as well as antipsychotic
agents, have been reported to modulate gene expression and protein levels of multiple
scaffolding proteins of the PSD [229,230], leading to changes in synaptic architecture and
functional connectivity [231]. Moreover, antipsychotics have been reported to differentially
affect dendritic spine density and PSD ultrastructure, putatively through the AKT-GSK-3
beta cascade [232].

Striatal expression of the Homer1a inducible transcript has been found selectively in-
duced by D2R antagonism [233], and antipsychotic administration differentially regulated
Homer1 gene expression according to the distinct gene isoform, brain region, antipsy-
chotic type, and administration timing [234–237]. Notably, Homer1a has been used as a
marker of glutamatergic activity to provide network maps of brain functions in relation to
antipsychotic administration [238].

At least one polymorphism in the Homer1 sequence, i.e., rs2290639, has been signifi-
cantly associated with psychotic symptoms measured by PANSS and response to four-week
antipsychotic treatment in a population of schizophrenia patients [239].

Experimental studies suggest that constitutive Homer proteins may facilitate the cross-
talk between dopamine and glutamate receptors signaling pathways, while the inducible
isoform Homer1a may represent a rapidly-induced tool to transiently impair this molecular
cross-talk [240] and to prevent excessive neuronal depolarization [241]. These mechanisms
may be crucial in the action of antipsychotics, although a direct confirmation of this
hypothesis in humans is still lacking. However, it could be supposed that dysfunctions of
PSD scaffolding proteins (e.g., mutant hypo/hyperfunctioning isoforms; relative imbalance
between PSD molecules) may cause aberrant dopamine-glutamate cross-talk and prevent
antipsychotic efficacy.

4. Discussion
4.1. Methodological Considerations

To date, only a few studies have provided a direct comparison of responder vs. non-
responder schizophrenia patients relative to biological underpinnings of the lack of re-
sponse to antipsychotics. The great part of studies providing such a comparison is from a
neuroimaging perspective. Many others do not provide a direct comparison; however, they
report data that may be informative of the mechanisms implied in response/non-response
to antipsychotics [169]. Only a few studies have addressed the issue of genetic and molec-
ular differences between responder and non-responder patients, while a substantial part
of biological information derives from preclinical reports. However, in this case, a major
drawback should be taken into account: an animal model of antipsychotic resistance with
face, construct, and/or predictive validity is still lacking.

As a result of all these considerations, it should be concluded that research on the field
of neurobiological underpinnings of TRS still has a long way to go. Nonetheless, many
studies have investigated clinical differences in treatment resistant vs. treatment responder
patients [184,242,243], finding sharp separations between the two conditions in many
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respects. Accordingly, TRS may be categorically distinct from conventionally considered
schizophrenia [184] and may depend on different neurobiological mechanisms [196,242].

It has been proposed to re-classify schizophrenia patients according to their response
to antipsychotics in three different groups (i.e., responder to conventional antipsychotics;
responder to clozapine; non-responder to clozapine) [244]. Such a classification may be
extremely useful in clinical settings, however, it is not clear whether biological mechanisms
leading to response/non-response in these three sub-groups may be distinct, as the authors
suggest [244]. A putative and schematic depiction of clozapine’s unique mechanisms of
action in comparison to conventional antipsychotics is given in Figure 8.
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heterodimer levels increase; uncoupling of the D1/D2R heteromer complex in the high-affinity state;
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of independent A2AR activation in attenuating D2R-mediated signaling.

Howes and Kapur [245] have proposed a more neurobiologically-oriented model of
schizophrenia classification based on dopamine perturbation and treatment response. Ac-
cording to this model, schizophrenia should be differentiated in (at least) two subtypes: type
A (i.e., hyperdopaminergic), which is characterized by elevated striatal dopamine synthesis
and release capacity and is expected to be responsive to conventional dopamine-blocking
agents; and the type B (i.e., normodopaminergic), where these dopaminergic alterations are
not present, and that is expected to respond to clozapine but not to conventional antipsy-
chotics [245]. This hypothesis is supported by neuroimaging, biochemical, and postmortem
data [193,196,246]. However, none of these studies was specifically designed to test the
hypothesis of a differential hyper vs. normodopaminegic state associated with treatment
response in schizophrenia patients. Therefore, more focused studies are needed to validate
or reject this hypothesis.

Nonetheless, these reports are paving the way for a reconceptualization and a critical
appraisal of research strategies used (and to be used) for studying TRS. Recent attempts
have been made to unify the nomenclature, to provide operative criteria to define non-
response to antipsychotics, and to delineate a distinct TRS syndrome [2]. This attempt is of
crucial relevance in order to select homogeneous population samples for conducting more
rigorous and reliable studies on the neurobiology of TRS.
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4.2. Theoretical Considerations

Given the limitations described in the previous paragraph, there is no unitary theory
to explain the lack of response to antipsychotics in schizophrenia patients. D2R-related
mechanisms have been mostly investigated in preclinical or ex-vivo settings, therefore,
the generalizability of these findings is challenging. The main theoretical concept is that
non-response to antipsychotics may depend on abnormally high D2R density or functioning.
However, to date, there is no direct evidence to confirm this hypothesis. It should also
be remarked that no reports have compared responder and non-responder patients, while
studies investigating the molecular events linked to response to antipsychotics were carried
out in animal models of the disease. Despite early claims on the increased density of D2Rs
in the brains of schizophrenia patients [83], subsequent studies and meta-analyses argue
against this possibility [11]. One possible alternative explanation is that only a subset of D2Rs
may be upregulated in schizophrenia and possibly in TRS conditions. There is convincing
evidence that a wide range of preclinical manipulations modeling psychotic phenotypes
may cause an upregulation of D2R in the high-affinity state [89]. However, PET human
studies have failed to demonstrate a significant difference between patients and controls in
D2High density [56,93,95], possibly because of technical drawbacks, since a reliable D2High

radioligand has not been manufactured yet. Remarkably, the difference in density of either
the whole pool of D2Rs or the subset of D2High has not been investigated in schizophrenia
responders vs. non-responders. Indeed, the compensatory increase in postsynaptic D2R
levels and/or the enhanced shift of D2Rs to high-affinity states by long-term antipsychotic
treatments are regarded as the main pathophysiological mechanisms of the acquired TRS-
subtype known as antipsychotic-induced supersensitivity psychosis [100,101]. Again, an
increased density of D2Rs and an elevation of D2High receptor proportion (as well as the
possibly jointed phenomenon of increased D2R dimer density) have been demonstrated
in the striatum of animal models of dopamine supersensitivity [88], whereas reports are
lacking in humans.

Treatment resistance may be due to aberrant density/functioning of D2R-containing
heterocomplexes, which may preclude antipsychotic interaction with the receptor or may
activate unique second messenger cascades that are not functionally targeted by these
agents. In recent years, the possibility that D2Rs may form heteromeric complexes with
D1Rs has received great attention [247]. D1/D2R heterocomplexes have been found to
trigger a unique Gq-mediated second messenger pathway, which has been reported to be
selectively targeted by clozapine [124], thereby providing a molecular explanation for the
well-known efficacy of clozapine in non-responder patients. However, the actual existence
of this heterocomplex has been strongly questioned in another study [128]. The actual
existence in human brains, the pathophysiological role, and the relevance for an antipsy-
chotic response of other postulated D2R-containing heteromeric complexes (i.e., A2A/D2R;
5-HT2A/D2R; NTS1/D2R) is yet to be determined and represents an intriguing field
of research.

However, unlike the above-mentioned molecular complexes, Su and co-workers have
demonstrated that the DISC1/D2R heterocomplex is enriched in postmortem brains of
schizophrenia individuals compared to controls [143], rendering it a compelling candidate
among D2R-containing heterocomplexes. Notably, the DISC1/D2R complex forms in
response to D2R agonist stimulation and potentiates D2R-mediated downstream signaling
via GSK-3 [143], while it is affected by haloperidol treatment. Enrichment of DISC1/D2R
complexes may be responsible for a condition of D2R-dependent hyperdopaminergia,
which in extreme cases may predispose to poor response to antipsychotics.

Another interesting field of research is represented by putative modulation of an-
tipsychotic efficacy by the D2Short and D2Long variants since there is some evidence that
different antipsychotics may differentially target these isoforms [149,150], possibly explain-
ing clinical variations in response among patients. Despite there is no evidence at the
moment on the role of D2Short/Long isoforms in regulating the response to antipsychotics in
humans, future studies should be aimed at evaluating possible pathophysiological mecha-
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nisms of antipsychotic resistance involving these isoforms, including (1) increased levels or
biological actions of D2Short receptors, which may be in agreement with observations of
Demjaha et al. [196] on lower synaptic dopamine levels in non-responders compared to
responders; (2) increased levels or functions of D2Long receptors, which may be consistent
with the hypothesis that non-response may depend on postsynaptic mechanisms and may
in part comply with observations on increased high-affinity D2R states in schizophre-
nia and possibly in antipsychotic non-responder; or (3) an imbalance between these two
receptor isoforms.

Research on putative postsynaptic mechanisms of non-response to antipsychotics is
still in its early steps. Defective D2R internalization, aberrant D2R-mediated downstream
signaling, and altered postsynaptic scaffolding protein-mediated glutamate-dopamine
interactions are all putative mechanisms that have been proposed to affect D2R-mediated
signaling, and that could theoretically predispose to the lack of response to antipsychotic
agents. However, most of the evidence is in preclinical settings. However, direct evalua-
tion of treatment resistant patients or comparison between responder and non-responder
patients is still lacking.

As a summary of findings, there are multiple intriguing theoretical mechanisms that
may explain antipsychotic resistance as an effect of striatal D2R-dependent molecular
events. However, to date, no studies have investigated these mechanisms in treatment
resistant patients. Additionally, very few studies have been conducted on extrastriatal D2Rs
and their relationship with antipsychotic efficacy. Dysfunctional D2R-dependent molecular
events may play a role in hyperdopaminergic-based forms of antipsychotic resistance.

Antipsychotic efficacy may be linked to an efficacious reduction of dopamine syn-
thesis capacity. Indeed, clinical studies have demonstrated that prolonged antipsychotic
treatment reduces the activity of the DOPA decarboxylase enzyme [188], which is predicted
to transform levodopa in dopamine [248]. Preclinical studies show that the inactivation of
dopamine neurons is larger in animal models of hyperdopaminergia [78], thereby mimick-
ing the most widely accepted pathophysiological mechanism of psychosis. According to
these data, antipsychotics may be more effective in patients whose psychotic symptoms de-
rive from aberrant high dopamine synthesis capacity, which may be successfully impacted
by these agents. Therefore, it may be hypothesized that patients whose psychotic symptoms
do not derive from high dopamine synthesis capacity may not respond to antipsychotics.

According to these suggestions, it has been observed that DOPA uptake levels in
treatment resistant patients were lower than in responder patients and similar to non-
affected subjects [181,192]. It has been reported that lower binding potential of a striatal
D2R selective radiotracer (i.e., higher baseline synaptic dopamine levels) was correlated to
better response to antipsychotic treatment [180] and that baseline binding potential was sig-
nificantly lower in responder patients than in non-responders [180]. Dopaminergic synapse
density also appeared greater in postmortem tissues of responder vs. non-responder
schizophrenia patients [193].

These elements support the proposed hyper vs. normodopaminergic schizophrenia
dichotomy [245], with the normodopaminergic subtype expected to derive from other,
possibly glutamatergic, mechanisms and to be responsive to clozapine. According to
Howes and Kapur [245], the most conservative and intuitive explanation should be that
antipsychotic agents do not work in some schizophrenia patients simply because their
psychosis pathophysiology is not linked to a substantial dopaminergic perturbation. Since
antipsychotic agents are all D2R-blocking agents (with the possible but relevant exception
of clozapine), they cannot be expected to ameliorate psychotic symptoms that do not
depend on dopamine dysfunctions.

However, it is not clear whether all conditions of TRS may be inscribed within the
so-called type B schizophrenia. Some conditions may depend on an extremely high hyper-
dopaminergic state, possibly due to aberrant D2R-mediated and/or post-D2R-mediated
mechanisms (see infra). Moreover, as a substantial part of treatment resistant patients is
not responsive to clozapine also, it has been proposed that clozapine-resistant patients may
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be afflicted by a disease with even more different neurobiology than clozapine responder
TRS [244]. Namely, it has been demonstrated that minor physical abnormalities, which
are indicative of neurodevelopmental failures, are significantly more frequent in treatment
resistant than in treatment responder patients [249]. Our recent reports also showed that
neurological soft signs (NSS) are more pronounced in treatment resistant patients com-
pared to treatment responders [242], representing one of the most relevant clinical signs
to discriminate patients who have developed TRS from those who have not [250]. NSS
are minor neurological abnormalities of neurodevelopmental origin that are regarded to
depend on aberrant network connections among brain areas [251]. Notably, it has been
reported that treatment resistant patients exhibit reduced connectivity between the ventral
striatum and substantia nigra and more pervasive disturbance to corticostriatal connec-
tivity compared to matched non-resistant patients [252]. Taken together, these data let us
hypothesize that the neurobiological foundations of TRS may be more heterogeneous than
only assuming a normodopaminergic state in these patients, putatively implicating further
clinical phenotype subdivisions [253,254].

4.3. Future Perspectives

Research on the neurobiology of TRS should start from three key points:
(1) better definition of TRS.
Although some efforts have been made in this direction, there is still much to do.

While the distinction between responders to conventional antipsychotics, responders to
clozapine, and non-responders to clozapine may have large clinical utility [244], some
challenges still remain:

(a) How should patients afflicted by dopamine supersensitivity-based TRS be classified?
Put another way: may it be useful to parse out acquired TRS from conditions in which
antipsychotic resistance occurs since the first episode of psychosis [96,97]?

(b) Should patients with non-responsive non-positive symptoms be included within
TRS? Since antipsychotics are not considered to have an efficacious impact on nega-
tive and/or cognitive symptoms [255], patients with prominent and non-responsive
non-positive symptoms should not be included among TRS or at least should be
classified otherwise. Nonetheless, a recent report from our group has demonstrated
that disorganization symptoms are as relevant as positive symptoms to categorize
schizophrenia patients as TRS with the current operative criteria [256]. It could be
hypothesized that treatment resistant patients with prominent non-positive symp-
toms may fall within the so-called normodopaminergic B subtype of schizophrenia.
However, there is no clear evidence that positive symptoms may derive only from
hyperdopaminergic state. On the contrary, clozapine, which is not a potent dopamine
blocker, is efficacious against positive symptoms in individuals who did not respond
to conventional antipsychotics, possibly implicating that their positive symptoms
were not dopaminergic in origin. Moreover, suppose patients with non-positive non-
responsive symptoms are to be excluded from the TRS definition. In that case, the
operative measures to assess non-response should be changed since at the moment
the most widely accepted measure of non-response is the lack of substantial reduction
of PANSS total score, therefore also including non-positive symptom-related items.

(c) Should non-response to antipsychotics be considered a trans-diagnostic condition
rather than limited to schizophrenia? In fact, antipsychotic agents are not intended
to treat schizophrenia as a whole but only to ameliorate positive symptoms (or more
conservatively to ameliorate those symptoms that derive from high D2R-mediated
transmission). Excluding affective psychoses, whose treatment also includes non-
antipsychotic agents, the field of non-affective psychoses exhibiting positive symp-
toms is not merely restricted to schizophrenia. Therefore, the definition of TRS may
be excessively narrow and other definitions and inclusion criteria should be provided,
e.g., “treatment resistant positive symptom syndrome” which includes patients suf-



Biomedicines 2023, 11, 895 31 of 42

fering from non-affective psychosis whose positive symptoms are not ameliorated
by antipsychotics.

(2) Carefully designed trials should be carried out to directly compare treatment re-
sistant and treatment responder patients on multiple neurobiological measures, including
differential genetic background, mRNA expression patterns, signaling pathways, pro-
teomic and metabolomic events, and functional brain networks. Indeed, there are growing
arguments that responder and non-responder patients may suffer from distinct neurobi-
ological lesions [242] and differential neuroimaging correlates of a disrupted functional
brain network [67].

(3) Animal models of antipsychotic resistance with at least face and construct va-
lidity should be developed, in order to allow more focused molecular research on the
underpinnings of treatment resistance.
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