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Abstract: Most of the current assays directed at the investigation of HIV reactivation are based on
cultures of infected cells such as Peripheral Blood Mononuclear Cells (PBMCs) or isolated CD4+

T cells, stimulated in vitro with different activator molecules. The culture media in these in vitro
tests lack many age- and donor-specific immunomodulatory components normally found within the
autologous plasma. This triggered our interest in understanding the impact that different matrices and
cell types have on T cell transcriptional profiles following in vitro culture and stimulation. Methods:
Unstimulated or stimulated CD4+ T cells of three young adults with perinatal HIV-infection were
isolated from PBMCs before or after culture in RPMI medium or autologous plasma. Transcriptomes
were sequenced using Oxford Nanopore technologies. Results: Transcriptional profiles revealed the
activation of similar pathways upon stimulation in both media with a higher magnitude of TCR
cascade activation in CD4+ lymphocytes cultured in RPMI. Conclusions: These results suggest that
for studies aiming at quantifying the magnitude of biological mechanisms under T cell activation, the
autologous plasma could better approximate the in vivo environment. Conversely, if the study aims
at defining qualitative aspects, then RPMI culture could provide more evident results.

Keywords: T cell activation; in vitro cultures; HIV reactivation; RNA sequencing; Oxford Nanopore
technologies; autologous plasma; TCR signaling cascade; PMA/ionomycin stimulation; CD4+ T
cells; RPMI

1. Introduction

The ability of HIV to integrate into the human genome and persist in a latent phase
within long-lived host cells represents the main obstacle to cure. Among people living with
HIV and treated with ART (antiretroviral therapy), integrated viral DNA can be found
mainly in resting CD4+ T cells [1,2]. More than 90% of this latent reservoir consists of
defective proviral genomes that can contribute to chronic immune activation and exhaus-
tion but are not responsible for viral rebound if ART is interrupted [3]. The inducible or
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replication-competent proviruses, the key targets of curative efforts, can either be activated
naturally (at ART discontinuation and/or suboptimal adherence) or in vitro with specific
stimulation approaches. Assays such as the Quantitative Viral Outgrowth Assay (QVOA)
and Tat/rev Limiting Dilution Assay (TILDA), that have been developed to measure the
replication-competent or inducible reservoir, require in vitro stimulation of CD4+ T cells
isolated from ART-suppressed individuals with HIV. However, these protocols mostly
use RPMI-based media that not only contain animal-derived products [4,5], but are also
not representative of the complexity of human plasma, a rich source of age-specific im-
munomodulatory components such as antibodies, complement, cytokines, chemokines,
and metabolites [6]. In this context, we tried to determine the impact of selecting this
artificial medium, largely employed in research, in comparison to human plasma and how
the choice of culturing and stimulating a single lymphocyte population (CD4+ T cells) as
opposed to bulk PBMCs influences CD4+ T cell gene expression profiles.

2. Materials and Methods
2.1. Ethics Statement

The study was conducted in accordance with the ethical guidelines approved forth by
the Institutional Ethics Committee of Bambino Gesù Children’s Hospital on 16 July 2021
with protocol number 2555_OPBG_2021. All participants or their legal guardians gave
written informed consent to the study in accordance with the Declaration of Helsinki.

2.2. Study Participants

Three young adults living with perinatally-acquired HIV infection (two female and
one male) (S1, S2, S3) (age range 12–26 years), who started ART within the first year of
life and with a history of suppressive ART > 2 years, were recruited at Bambino Gesù
Children’s Hospital (Rome, Italy). Inclusion criteria were the following: age > 12 years;
age at ART start < 1 year; and history of suppressive ART > 2 years. TILDA revealed
an inducible, transcriptionally competent HIV reservoir in subject S3, but not S1 and S2.
Furthermore, total HIV DNA load in CD4+ T cells was quantified for all the individuals
and was 255, 35, and 377 HIV-1 DNA copies per million CD4+ T cells for S1, S2, and S3,
respectively. Cell-associated HIV RNA was estimated for Long Terminal Repeats (LTRs) (0,
45.6, and 0 RNA copies per million PBMCs, respectively) and for pol gene (0.64, 0, and 0
RNA copies per million PBMCs, respectively).

2.3. Sample Collection

Blood samples were obtained by blood draws collected in EDTA (Ethylenediaminete-
traacetic acid) tubes and 1 mL of plasma was aliquoted after centrifugation and stored in
cryovials at −80 ◦C until further analysis. Peripheral Blood Mononuclear Cells (PBMCs)
were isolated using Ficoll-Paque PLUS (Code#: 17144003, Cytiva Sweden AB, SE-751 84
Uppsala, Sweden) density gradient centrifugation. Countess II Automated Cell Counters
(ThermoFisher Scientific, Waltham, MA, USA) was used to determine the total number of
cells, then PBMCs were frozen and stored in Liquid Nitrogen at the Cryolab facility placed
at the University of Rome “Tor Vergata”.

2.4. Study Design and In Vitro Stimulation

CD4+ T cells of ART-treated young adults with perinatal HIV-infection were enriched
by negative selection with the EasySep Human CD4+ T Cell Enrichment Kit (Cat. #: 19052,
Stemcell Technologies, Vancouver, BC, Canada) according to manufacturer’s instructions
from thawed PBMCs before (pre-culture condition, PREc) or after (post-culture condition,
POSTc) the 18 h in vitro stimulation. An aliquot of non-cultured CD4+ T cells (T0) was
collected as a control sample to characterize the transcriptome profile of CD4+ T before
the in vitro culture. CD4+ T cells (in PREc) or PBMCs (in POSTc) were cultured in round-
bottom 96-well plates (≤1 × 106 cells/well) for 18 h (at 37 ◦C, 5% CO2) and activated
with 81 nM Phorbol 12-myristate 13-acetate (PMA, cat. #: P1585, Sigma-Aldrich, Merck
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KGaA, Darmstadt, Germany), 1,34 uM IONOMYCIN (IONO, cat. #: I0634, Sigma-Aldrich,
Merck KGaA, Darmstadt, Germany), 20 U/uL recombinant human Interleukin-2 (IL-2,
cat. #: 200-02, Peprotech, Cranbury, NJ, USA), and the HIV-1 reverse transcriptase inhibitor
Zidovudine (formerly Azidothymidine, AZT, cat. #: 3485 from National Institutes of Health,
NIH, HIV Research Program, HRP, Bethesda, MD, USA) used at 400 nM to avoid in vitro
HIV re-infection (ST) or left unstimulated (US). Cells were both resuspended in autologous
plasma without supplements or 1640 RPMI (Cat. #: ECM9106L, EuroClone, Milan, Italy)
supplemented with 10% Fetal Bovine Serum (FBS, ref. #: 10270-106, Gibco, ThermoFisher
Scientific, Waltham, MA, USA), 1% L-Glutamine (Cat. #: ECB3000D, EuroClone, Milan,
Italy), and 1% Penicillin/Streptomycin solution (Cat. #ECB3001D, EuroClone, Milan, Italy),
to later carry out RNA-seq using Oxford Nanopore technology. Live cells were measured
with Countess II Automated Cell Counters (ThermoFisher Scientific, Waltham, MA, USA)
for each condition at the end of the cell culture. Unstimulated samples had a viability
≥80%, while stimulated samples had a viability between 70 and 80%.

2.5. RNA Isolation

CD4+ T cells were first lysed in a solution of RNeasy Lysis Buffer (RLT Buffer, QIA-
GEN, Venlo, The Netherlands) and beta-mercaptoethanol (BME, ref. #: 21985-023, Gibco,
ThermoFisher Scientific, Waltham, MA, USA, using 10 µL BME for each mL of RLT) and
then stored at −20◦ overnight for RNA yield maximization. The day after, according to
cell number availability, RNA isolation was made via the RNeasy™ Mini and Micro Kit™
(Cat. #: 80204 and #: 80284 respectively, QIAGEN, Venlo, The Netherlands) following
manufacturers’ instructions. Pure, concentrated RNA was eluted in 14 µL (Micro kit) or
30 µL (Mini kit) RNase-free water (Mat. No. #: 1039480, QIAGEN, Venlo, The Nether-
lands) and 1 µL of RNAse Inhibitor (Cat. #: AM2694, Invitrogen, ThermoFisher Scientific,
Waltham, MA, USA) was added to avoid sample degradation. The RNA concentration
(ng/µL sample) and purity (absorbance ratios A260/280 and A260/230) was measured by
Nanodrop one (ThermoFisher Scientific, Waltham, MA, USA) using 1 µL/sample. At the
end of the procedure, the isolated RNA was stored at −80 ◦C until further analysis.

2.6. RNA Sequencing

Bulk RNA sequencing was performed using the long-reads Oxford Nanopore Tech-
nologies (Oxford, UK). The PCR-cDNA Sequencing Kit SQK-PCS109 was used for S1 PREc
samples; meanwhile, the PCR-cDNA Barcoding kit SQK-PCB109 was used to multiplex
the samples of each donor in a single library. The sequencing libraries were prepared
following the manufacturer’s protocol. In brief, starting from 50 ng of full-length RNA,
complementary strand DNA (cDNA) synthesis and strand switching were performed using
kit-supplied oligonucleotides. dscDNA was generated by PCR amplification of cDNA
(10 µL cDNA/sample) using primers with 5′ tags which facilitate the ligase-free attach-
ment of Rapid Sequencing Adapters. The prepared libraries were either immediately used
for loading onto the R9.4.1 flow cell (FLO-MIN106) and sequenced or stored at −80 ◦C
until use. Libraries were run on MinION flow cells with MinKNOW acquisition software
version v.21.02.01.

2.7. HIV-1 DNA Quantification on CD4 T Cells by Droplet Digital PCR

HIV-1 DNA levels in purified CD4+ T cells were measured by the QX200™ Droplet
Digital™ PCR (ddPCR) system (Bio-Rad, Pleasanton, CA, USA). Briefly, ddPCR mix was
prepared mixing isolated DNA with 2X ddPCR Supermix for Probes; LTRfw and LTRrv
primers [7], or hTERTfw and hTERTrv primers [8], and LTR or hTERT (human telomerase
reverse transcriptase) probe, respectively. QX200™ Droplet Generator (Bio-Rad, Pleasanton,
CA, USA) was used to generate droplets, then the plate was placed into a 2720 Thermal Cy-
cler (Applied Biosystems, ThermoFisher Scientific, Waltham, MA, USA) with the following
cycling conditions: 94 ◦C for 10 min; 45 cycles at 94 ◦C for 30 s and 58.5 ◦C for 1 min; and
98 ◦C for 10 min. The droplets were then read by the QX200™ Droplet Reader (Bio-Rad,
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Pleasanton, CA, USA) and the results were later analyzed with the QuantaSoft™ Analysis
Software v.1.7.4.0917 (Bio-Rad, Pleasanton, CA, USA). Only wells with ≥10,000 droplets
were considered for the analysis. Each sample was run in triplicate. The HIV-1 copy
number was normalized to the hTERT copy number (diploid gene), and the results were
expressed as HIV-1 DNA copies/106 CD4 cells.

2.8. Quantitative CA-HIV-1 RNA Assay (qRT-PCR)

Cell associated HIV-1 RNA (CA-HIV-1 RNA) was quantified as previously described [9].
Briefly, total cellular RNA was extracted using the automated Qiasymphony platform
(DSP virus/pathogen mini kit, QIAGEN, Venlo, The Netherlands). Similarly, RNA was
processed in-house to selectively amplify total (LTR) and unspliced (pol) ca-HIV-1 RNA
by qRT-PCR applying primers from previously validated assays [7,10]. The caHIV-1 RNA
measurements were standardized against the expression of the cellular genes TBP1 and
IPO8 to determine the number of copies of caHIV-1 RNA per 106 PBMCs.

2.9. Data Analysis
2.9.1. RNA-Seq Raw Data Processing

Nanopore FAST5 files were basecalled with the stand-alone Guppy basecaller v.6.2.11.
In not-multiplexed samples (S1 PREc samples), adapters were trimmed during basecalling.
For the other samples, adapters and barcodes were trimmed during demultiplexing that
was performed using Guppy barcoder v6.2.11. The quality of the reads was checked with
the fastqc tool v.0.11.9 and the reads with more than 40% of the base with a Phred score
of less than 10 were filtered out with fastp v.0.12.4. Next, the high-quality reads were
aligned against hg38 Gencode human transcriptome reference v38 using minimap2 v.2.21
with map-ont preset parameters. Reads unmapped on hg38 transcriptome were aligned
against the Human immunodeficiency virus type 1 (HXB2) genome sequence (GenBank:
K03455.1) using minimap2 with the splice preset parameters. SAM-to-BAM conversion,
BAM sorting, indexing, and extraction of alignment statistics was performed with samtools
v1.10. Salmon v0.13.1 with “–gcBias -l U” parameters was used to summarize the mapped
reads. Transcript level estimates were aggregated to gene level raw counts using the
tximport R package v.1.22.0. Raw count values were then transformed using the edgeR
v.3.36.0 R package into normalized counts per million (CPM) values. Genes with a mean of
CPM under 5 were excluded.

2.9.2. Principal Component Analysis

Principal Component Analyses (PCA) of sample expression levels were performed
using the prcomp function from the R package stats v.4.1.1 scaling and centering the
CPM values.

2.9.3. Differential Expression Analysis

To identify differentially expressed genes (DEGs) between conditions, we decided
to analyze donors individually instead of using them as biological replicates. The edgeR
package, applying an exact test coupled with the negative binomial distribution, can also
perform statistical tests with a single replicate if the Biological Coefficient of Variation
(BCV) is provided. Typically, this value is 0.4 for well-controlled experiments of human
samples, 0.1 for samples of genetically identical model organisms, or 0.01 for technical
replicates [11]. Considering that we compared conditions within each donor and not
among donors, we set the BCV parameter at 0.3. Among all possible comparisons, we
tested the 20 most informative and we selected genes with an adjusted p-value (FDR) (False
discovery rate) < 0.05 and a |logFC| > 1.4.

2.9.4. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was performed using the gseGO function in the
clusterProfiler (v. 4.2.2) [12] R package and the Biological Processes gene sets. For all the
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20 comparisons, genes were ranked according to the log of the fold change multiplied by
-log of FDR. A normalized enrichment score (NES) is calculated for each Biological Process.
This NES reflects the degree to which a gene set is over-represented at the top (UP genes)
or bottom (DW genes) of a ranked list of genes. In other words, it can highlight whether a
gene set is enriched in our deregulated genes.

2.9.5. Virtual Inference of Protein-Activity by Enriched Regulon Analysis (VIPER)

DecoupleR (v. 2.0.1) [13] R package was used to investigate the activity of transcription
factors (TF) and pathways through VIPER (Virtual Inference of Protein-activity by Enriched
Regulon analysis) algorithm. We coupled VIPER with the DoRothEA (Discriminant Reg-
ulon Expression Analysis) [14] to infer TFs (transcription factors) activity and with the
PROGENy (Pathway RespOnsive GENes for activity inference from gene expression) [15]
databases for pathways activity estimation. VIPER allows computational inference of pro-
tein activity in single-sample gene expression profiles or using the output of a differential
analysis [13]. We used the first strategy to highlight similarities and differences between
individual samples. Taking into account the low differences observed between the PREc
and POSTc isolation strategies and to reduce the number of comparisons, we aggregated
the normalized counts of the PREc and POSTc samples by mean and performed a new
differential analysis (Supplementary Figure S3A). We used the ranking indices from this
analysis to focus on the differences between the conditions.

2.9.6. Differential Analysis of Genes Downstream the TCR Signaling Cascade

We compared the expression levels of some genes regulated by key TFs downstream
of TCR (T cell receptor) signaling. Statistical comparisons between unstimulated plasma
(PLSM US), stimulated plasma (PLSM ST), unstimulated RPMI (RPMI US), and stimulated
RPMI (RPMI ST) were performed using the Kruskal–Wallis test followed by Dunn’s post
hoc test. Post hoc tests were applied only to the genes with a p-value adjusted (FDR) <0.05.

3. Results
3.1. Overview of Transcriptional Profiles in Different Conditions

We explored the full transcriptome of CD4+ T cells from three ART-suppressed donors
with perinatal HIV, evaluating the impact of isolating the CD4+ T cells pre-culture (PREc)
or post-culture (POSTc), using autologous plasma (PLSM) or RPMI as the culture matrix.
Cells were stimulated (ST) for 18 h with PMA/ionomycin and IL-2 together with AZT or
left unstimulated (US) for both matrices (Figure 1). Taking into account all these variables,
we analyzed eight different experimental condition combinations for each donor, plus a
sample of uncultured CD4+ T cells (T0) (nine total conditions). Overall, a total of 27 samples
were sequenced using the MiniION Oxford Nanopore platform. Sequencing metrics are
reported in Supplementary Figure S1.

To provide an overview of the 27 transcriptome profiles obtained from these three
different donors and nine conditions, we first performed a Principal Component Analysis
(PCA) (Figure 2). Under the same experimental conditions, PCA revealed that the three
donor transcriptional profiles have high similarity to each other except for the PREc samples
from the S1 donor (Figure 2A). These samples were thus sequenced individually on separate
flow cells, while, due to cost optimization, we decided to multiplex the samples of each
donor together for S2 and S3. This batch effect suggests that, if possible, it is desirable to pool
together the samples to be compared, even if results were not affected on a functional level.
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Figure 1. Experimental design depicting the sequence followed to investigate the expression of the
CD4+ T cells genes from 3 young adult donors with perinatal HIV and in 9 different experimental
settings. Lymphocytes were isolated from PMBCs before or after culture (respectively, PREc and
POSTc) and stimulated in the presence of PMA/ionomycin, AZT, and IL-2 (ST), or left unstimulated
for 18 h (US) in plasma (PLSM) or RPMI. An additional sample of uncultured CD4+ T cells (T0) was
collected as a transcriptional basal state. Total RNA was extracted and sequenced using Oxford
Nanopore technology.
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top indicate the frequency of each experimental setting along the x-axis (PC1). (A). To highlight the
impact of single experimental conditions, the same PCA was colored according to stimulation (B),
culture medium (C), and CD4+ T cells isolation strategy (D).

Focusing separately on the effects of stimulation (Figure 2B), matrix (Figure 2C), and
CD4+ T cells isolation strategy (Figure 2D), we observed that the transcriptional profile was
highly impacted by stimulation. The conditions T0, US, and ST clearly segregated into three
different clusters (Figure 2B). Furthermore, while US samples are tightly clustered, the ST
samples are more spread out, suggesting that stimulation differently impacts each sample.
The impact of the culture matrix appeared to be irrelevant under the US conditions, while
we noticed clear segregation of RPMI and PLSM after stimulation, with the RPMI samples
more distant from all US conditions (Figure 2C). In this first overview, samples cultured
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with RPMI showed a stronger stimulation effect. The PCA did not show appreciable
differences related to CD4+ T cells isolation strategy (Figure 2D).

3.2. Identification of Differentially Expressed Genes

To identify differentially expressed genes (DEGs) between conditions, we decided to
analyze each donor individually (Figure 3A). Among all possible comparisons (N = 36),
we selected the 20 most informative. Genes with an adjusted p-value (FDR) < 0.05 and
a |logFC| > 1.4 were considered as differentially expressed (Supplementary Figure S2A
and Supplementary Table S1). Overall, the three donors showed a similar proportion of
up-regulated (UP) and down-regulated (DW) genes across the comparisons, with higher
numbers of DW than UP genes (Figure 3A). As expected, we found a higher number of
DEGs between ST and T0 than between US and T0 conditions both in RPMI and PLSM
settings. In accordance with the PCA results, samples stimulated with RPMI showed more
DEGs than those found in the PLSM counterpart. Finally, the low number of DEGs between
PREc and POSTc was in line with the absence of clustering observed in the PCA.
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same functional mechanisms. 

Figure 3. Differential gene expression analysis. Number of genes up-regulated (red) and down-
regulated (blue) among US vs. T0, ST vs. T0, and ST vs. US comparisons, analyzed in the 3 study
participants (S1, S2, and S3) in both PREc and POSTc. Genes with |log fold change| > 1.4 and
adjusted p-value (FDR) < 0.05 were considered differentially expressed (DEGs) (A). Overlap of genes
up-regulated (UP, red) or down-regulated (DW, blue) after stimulation among donors and matrices
for CD4+ T cells isolated before (PREc) or after (POSTc) culture (B).

The intersections of DEGs between ST and US conditions are depicted in Figure 3B.
As shown in the figure, non-overlapping DEGs, among donors and matrices, were more
frequent than common DEGs. These results suggest that, upon stimulation, different sets
of genes were modulated in each sample and that the number of common DEGs across
donors was greater in the RPMI vs. PLSM conditions. For example, for the POSTc isolation
strategy, we found 106 shared genes exclusively up-regulated after stimulation for donors
cultured in RPMI and only 2 with PLSM (Figure 3B).

3.3. Functional Phenotype in Different Conditions

To further investigate the functional landscape, we performed a GSEA for a macro-
scopic view of the biological processes (Figure 4A) and VIPER (Virtual Inference of



Biomedicines 2023, 11, 888 8 of 16

Protein-activity by Enriched Regulon) analysis to explore the activity of pathways and
transcriptional factors (TFs). VIPER allows computational inference of protein activity
with two types of input: (1) using gene counts of a single sample or (2) using comparison
metrics, such as fold changes or ranking index [13]. We used the first strategy to highlight
similarities and differences between individual samples (Figure 4B). Using the ranking
index as input, we focused on comparisons between conditions (Figure 5).
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Figure 5. Differentially activated pathways between ST and US conditions using PLSM (A) and RPMI
(B). Networks connecting pathways activated (orange rectangle) or repressed (green rectangle) after
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in PLSM (C) and in RPMI (D). The connections between pathways and DEGs nodes and their mode
of regulation (positive in orange or negative in green) are information from the PROGENy database.
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Despite the high number of non-overlapping DEGs among donors and matrices after
stimulation (Figure 3B), these functional analyses showed a very high concordance between
donors (Figures 4 and 6A, Supplementary Figure S2B). These results highlight a strong
interindividual variability in terms of DEGs, but also shown a convergence on the same
functional mechanisms.
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Figure 6. Inference of transcription factor activity and expression of their target genes. Heatmap of
NES values from VIPER analysis on the transcription factor (TF) activity of single samples. Positive
values (red) indicate active TFs, negative values (blue) show inactive TFs, while white indicates
no significant results (A). Violin plots showing the expression difference after stimulation both in
PLSM and in RPMI conditions of selected genes regulated by the NF-kB1, NFATC2, JUN, STAT5A,
and STAT5B TFs. Statistical significance is indicated as follows: * for p-values less than 0.05, ** for
p-values less than 0.01, and *** for p-values less than 0.001 (B).

3.4. TCR Signaling Cascade before and after Stimulation

As expected, we found that after 18 h of in vitro culture without stimulation, CD4+ T
cells showed down-regulation of genes involved in immune response processes (Figure 4A,
cluster 2). In line with this, the VIPER analysis of pathway activity highlighted that,
regardless of the matrix used, the EGFR, p53, TGFβ, and MAPK pathways are inactive in
all US samples (Figure 4B). Except for the TGFβ pathway that plays a pleiotropic role in
the biology of CD4+ T cells [16,17], the EGFR, p53, and MAPK pathways are all involved in
T cell activation [18–21]. Confirming these results, transcription factors (TFs) downstream
of these pathways, such as NFATC2 and JUN [22], are also clearly inactive under US
conditions (Figure 6A).

Stimulation with PMA/ionomycin bypasses the T cell membrane receptor complex
leading to T cell activation, while IL-2 induces the proliferation and survival of TCR-
activated T cells [23,24]. After stimulation, GSEA showed the up-regulation of genes mainly
involved in processes driven by TCR pathway activation and/or IL-2 stimulation [22],
including the immune response to stimulus and cytokine production (Figure 4A, cluster 1
and 3). These results were concordant between plasma and RPMI, but RPMI showed more
biological processes with an adjusted p-value (FDR) < 0.05.

Pathways expected to be activated by PMA/ionomycin and IL-2, such as NF-kB,
TNFα, JAK/STAT, MAPK, and PI3K [23], were indeed found through VIPER analysis in
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both PLSM or RPMI conditions, and independent of isolation strategy (Figure 4B). Similar
to the GSEA results, we found more statistically significant activated pathways with the
RPMI conditions than PLSM. To confirm these results, we performed the VIPER analysis
on the differences between ST and US conditions (Figure 5). We found that the EGFR,
MAPK, PI3K, and NF-kB pathways were significantly activated after stimulation in PLSM
and RPMI (Figures 5A and 5B, respectively). Visualizing the interaction networks among
pathways and their DEGs after stimulation (Figure 5C,D), we observed a higher number of
DEGs involved in these pathways under RPMI conditions compared to PLSM.

Focusing on TF activity, differences between RPMI and PLSM were clearly visible
(Figure 6A). In fact, key TFs downstream of the TCR and IL-2 signaling pathways, such as
NFATC1, NFATC2, JUN, and REL [23,25], showed more significant activation under RPMI.
This suggests that under the RPMI condition, more genes responsive to these TFs were
deregulated. Analyzing separately the impact of stimulation in PLSM (Supplementary
Figure S3B,D) or RPMI (Supplementary Figure S3D,E), similarly to what was observed
for the pathways, PLSM and RPMI shared almost the same top 15 active or inactive TFs
(Supplementary Figure S3D,E). However, network analysis showed that the numbers of
interactions between TF and DEGs are higher in RPMI than in PLSM after stimulation.

To further confirm the greater activation of the TCR signaling cascade using RPMI
instead of PLSM, we compared the normalized counts of genes transcribed by NF-kB1,
NFATC2, JUN, STAT5A, and STAT5B, some of the key TFs downstream of TCR activation
(Figure 6B). All genes depicted in Figure 6B showed higher levels of expression in RPMI
compared to PLSM after stimulation.

3.5. Hypoxia and JAK-STAT Pathways Are Activated in CD4+ T Cells Cultured in PBMCs

Culturing CD4+ T cells as bulk PBMCs and isolating them after in vitro culture (POSTc),
we observed that the hypoxia and JAK-STAT pathways were activated in the absence of
stimulus (Figure 4B). Conversely, we did not find these pathways in CD4+ T cells isolated
pre-culture (PREc). These were the main differences between PREc and POSTc isolation
strategies. In addition, the hypoxia pathway was active in the PLSM condition after
stimulation but was inactive in RPMI.

4. Discussion

Human in vitro models can be used for the investigation of individual-specific im-
mune responses. A wide range of techniques has been developed to measure the persistent
HIV reservoir in virally suppressed subjects [5,26–33]. These assays can be classified into
two groups: (1) PCR/sequencing-based and (2) cell-culture-based assays. PCR/sequencing
methods [34–38] include molecular assays recently developed for profiling the transcrip-
tional activity and the chromosomal locations of individual proviruses [38]. Focusing on
cell culture assays, many studies of HIV latency and reactivation rely on the evaluation
of viral reservoir after in vitro stimulation of PBMCs or CD4+ T cells cultured in RPMI
(e.g., QVOA, TILDA) [31,33,39,40]. However, a growing body of evidence indicates that
different cell culture matrices strongly influence cell behavior in in vitro systems. For
example, it is known that serum-free media favors T cells proliferation over media with
serum [41]. Additionally, Leney-Green et al. compared RPMI versus human plasma-like
medium and found that different concentrations of calcium can strongly impact T cell
activation [42]. In this context, we aimed to mimic test conditions that were more represen-
tative of patients’ biological samples and decided to explore a more individualized, in vitro
cell culture with autologous plasma used as cell culture matrix in comparison to common
RPMI. We then considered the possible diverse transcriptional phenotypes of CD4+ T
cells cultured alone or together with other PBMCs. Human plasma is a rich source of
age-specific immunomodulatory components, such as antibodies, complement, cytokines,
chemokines, and metabolites [6], which are not usually included in RPMI cell cultures.
As examples, we know that activation of TLR pathways [43] that is based on differential
cytokine production and that anti-inflammatory molecules (e.g., IL-10) in human plasma [6]
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may have age-related differences. Moreover, hormone levels, qualitatively and quantita-
tively different according to sex, can impact leukocyte behaviors [44]. Nonetheless, culture
systems in RPMI rarely mimic the plasma concentration of cytokines under chronic disease
conditions such as ART-treated HIV infection [45]. It is, thus, not experimentally feasible
to recreate age-, gender-, and condition-specific personalization of culture media through
supplementation with immunomodulatory agents to account for all such differences.

In line with this, our goal was to evaluate the optimal experimental settings to model
the immune response in an in vitro platform upon PMA/ionomycin stimulation through
RNA-Sequencing of CD4+ T cells exposed to nine experimental settings. We applied a
novel single-subject differential analysis approach which is based on the analysis of each
donor individually [46,47], conversely to conventional transcriptome analytics strategies
that instead require replicate samples to estimate gene-wide data variability and make
inferences. Although single-subject methods for identifying DEGs from paired samples
need optimization [47], this strategy overcomes a limitation of traditional methods: the
cohort/group approaches emphasize the group average rather than individual participants,
and this may not represent the individual’s personalized profile. Hence, single-subject
methods are needed to dissect the impact of individual genetic and environmental variabil-
ity on transcriptomic profiles and, thus, are crucial tools in precision medicine [47]. With
this approach, we observed that despite a high proportion of DEGs after stimulation among
donors and culture matrices (Figure 3B), functional analyses (Figures 4 and 6) revealed
strong biologic concordance.

In this work, to simulate in vitro T cell activation, we used a combination of PMA/
ionomycin and IL-2, as already described in the TILDA enhanced assay [48]. PMA activates
protein kinase C (PKC), which induces the IkB kinase (IKK) and Ras/Raf/MAPK signaling
pathways, leading to the activation of both NF-kB and AP-1, respectively [23]. Ionomycin is
a Ca2+ mobilizing agent that induces calcineurin-mediated dephosphorylation and import
of TFs from the NFAT family into the nucleus [23,49]. Together, PMA and ionomycin
provide stimulation allowing bypass of the TCR activation, resulting in T cell activation
with the production of a variety of cytokines and in the reactivation of HIV proviruses in
infected cells. This is because HIV transcription is positively regulated through binding
to the promoter of NF-KB, NFAT, in particular members of NFATc1 and NFATc2, and
AP-1 (activating protein-1), a dimeric transcription factor composed of JUN, FOS, or ATF
(activating transcription factor) [50–53]. IL-2 was used because it induces the proliferation
and survival of TCR-activated T cells activating the STAT TFs family, in particular STAT5,
STA3, and STAT1 members through the JAK/STAT pathway [24].

Our results show stronger activation of the TCR signaling cascade when RPMI rather
than autologous plasma is used. In particular, levels of key genes that are known to be
expressed by TFs downstream of this cascade, such as IL-2 and TNF, are clearly higher in
RPMI after stimulation compared to plasma. These results suggest that autologous plasma
contains factors that may provide negative feedback to constrain TCR signaling cascade
activation. Previous studies compared IMDM (Iscove’s modified Dulbecco’s medium) [54]
and HPLM (human plasma-like medium) [42] to RPMI under TCR stimulation conditions.
Both studies showed that the lower Ca2+ concentration in RPMI limits maximal ionomycin
stimulation. Despite this lower Ca2+ concentration, RPMI allowed stronger T cell activation
compared to autologous plasma, but it is likely that this high level of in vitro activation
does not reflect the magnitude of in vivo activation. This could lead to an overestimation
of mechanisms studied in vitro, such as HIV reactivation. At the same time, use of complex
media such as plasma may obscure biological results due to inter-individual variability.

Concerning the differences between CD4+ T cells cultured alone (PREc) and CD4+ T
cells cultured with other PBMCs (POSTc), we did not find after 18 h relevant differences in
the stimulated samples. Nevertheless, the unstimulated samples showed activation of the
hypoxia and JAK-STAT pathways in CD4+ T cells cultured as bulk PBMCs and isolated
after in vitro culture (POSTc), but not when cultured alone (PREc). The JAK-STAT pathway
is a crucial transmitting signal cascade from many cytokines and growth factors into the
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nucleus, regulating a number of cellular functions such as proliferation, inflammation,
immune response, and angiogenesis [55,56]. JAK-STAT activation is triggered by cytokine
receptors, including interleukin (IL) receptors and interferon (IFN) receptors, so cellular
communications that rely on cytokine signals produced by other PMBCs in culture could
explain this result [55,57]. Furthermore, the JAK/STAT pathway is known to be closely
related to hypoxia [58–62]. We hypothesize that the other PBMCs act as oxygen biosensors
and, through molecular signaling, induce the activation of these pathways in CD4+ T cells.

5. Conclusions

In conclusion, this study provides insights into the CD4+ T cells transcriptional land-
scape under nine different experimental settings. Despite several studies focusing on HIV
reactivation evaluated distinct CD4+ culture conditions [63–65], to our knowledge, this is
the first work that compares the CD4+ transcriptional profiles before and after the in vitro
culture and stimulation, simultaneously benchmarking two matrices, and that analyzed
the impact of culturing CD4+ alone or with other PBMCs. Exploring all these experimen-
tal settings in the same individual could provide useful knowledge both to evaluate the
optimal cultural conditions and to consider the difference in adopting one experimental
setting or another. This in-depth analysis showed that isolation timing did not mainly
affect results, while RPMI induced a stronger T cell activation as compared to PLSM. Such
results were both confirmed by functional analysis (enrichment of biological processes and
inferred activity of pathways and transcriptional factors) and by the higher expression of
genes downstream of the TCR cascade. Based on our results, we hypothesize that in vitro
assays based on simpler matrices (as RPMI) could reduce the complexity and simplify
results evaluation, highlighting the qualitative aspects of an in vitro cell culture, whereas
the selection of autologous plasma as a matrix could provide more realistic findings for
studies aiming at quantifying the magnitude of a biological mechanism under TCR cascade
activation. Thus, we believe that this gap found between RPMI and PLSM cell culture
results could help researchers to choose the optimal in vitro culture conditions based on
their scientific aim.

6. Limitations of the Study

Although we applied an in-silico inference approach to impute the pathways and
transcription factors activity, our analysis was restricted to the transcriptome profile of
T lymphocytes rather than a direct investigation of the molecular and metabolic state of
primary cells under the nine experimental settings. Further, the low frequencies of infected
CD4+ T cells in early-ART-treated patients did not allow us to measure HIV reactivation
after in vitro stimulation. Moreover, low sequencing coverage limited the study to only
the more expressed transcripts. Lastly, although we observed a surprising biological
concordance between donors (n = 3), it would be desirable to replicate these experiments
on a greater number of individuals including healthy donors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11030888/s1. Figure S1. Histogram showing the
numbers of total reads sequenced, reads left after filtering (reads with more than 40% of the base with
a Phred score of less than 10 were filtered out), 523 reads aligned on the human transcriptome (hg38
Gencode), and reads aligned against the Human 524 immunodeficiency virus type 1 (HXB2) genome
sequence. Figure S2. Number of genes up-regulated (red) and down-regulated (blue) between all the
20 comparisons analyzed in the 3 study participants (S1, S2, and S3) (A). Heatmap of NES values
from GSEA on biological processes between all the 20 comparisons analyzed. Positive values (red)
indicate biological processes enriched in genes up-regulated. Conversely, negative values (blue)
show processes enriched in down-regulated genes. White indicates that there are no significant
results (A). Figure S3. Number of genes up-regulated (red) and downregulated (blue) between
the shown comparisons. To reduce the number of comparisons, we aggregated the normalized
counts of the PREc and POSTc samples by mean (A). Top 15 differentially activated TFs inferred with
VIPER analysis between ST and US conditions using plasma (B) and RPMI (C). Networks connecting

https://www.mdpi.com/article/10.3390/biomedicines11030888/s1
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TFs activated (orange rectangle) or inactivated (green rectangle) after stimulation with the relative
up-regulated (yellow circle) or down-regulated (blue circle) genes in plasma (D) and in RPMI (E).
The connections between TFs and DEGs nodes and their mode of regulation (positive in orange or
negative in green) are information from the DoRothEA database.
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