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Abstract: Hypertension is a severe and highly prevalent disease. It is considered a leading contributor
to mortality worldwide. Diagnosis guidelines for hypertension use systolic and diastolic blood
pressure (BP) together. Mean arterial pressure (MAP), which refers to the average of the arterial
blood pressure through a single cardiac cycle, can be an alternative index that may capture the
overall exposure of the person to a heightened pressure. A clinical hypothesis, however, suggests
that in patients over 50 years old in age, systolic BP may be more predictive of adverse events,
while in patients under 50 years old, diastolic BP may be slightly more predictive. In this study,
we investigated the correlation between cerebrovascular changes, (impacted by hypertension), and
MAP, systolic BP, and diastolic BP separately. Several experiments were conducted using real and
synthetic magnetic resonance angiography (MRA) data, along with corresponding BP measurements.
Each experiment employs the following methodology: First, MRA data were processed to remove
noise, bias, or inhomogeneity. Second, the cerebrovasculature was delineated for MRA subjects
using a 3D adaptive region growing connected components algorithm. Third, vascular features
(changes in blood vessel’s diameters and tortuosity) that describe cerebrovascular alterations that
occur prior to and during the development of hypertension were extracted. Finally, feature vectors
were constructed, and data were classified using different classifiers, such as SVM, KNN, linear
discriminant, and logistic regression, into either normotensives or hypertensives according to the
cerebral vascular alterations and the BP measurements. The initial results showed that MAP would
be more beneficial and accurate in identifying the cerebrovascular impact of hypertension (accuracy
up to 95.2%) than just using either systolic BP (accuracy up to 89.3%) or diastolic BP (accuracy up to
88.9%). This result emphasizes the pathophysiological significance of MAP and supports prior views
that this simple measure may be a superior index for the definition of hypertension and research
on hypertension.

Keywords: hypertension; tortuosity; cerebral; blood vessels; MAP; neural networks; systolic; diastolic;
SVM; KNN; linear discriminant; logistic regression

1. Introduction

Hypertension is a disease that contributes to the mortality rate of millions of people in
the world [1]. The 2017 guidelines [2] define diagnosis of hypertension using measurements
of both components: systolic blood pressure (BP) and diastolic BP. For instance, a patient
is considered to be in Hypertension Stage II if the individual has a systolic reading of
BP ≥ 140 mmHg or a diastolic reading of BP ≥ 90.

Whereas both systolic and diastolic measurements remain essential for the diagnosis
and the treatment, clinical research suggests that in patients above 50 years old in age,
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systolic BP may be a more important predictor of adverse events, whereas in patients under
50 years old, diastolic BP may be slightly more predictive [3]. High systolic BP in the
absence of high diastolic BP is quite prevalent in the elderly, while other clinical studies
suggest the essential role of diastolic BP in younger people [4–10].

Perhaps, in part to the variable importance assigned to systolic and diastolic BP in the
literature, Kundu et al. [11] suggested that mean arterial pressure (MAP) should be used
to better predict the blood pressure compared to the usage of systolic BP or diastolic BP
separately. MAP, which refers to the average of the arterial blood pressure through a single
cardiac cycle, may thus be a better alternative for the diagnosis and statistical analysis of
blood pressure. The value of using MAP was shown both when examining the association
of blood pressure with potential causative factors [11], as well as in an enhanced ability to
detect mild cases of hypertension.

One important seeming consequence of hypertension is the alterations in the cere-
brovascular that include the loss of vessels as well as changes in their morphology [12].
Such changes may relate to the now well-known impact of hypertension on cognitive
function and risk of dementia [13]. It is interesting to refer to the fact that these cerebral
changes may start to develop before the systemic onset of hypertension. Tracking the
progress of these alterations would help clinicians to take proactive and preventative steps
to avoid the progression of the disease and its related complications [14].

In the current research, we focus on measures of the cerebrovasculature and ask
whether MAP shows a stronger association with these measures than either systolic BP
or diastolic BP taken separately. Our study presented extensive experimentation that
emphasized the pathophysiological significance of MAP and supported prior views that
recommended using MAP as a superior index for the definition of hypertension and
related research.

2. Materials and Methods

Methodology started with classifying data into three different datasets. One dataset
was classified into normotensive and hypertensive subjects based on systolic BP. The second
dataset was classified into normotensive and hypertensive subjects based on diastolic BP.
Finally, the third dataset was classified based on MAP values of the subjects. The following
step was studying the correlation between each dataset and the vascular changes that
predict and diagnose hypertension to see which dataset (and which measurements: systolic
BP, diastolic BP, or MAP) would give higher prediction accuracy. To find the vascular
changes, the following procedure was used. First, magnetic resonance angiography (MRA)
data were prepared and preprocessed to eliminate noise and bias effects and to improve the
quality of data. Second, clean data were segmented to extract the cerebrovasculature from
each subject using a 3D adaptive region growing connected components algorithm. After
that, cerebrovascular features which describe the changes in cerebral vasculature were
extracted. These features are able to predict the potentiality of hypertension development.
Feature vectors were then constructed to be fed into different classifiers. Finally, data were
classified into either hypertensive or normotensive according to alterations of the cere-
brovascular features. More details of each step are presented in the following subsections.
Figure 1 shows the different steps of the proposed framework presented in this study.

2.1. Data Preparation

A data set of 342 subjects of MRA was used in the experimentation. Data were acquired
by the University of Pittsburgh and approved by IRB according to the relevant guidelines
and regulations [15]. Participants of the study were chosen to be middle-aged adults (age
35–62 years, mean= 51 ±6.6) that do not suffer from any of the following conditions: cancer,
pregnancy, ischemic coronary artery disease, chronic kidney or liver diseases, diabetes
mellitus, multiple sclerosis, strokes, epilepsy, serious head injury, brain tumor or mental
illness. Additionally, participants did not use any prescribed medications for hypertension.
Participants provided written consent before getting involved in the study.
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Figure 1. A block diagram showing modules of the proposed framework for classifying hypertension data.

Blood pressure readings were taken for participants 4 times during 3 visits within
2 weeks. Among other procedures, visits 1 and 2 included BP readings. In visit 3, partici-
pants were asked to sit down and relax while supporting their back and arms for at least
5 min before trained assistants took their BP readings twice, separated by 1 min. The aus-
cultatory technique was used to measure BP of participants with cuff size fitted according
to arms circumferences. All four readings were averaged and used as the final resting BP
measurement for each individual. This study followed the 2017 guidelines [2] in classifying
data. The guidelines defines a normal individual to have a systolic BP <120 mmHg and
diastolic readings <80 mmHg. Individuals are defined to suffer from hypertension stage
1 if they have a systolic BP of 130–139 mmHg or diastolic readings of 80–89 mmHg. For
individuals with hypertension stage 2 , the readings should be ≥140 mmHg or diastolic
readings ≥90 mmHg. Based on that, a systolic hypertensive subject is defined to have
a systolic reading >130 mmHg, whereas a diastolic hypertensive patient should have a
diastolic reading >80 mmHg.

The dataset of 342 subjects was partitioned as follows: 116 subjects (see Table 1 for de-
mographics information of this group) were selected according to systolic BP measurements
(68 were normotensive, and 48 were hypertensive), and 226 subjects (see Table 2 for demo-
graphics information of this group) were selected according to diastolic BP measurements
(143 were hypertensive, and 83 were normotensive).

To solve the challenge of the non-balanced dataset and increase the accuracy of the
results, new synthetic normal samples and hypertensive samples were generated to obtain
balanced data sets. The details of the procedure used to generate synthetic data samples
are presented in Section 2.4.

To categories data based on MAP, we used the equation that follows: ( MAP = (1/3)
* systolic BP+ (2/3) * diastolic BP) to calculate MAP for each subject. Then, based on the
categorization of MAP suggested in [11], MAP values were classified as optimal, normal,
high normal, grade 1 hypertension (mild), grade 2 hypertension (moderate), or grade 3
hypertension (severe). An optimal MAP value is <93.33, a normal MAP value is in the
range of (93.33–99.00), a high normal value should be in the range of (99.01–105.67), grade
1 hypertension range is (105.68–119.00), grade 2 hypertension range is (119.01–132.33),
and grade 3 hypertension MAP values are ≥132.34. In this study, we considered normal
MAP values as one class, and high normal, hypertension grade 1, hypertension grade 2,
hypertension grade 3 as the other class. Thus, 161 out of 342 subjects (see Table 3 for the
demographics information of this group) were used in MAP-based experiments. We did
not include the optimal category of MAP values in our experimentation because there is no
corresponding category in the experiments that considers either systolic BP or diastolic BP.
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Table 1. Systolic BP-based dataset demographics statistics.

Class Subjects
Number Age Gender Mean

of SBP
Mean

of DBP
Mean

of BMI

Normal 68 (35–61 y),
mean = 49.7 ± 6.9 M = 34; F = 34 114.6 ± 5.7

mmHg
78.4 ± 6
mmHg 29.5 ± 6.2

Hypertensive 48 (37–62 y),
mean = 52.3 ± 5.8 M = 15; F = 33 136.6 ± 7.2

mmHg
85.4 ± 6.4

mmHg 30.6±6.5

All
Subjects 116 (35–62 y),

mean = 50.8 ± 6.6 M = 49; F = 67 123.7 ± 12.6
mmHg

81.3 ± 7.1
mmHg 30 ± 6.3

Gender (M = Male; F = Female), SBP: Systolic BP, DBP: Diastolic BP, BMI: Body Mass Index.

Table 2. Diastolic BP-based dataset demographics statistics.

Class Subjects
Number Age Gender Mean

of SBP
Mean

of DBP
Mean

of BMI

Normal 83 (35–61 y),
mean = 50.1 ± 7.2 M = 42; F = 41 118.3 ± 8.1

mmHg
74.4 ± 4.3

mmHg 28.5 ± 5.7

Hypertensive 143 (35–62 y),
mean = 49 ± 6.9 M = 68; F = 75 125.9 ± 9.3

mmHg
84.5 ± 3.9

mmHg 30.2 ± 6

All
Subjects 216 (35–62 y),

mean = 49.4 ± 7 M = 110; F = 116 123.1 ± 9.6
mmHg

80.8 ± 6.3
mmHg 29.6 ± 5.9

Gender (M = Male; F = Female), SBP: Systolic BP, DBP: Diastolic BP, BMI: Body Mass Index.

Table 3. MAP BP-based dataset demographics statistics.

Class Subjects
Number Age Gender Mean

of SBP
Mean

of DBP
Mean

of MAP
Mean

of BMI

Normal 107 (35–60 y),
mean = 49.3 ± 6.3

M = 53;
F = 54

124.1 ± 5.3
mmHg

82.2 ± 2.3
mmHg

96.2 ± 1.7
mmHg 29.6 ± 5.6

Hyper 54 (36–62 y),
mean = 49.8 ± 7.5

M = 25;
F = 29

133.8 ± 8.8
mmHg

87.8 ± 4.9
mmHg

103.1 ± 4.4
mmHg 30.9 ± 5.7

All
Subjects 161 (35–62 y),

mean = 49.5 ± 6.7
M = 78;
F = 83

127.4 ± 8.1
mmHg

84 ± 4.5
mmHg

98.5 ± 4.4
mmHg 30 ± 5.7

Hyper: Hypertensive, Gender (M = Male; F = Female), SBP: Systolic BP, DBP: Diastolic BP, BMI: Body Mass Index.

2.2. Cerebrovascular Segmentation

A preprocessing step was used to clean MRA data by removing noise, correcting
bias, and increasing homogeneity among each volume’s slices using a bias correction
algorithm [16], and a 3D generalized Gauss–Markov random field (GGMRF) model [17]. A
skull-stripping approach was then used to get rid of the brain’s fat tissues and only retain
brain tissues. The approach used the Markov–Gibbs random field model combined with a
geometric deformable model (brain isosurface) to maintain cerebrovascular topology while
delineating the cerebrovasculature.

The segmentation of cerebral vasculature started with a linear combination of discrete
Gaussians to estimate the marginal probability density of MRA voxel values for vessels
and other brain tissues [18,19]. This results in an initial delineated vasculature that misses
some details of the cerebrovasculature such as tiny blood vessels. To enhance the initial
segmented vasculature, a 3D adaptive segmentation method was used [20]. This algorithm
works by dividing each MRA slice into a set of connected components. A search window
of adaptive size was centered around each component in the set and a new separation
threshold was calculated as T = µb+µo

2 , where µb is the intensity average of cerebral vessels
and µo is the intensity average of other cerebral tissues. Additionally, a seed-generation
refinement procedure was applied to detect potential seeds within regions with a high
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potential to contain small cerebral vessels that might have been missed in the initial
delineated vasculature. Finally, a 3D region growing connected components algorithm
was used to obtain the final vasculature. This algorithm achieved 92.23% Dice similarity
coefficient, 94.82% sensitivity, and 99.0% specificity. A preprocessing sample is shown in
Figure 2, and a segmentation sample output is shown in Figure 3.
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Hypertensive 48
(37-62 y),

mean=52.3±5.8 M=15;F=33
136.6±7.2
mmHg

85.4±6.4
mmHg 30.6±6.5

All
Subjects 116

(35-62 y),
mean=50.8±6.6 M=49;F=67

123.7± 12.6
mmHg

81.3±7.1
mmHg 30±6.3

*Gender (M=Male;F=Female), SBP: Systolic BP, DBP:Diastolic BP, BMI: Body Mass Index.

Table 2. Diastolic BP-based dataset demographics statistics.

Class
Subjects
number Age Gender

Mean
of SBP

Mean
of DBP

Mean
of BMI

Normal 83
(35-61 y),

mean=50.1±7.2 M=42;F=41
118.3±8.1
mmHg

74.4±4.3
mmHg 28.5±5.7

Hypertensive 143
(35-62 y),

mean=49±6.9 M=68;F=75
125.9±9.3
mmHg

84.5±3.9
mmHg 30.2±6

All
Subjects 216

(35-62 y),
mean=49.4±7 M=110;F=116

123.1±9.6
mmHg

80.8±6.3
mmHg 29.6±5.9

*Gender (M=Male;F=Female), SBP: Systolic BP, DBP:Diastolic BP, BMI: Body Mass Index.

(a) (b) (c)

Figure 2. (a) A sample of a 2-D original slice, (b) After bias correction, (c) After skull stripping.
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Class
Subjects
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Mean
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Mean
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mean=49.3±6.3
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mmHg 30±5.7
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Body Mass Index.

(a) (b)

Figure 3. (a) A sample of a 2-D original slice, (b) Segmented slice where detected blood vessels are
colored in red.
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2.3. Cerebrovascular Features Extraction

The delineated cerebral vascular tree was used to track and estimate the cerebral
features to be used in the classification process. The features that were chosen and estimated
are the change of diameters of blood vessels and the alterations of the vessels’ tortuosity.
Clinical research supported the correlation between hypertension and alterations of the
cerebral vessels diameter size and tortuosity [21–23].

To quantify the vascular features, the approach presented in [12] was followed. To
estimate the changes in diameter size of the blood vessels, medians of vascular radii were
estimated for each MRA volume by generating a distance map for the delineated cerebral
tree. Then, the cumulative distribution function (CDF) of the vascular radii was obtained
as the cumulative distribution of probability density function (PDF). CDF provides a
probability estimate for blood vessels that exist at or below a specific vascular diameter
point. A CDF value defines the average of vascular diameters in an MRA volume [12].

Similarly, to estimate the changes in blood vessels tortuosity, estimations of Gaussian
and mean curvatures were calculated. The mean curvature was estimated by the following
equation: (k1 + k2)/2, where k1 and k2 are the principal curvatures. The Gaussian curvature
was estimated by the equation: k1 × k2 [12]. A feature vector was built to describe the
cerebral vascular changes of every subject. Each feature vector includes 17 values, of which
13 values were used to describe the vascular diameters change ( 11 values are PDF bins that



Biomedicines 2023, 11, 849 6 of 14

correspond to every diameter radius, and the remaining two values are for median and
average of vascular radii), and the rest of the feature vector values were used to describe
the change in tortuosity of the blood vessels (estimated by averages and medians and of
Gaussian and mean curvatures). A sample of the feature vectors of four different subjects
is shown in Table 4.

Table 4. A sample of feature vectors of four different subjects.

Subject 1 Subject 2 Subject 3 Subject 4

0.444947 0.535083 0.429489 0.467324
0.65227 0.732387 0.636939 0.674185
0.790256 0.846757 0.779007 0.811279
0.874857 0.912191 0.863709 0.893494
0.928818 0.951842 0.922033 0.94358
0.963041 0.978068 0.961477 0.973599
0.984674 0.99284 0.985828 0.990159
0.997025 0.999217 0.99689 0.997966
0.999766 1 0.999308 0.999753

1 0 0.999915 1
0 0 1 0

1.302083 1.171875 1.432292 1.302083
0.329568 0.243342 0.348931 0.301552
12.19939 14.17064 12.98753 13.37305
1.630565 1.571993 1.639687 1.568891
1.068621 1.130165 1.070192 1.061826
0.942445 1.000221 0.929683 0.936494

2.4. Synthetic Data Generation

The current study uses the synthetic minority over-sampling technique (SMOTE) [24]
to generate synthetic samples to compensate for the dataset imbalance between the number
of normotensive and hypertensive subjects. SMOTE is a very effective and simple technique
that is used in many studies [25–27] to generate synthetic data samples with similar features
to the original data sets. SMOTE works in feature space, not in data space. In order to
obtain a new sample in the minority class, a random point is selected from the class
along with the k-nearest neighbors of that point. Every feature in the feature space is
then multiplied by a new normalized random weight in the range [0–1]. The procedure
repeats with the new random weights for all features of the selected k-nearest neighbors. A
new synthetic sample is then estimated as the accumulation of multiplications between
generated random weights and feature vectors. This technique guarantees that the training
process is balanced enough to build an unbiased classification model. That model uses
the synthetically generated data that have the common characteristics of the original data
without being a linear combination of any subset of the samples in the minority class.

2.5. Design of Experiments

Different measurements were applied to categorize data into hypertensive and nor-
motensive classes. In this research, we had two stages of experimentation (Figure 4). In the
first stage, three separate experiments were implemented (Tables 5 and 6). Each separate
experiment includes two sub-experiments. The first sub-experiment considered the sys-
tolic BP only to select hypertension class members, whereas the second sub-experiment
depended on diastolic BP measurements only to select hypertensive subjects.

The first experiment was performed using the original dataset, which was imbalanced.
The systolic sub-experiment was performed using a data set of 116 subjects, of which
68 were normotensive and 48 were hypertensive, whereas the diastolic sub-experiment
was conducted using a total of 226 subjects, of which 83 were normotensive and 143
were hypertensive.
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The other two experiments were performed using both the original data and the new
synthetic data samples. The synthetic samples were generated to enlarge the original data
set and to ensure it was balanced. In the second experiment (systolic sub-Experiment),
20 synthetic hypertensive samples were generated, making a total of 136 subjects in the
balanced dataset, of which 68 were hypertensive and 68 were normotensive. Similarly, in
the diastolic sub-experiment, 60 normotensive samples were generated, making a total
of 286 subjects, of which 143 were hypertensive and 143 were normotensive. For the
third experiment, more synthetic data samples were generated to increase the number
of subjects tested in both sub-experiments to 600 subjects (300 were hypertensive, 300
were normotensive).

Table 5. Stage 1. Systolic BP-based sub-experiment.

Experiment Systolic BP-Based Sub-Experiment Subjects Comments on Data

Exp. 1 116 (68 normotensive, 48 hypertensive) Original, unbalanced

Exp. 2 136 (68 normotensive, 68 hypertensive) Original + synthetic,
balanced

Exp. 3 600 (300 normotensive, 300 hypertensive) Original + synthetic,
balanced

Table 6. Stage 1. Diastolic BP-based sub-experiment.

Experiment Diastolic BP-Based Sub-Experiment Subjects Comments on Data

Exp. 1 226 (83 normotensive, 143 hypertensive) Original, unbalanced

Exp. 2 286 (143 normotensive, 143 hypertensive) Original + synthetic,
balanced

Exp. 3 600 (300 normotensive, 300 hypertensive) Original + synthetic,
balanced

Figure 4. A block diagram showing details of the design of the conducted experiments.

In the second stage, we also conducted three experiments similar to the experiments
in stage 1, but this time based on MAP categorization (Table 7). The first experiment
included 161 subjects (107 normotensive, 54 hypertensive). The second experiment used a
balanced data set of 108 subjects (54 normotensive, 54 hypertensive). The third experiment
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was conducted after enlarging and balancing the original data set by the incorporation of
more synthetic samples. Two trials were conducted in the third experiment, one using 214
subjects (107 normotensive, 107 hypertensive), and the other trial using 300 subjects (150
normotensive, 150 hypertensive).

Table 7. Stage 2. MAP-based experiments.

Experiment MAP-Based Experiment Subjects Data

Exp. 1 161 (107 normotensive, 54 hypertensive) Original, unbalanced

Exp. 2 108 (54 normotensive, 54 hypertensive) Original, balanced

Exp. 3 Trial 1: 214 (107 normotensive, 107 hypertensive)
Trial 2: 300 (150 normotensive, 150 hypertensive)

Original + synthetic,
balanced

Data are classified using various classifiers (linear and non-linear) with various pa-
rameters and scenarios of validation. Classification accuracy is computed as follows:

Accuracy = (
number o f true classi f ied samples

number o f total test data
)× 100 (1)

2.6. Classifiers

Several classifiers were used in this study, such as SVM, decision trees, linear discrimi-
nant, logistic regression, and KNN. Support vector machine (SVM) [28] can be used when
the data have exactly two classes. An SVM classifies data by finding the best hyperplane
that separates all data points of one class from those of the other class. The best hyperplane
for an SVM means the one with the largest margin between the two classes. Margin means
the maximal width of the slab parallel to the hyperplane that has no interior data points.
The support vectors are the data points that are closest to the separating hyperplane; these
points are on the boundary of the slab. Decision trees, or classification trees and regression
trees, predict responses to data. To predict a response, follow the decisions in the tree
from the root (beginning) node down to a leaf node. The leaf node contains the response.
Classification trees give responses that are nominal, such as ‘true’ or ‘false’. Regression
trees give numeric responses. Discriminant analysis is a classification method. It assumes
that different classes generate data based on different Gaussian distributions. To train
(create) a classifier, the fitting function estimates the parameters of a Gaussian distribution
for each class. To predict the classes of new data, the trained classifier finds the class with
the smallest misclassification cost. Linear discriminant analysis is also known as the Fisher
discriminant, named for its inventor, Sir R. A. Fisher. Logistic regression is a classification
technique used in machine learning. It uses a logistic function to model the dependent
variable. The dependent variable is dichotomous in nature, i.e., there could only be two
possible classes (e.g., either the person is hypertensive or not). The k-nearest neighbors
algorithm, also known as KNN or k-NN, is a non-parametric, supervised learning classi-
fier, which uses proximity to make classifications or predictions about the grouping of an
individual data point. While it can be used for either regression or classification problems,
it is typically used as a classification algorithm, working off the assumption that similar
points can be found near one another.

3. Results

The MATLAB R2017a built-in classification learner was used in the study experimenta-
tion to allow for using different classifiers with various parameters and validation scenarios.
The partitioning of data between training, testing, and validation is done randomly between
different patients. In the first stage experiments, the accuracy of classification recorded in
the first experiment was unpromising, neither in the systolic sub-experiment nor in the
diastolic sub-experiment. The best achieved results for the various classifiers recorded an
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accuracy of 60.0%. It is believed this may have been due to the fact that the original data
set was not large enough and was not balanced.

On the other hand, the classification accuracy achieved in the second experiment
was more promising as given in Tables 8 and 9 for systolic sub-experiment and diastolic
sub-experiment, respectively. Systolic sub-experiment recorded a classification accuracy of
85.0% by a feed-forward neural network (NN) with two hidden layers of sizes: 10, 8, and a
leave-one-subject-out (leave-one-out) validation setup. The same accuracy was recorded
using the random undersampling boosting ensemble (RUBoosted) classifier as well, using
a 15.0% hold-out validation setup.

Table 8. The accuracy of classification of different classifiers of the systolic-based sub-experiment
(136 subjects).

Classifiers Kernel Validation Accuracy

Feed-forward hidden-layers = (10, 8) Leave-out 85%

Ensemble-Trees RUBoosted 15 % 85%

Ensemble-Trees Bagged-trees 15 % 80%

SVM Gaussian 15 % 80%

Table 9. The accuracy of classification of different classifiers of the diastolic-based sub-experiment
(286 subjects).

Classifiers Kernel/Parameter Validation Accuracy

Decision-Trees Simple 20 fold 72.4%

SVM Gaussian 20 fold 71.0%

SVM Gaussian 30 fold 70.6%

The diastolic sub-experiment, however, recorded an accuracy of 72.4% by the deci-
sion tree classifier with a 20-fold validation setup. The third experiment achieved the
highest classification accuracy in both systolic and diastolic sub-experiments as given in
Tables 10 and 11, respectively. The best recorded accuracy in the systolic sub-experiment
was 89.3% by the logistic regression classifier and a 25.0% hold-out validation setup as
given in Table 10, whereas the best recorded accuracy for the diastolic sub-experiment was
88.9% by a feed-forward NN with two hidden layers of sizes 13, 9, and a leave-one-out
validation setup (Table 11).

Table 10. The accuracy of classification of different classifiers of the systolic-based sub-experiment
(600 subjects).

Classifiers Kernel/Parameter Validation-Scenario Accuracy
1 LR LR 25.0% 89.3%

SVM Quadratic 24 fold 84.3%

SVM Quadratic 48 fold 83.5%
1 LR: Logistic Regression.

For the second stage experiments, the best achieved accuracy in the first experiment
(161 subjects) was 87.5% using a K-nearest neighbor (KNN) classifier with a Euclidean
distance metric and a 10.0% hold-out validation setup (Table 12). This was very interesting
because in this experiment, the dataset was not balanced; however, the classification
accuracy was promising. The best achieved accuracy in the second experiment (108 subjects
(balanced)) was 71.4% using either a KNN with a cosine metric or a support vector machine
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(SVM) with Gaussian kernel and 20.0% hold out validation scenarios, Table 13. In the third
experiment, the best recorded accuracy was 95.2% using AdaBoost ensemble with a 10.0%
hold-out validation scenario, Tables 14 and 15.

Table 11. The accuracy of classification of different classifiers of the diastolic-based sub-experiment
(600 subjects).

Classifiers Kernel/Parameter Validation Accuracy

Feed-forward hidden-layers = (13, 9) Leave-one-out 88.9%

LR LR 30 fold 77.3%
1 LD Quadratic 15 fold 76.8%

SVM Linear 15 fold 76.7%
1 LD: Linear Discriminant.

Table 12. The accuracy of classification of different classifiers of MAP-based experiment (161 subjects
(107 normal, 54 hypertensive)).

Classifiers Kernel/Parameter Validation-Scenario Accuracy

KNN Euclidean 10.0 % 87.5%

KNN Euclidean 15.0 % 83.3%

Table 13. The accuracy of classification of different classifiers of MAP-based experiment (108 subjects
(balanced (54 normal, 54 hypertensive)).

Classifiers Kernel/Parameter Validation-Scenario Accuracy

KNN Cosine 20.0 % 71.4%

SVM Gaussian 20.0 % 71.4%

Table 14. The accuracy of classification of different classifiers of MAP-based experiment (214 subjects
(balanced (107 normal, 107 hypertensive)).

Classifiers Kernel/Parameter Validation Accuracy

Ensemble AdaBoost 10.0 % 95.2%

KNN Euclidean/Minkowski 10.0 % 90.5%

SVM Quadratic/Gaussian 10.0 % 85.7%

Table 15. The accuracy of classification of different classifiers of MAP-based experiment (300 subjects
(balanced (150 normal, 150 hypertensive)).

Classifiers Kernel/Parameter Validation Accuracy

Ensemble-Trees Bagged-trees 10.0 % 90.0%

SVM Cubic 10.0 % 90.0%

SVM Quadratic/Linear 15.0 % 84.4%

In this manuscript, we included accuracy values that are ≥ 70.0% only. However, we
included the results of classification using the SVM classifier in all experiments (except for
Table 12 because it was less than 70.0%) for the purpose of comparison between different
experiments as given in Table 16. As shown in the table, MAP-based classification recorded
the best accuracy of 90.0%. The systolic-based experiment recorded the second best accuracy
of 84.3%, whereas the diastolic-based experiment recorded 76.7%. Results support the
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significance of using MAP in hypertension prediction and prove its correlation to the
cerebral vascular changes that occur prior to and during the development of hypertension.

Table 16. SVM classifier results for systolic-based, diastolic-based, and MAP-based experiments
(original + synthetic datasets).

Experiment Number of Subjects Best Accuracy

MAP-Based 300 90.0%

Systolic-Based 600 84.3%

Diastolic-Based 600 76.7%

4. Discussion

According to the 2017 guidelines for hypertension [2], deciding whether an individual
is normal or having hypertension is based on blood pressure readings of either systolic
BP, diastolic BP, or both. Systolic blood pressure defines how much pressure the blood
is exerting against the artery walls when the heart pumps the blood out. Diastolic blood
pressure defines how much pressure the blood is exerting against the artery walls when the
heart is resting between beats. A normal individual should have both systolic and diastolic
BP reading under specific values (<120/<80 mmHg). However, an individual is diagnosed
to have hypertension stage 2 if the systolic blood pressure is ≥140 mmHg or the diastolic
BP is ≥90 mmHg. So, only one reading (either systolic or diastolic) is enough in the severe
hypertension diagnosis. Many hypertensive patients have both their systolic and diastolic
readings exceed the normal ranges. However, in many other cases, the individual would
have one of the measurement components (either systolic or diastolic) in the normal range,
while the other component exceeds the normal range. In this case, the overall diagnosis is
the existence of the disease. For instance, it is quite prevalent in the elderly to have high
systolic BP while their diastolic blood pressure is stable and normal [4–10]. In contrast,
in younger individuals, the diastolic blood pressure plays an important role in affecting
their health. Some studies investigated the importance of one component over the other in
affecting people’s health based on their ages [3–10].

In this study, we investigated the importance of the systolic component and diastolic
component separately in hypertension diagnosis. The aim was to find out whether one
component would be of more value in hypertension detection than the other. Additionally,
we studied the usefulness of MAP in hypertension diagnosis as a measurement that
benefits from both components (the systolic and the diastolic) rather than taking only one
component into consideration as explained in the previous few lines. The data set used in
the study experimentation consisted of individuals with a wide range of ages (35–62 years)
to test whether the age would have a role in the importance of component over the other in
hypertension diagnosis. Preliminary results showed that using the systolic BP component
for people aged 35–62 years can be more predictive than using diastolic BP (see Tables
8–11). Additionally, the results proved that using MAP would enhance the accuracy of
hypertension diagnosis more than using single components (see Table 16).

Experiments conducted in the study were designed to perform supervised classifica-
tion tasks. Labeled data were introduced to various classifiers to measure the accuracy of
differentiating between normal and hypertensive individuals based on both blood pressure
measurement and cerebral vascular changes. The cerebral vascular changes data were
incorporated in the classification tasks to study the correlation between hypertension-
related cerebrovascular changes and systolic BP, diastolic BP, and MAP. The results showed
that these cerebral changes affect systolic and diastolic components to quite different de-
grees. Generally, as seen in Tables 8–11), the classification accuracy of the systolic-based
experiment was better than the diastolic-based experiment. This could be evidence that
the cerebral vascular changes associated with hypertension development might affect the
systolic BP component with a higher degree than the diastolic BP component. However,
using MAP which incorporates information from both the systolic and diastolic BP com-
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ponents would provide more accurate correlations between cerebrovascular changes and
hypertension detection.

To the best of our knowledge, this is the first study to analyze the role of systolic
BP, diastolic BP, and MAP independently and their correlations to changes in the cerebral
vasculature. One limitation in our study is that it is very hard and expensive to obtain MRA
scans for individuals over long periods of time so that we can track the cerebral changes
easier. That was the main reason that the dataset is not big enough and that we needed
synthetic data samples to enlarge the dataset. However, we will work on recruiting more
individuals in the future to solve this issue. Additionally, MRA scans are expensive. Thus,
we recommend to currently limit their usage in hypertension prediction for people with
high potential of developing hypertension due to family history, for example. Another
limitation is that the conclusion of this study cannot be followed if the underlying study
is targeting studying people who suffer from systolic-only hypertension or diastolic-only
hypertension because in such cases, we need to study only one component (either systolic
BP or diastolic BP) and not both. So, MAP, which incorporates information from both
components, is not a good measure in this case.

5. Conclusions

This study investigated the significance of systolic BP versus diastolic BP in defining
cerebrovascular sequelae of hypertension and compared that to the significance of using
MAP. Preliminary results indicated that systolic BP might be more predictive of hyperten-
sive association with cerebrovascular indices than diastolic blood pressure. However, using
MAP values that incorporate information from both systolic and diastolic BP recorded
the highest predictability in detecting hypertension-related vascular alteration than using
systolic BP or diastolic BP separately. This result emphasizes the pathophysiological sig-
nificance of MAP and supports prior views that this simple measure may be a superior
index for the definition of hypertension and research on hypertension. Future plans include
collecting more data over longer periods of time to allow for tracking the changes of the
cerebral vascular and their impact on developing hypertension and to test the proposed
methodology with more original data to enhance the accuracy and reliability of the results.
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