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Abstract: (1) Background: Hypopharyngeal squamous cell carcinomas usually present with locally
advanced disease and a correspondingly poor prognosis. Currently, efforts are being made to improve
tumor characterization and provide insightful information for outcome prediction. Radiomics is an
emerging area of study that involves the conversion of medical images into mineable data; these data
are then used to extract quantitative features based on shape, intensity, texture, and other parameters;
(2) Methods: A systematic review of the peer-reviewed literature was conducted; (3) Results: A total
of 437 manuscripts were identified. Fifteen manuscripts met the inclusion criteria. The main targets
described were the evaluation of textural features to determine tumor-programmed death-ligand
1 expression; a surrogate for microvessel density and heterogeneity of perfusion; patient stratification
into groups at high and low risk of progression; prediction of early recurrence, 1-year locoregional
failure and survival outcome, including progression-free survival and overall survival, in patients
with locally advanced HPSCC; thyroid cartilage invasion, early disease progression, recurrence,
induction chemotherapy response, treatment response, and prognosis; and (4) Conclusions: our
findings suggest that radiomics represents a potentially useful tool in the diagnostic workup as
well as during the treatment and follow-up of patients with HPSCC. Large prospective studies are
essential to validate this technology in these patients.

Keywords: head; neck; hypopharynx; radiomics; treatment

1. Introduction

Head and neck (H&N) cancers are the seventh most common type of malignancy
worldwide [1]. Hypopharyngeal squamous cell carcinomas (HPSCC) account for approxi-
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mately 3% to 5% of all H&N cancers [2,3], with a higher incidence in China and Eastern
Europe, due to dietary habits, and higher tobacco and alcohol consumption [4]. Patients
with HPSCC usually present with loco-regionally advanced disease and a correspondingly
poor prognosis, despite recent diagnostic and therapeutic advances [5–7].

The increased application of organ preservation protocols, including induction
chemotherapy (IC) followed by definitive radiotherapy (RT) or primary concurrent chemora-
diotherapy (CRT), has been associated with a 5-year overall survival (OS) in well-selected
patients from 38% to 51.9% [3,8]. The fact that survival outcome is comparable to that with
traditional techniques, such as total laryngectomy with partial or total pharyngectomy
and postoperative radiation [9], has led to a shift towards the use of organ preservation
protocols, aiming to decrease functional impairment associated with surgery [3–8]. On the
other hand, recurrence rates in loco-regionally advanced HPSCC after organ-preserving
treatment remain high, and follow-up strategies vary between hospitals.

Currently, efforts are being made to improve tumor characterization and provide
insightful information for outcome prediction based on biomarkers measured in clinical
settings and technological advances in imaging that are routinely acquired as part of the
diagnostic work-up for initial staging and in the follow-up process of H&N cancer patients.
In this context, it is relevant to consider the use of radiomics, an emerging area of research
involving the conversion of medical images into extracted data on shape, intensity, texture,
and other parameters, to assess the distribution of voxel intensities, spatial information, and
conduct a comparison between pixels in a region of interest (ROI) [10]. Radiomics-based
approaches have the potential to allow clinicians to perform a holistic and non-invasive
assessment of tumors, which could provide additional information to improve treatment
and follow-up [11].

Before this approach is accepted as part of the routine clinical armamentarium, partic-
ularly for patients with such a poor prognosis as those with HPSCC, available data must be
evaluated. This study aims to review the state-of-the art regarding the available literature
on radiomic analysis in HPSCC.

2. Materials and Methods

A systematic review of the peer-reviewed literature was conducted using keywords
and following the recommendations of the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses statement (Figure 1) [12]. The selection criteria were based on the
population, intervention, comparison, outcome, and time frame (PICOT) format [13]. This
review was registered as a PROSPERO protocol (ID: 403002). The heterogeneity among
studies, mainly attributable to a lack of randomization, limited our ability to statistically
combine data into a formal meta-analysis.

2.1. Population and Selection Criteria

Studies (both randomized or non-randomized clinical trials and prospective or ret-
rospective cohort studies) on the use of radiomics in patients with HPSCC to estimate
prognosis, outcome, or disease stage, or to analyze biological features were included. Pub-
lications were excluded if they were duplicates or studies on non-H&N or non-HPSCC
cancer radiomics; animal studies; case reports, reviews, short communications, or letters;
or gray literature. The different types of radiomic features described in each paper were
summarized.

2.2. Intervention and Comparison

The intervention of interest was the predictive value of radiomics in HPSCC
management.
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2.3. Outcomes

The primary outcome measures were the efficacy of radiomics as a surrogate, non-
invasive method for predicting survival outcomes before and after treatment, estimating
disease stage, or analyzing biological features (e.g., aggressive growth, perineural growth,
and extracapsular extension) in HPSCC patients.

2.4. Timing

The minimum median follow-up time considered to evaluate survival outcomes was
12 months after treatment.

2.5. Search Strategy

This review involved a systematic search of the electronic databases: MEDLINE via
PubMed and via Ovid, Google Scholar, and Embase. We included articles published in
English between January 2014 and August 2022. The search strategy was based on a
combination of medical subject heading (MeSH) terms and other controlled vocabulary:
“hypopharyngeal cancer” OR “head and neck cancer” OR “hypopharyngeal tumor” OR
“radiomics”. Titles and abstracts were independently screened by two investigators (CMCE
and MMY) to exclude publications that were irrelevant or duplicates. Information extracted
from each study included the main target, imaging acquisition method, radiomic feature
extraction/signature building/segmentation method, and treatment strategy.

2.6. Assessment of Quality and Risk of Bias

Two authors (CMCE and MMY) evaluated the methodological quality of studies
identified using the Oxford Centre for Evidence-Based Medicine Levels of Evidence [14].
The risk of bias was assessed by assigning a score using the Methodological Index for Non-
Randomized Studies (MINORS) [15], an extensively validated instrument for literature
assessment. For non-comparative studies, 8 domains were assessed, scoring the items as
0 (not reported), 1 (reported but inadequate), or 2 (reported and adequate). The optimal
score for non-comparative studies is therefore 16. For the purposes of this review, a value
of 10 or below was considered to represent a high risk of bias.
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3. Results

A total of 437 manuscripts were identified and screened. Fifteen manuscripts met the
inclusion criteria. Of these, two studies were excluded because they did not include H&N
patients, and one because it was written in Chinese (Figure 1).

Twelve studies, all of them retrospective, were subjected to qualitative analysis [16–27].
The demographic characteristics of patients from these studies are summarized in Table 1.
There was a high variation in the number of HPSCC patients included in each study, rang-
ing from 2 to 167. Excluding one study that was based on the same sample as another
study, we included a total of 889 patients who underwent treatment for HPSCC. Consider-
ing the 5 studies that provided data on age, the median age was 51 years old [23–27].
A total of 8 studies described patients by gender, yielding 645 (94.6%) males and 37
(5.4%) females [16,18–20,23,24,26,27]. The imaging acquisition method was CT in five
studies [18,19,21,24,26], PET/CT in three [16,22,27], and MRI in two [20,25], while dual-
energy CT [17] and quantitative ultrasound (US) [23] were each considered in one study.
The treatment strategies used in the included studies were surgery, IC in combination with
other treatment modalities, and CRT.

Table 1. Studies investigating the role of radiomics in hypopharyngeal cancer. Abbreviations: Not
described = ND; metabolic tumor volume = MTV; gray-level co-occurrence matrix = GLCM; gray-
level run-length matrix = GLRLM; gray-level size zone matrix = GLSZM; and LASSO = least absolute
shrinkage and selection operator. Computed tomography = CT; magnetic resonance imaging = MRI,
positron emission tomography = PET-CT; ultrasound = US; RT =radiotherapy; CRT = chemoradio-
therapy; LR = linear regression; OS = overall survival; PFS = progression-free survival; and LFS =
laryngectomy-free survival.

Study Main
Objective

Number
of

Patients

Gender
(M/F) Age

Imaging
Acquisition

Method

Radiomic Feature
Extraction/

Signature Building/
Segmentation Method

Treatment
Strategy Conclusion

Chen
et al. [16]
Taiwan—

2017
retrospective

study

Associations
of tumor

PD-1
ligands,

IHC studies,
and textural
features in
18F-FDG

PET

23 M = 23 ND PET/CT

MTV;
the heterogeneity of a
tumor was evaluated

using its textural
features;

GLCM, GLRLM,
and GLSZM.

RT or CRT

p16 and Ki-67
staining percentages
detected using IHC

and several
18F-FDG

PET/CT-derived
textural features

were explored. The
PD-L1 expressions

were positively
correlated with p16
and Ki-67, whereas
the textural index of

correlation was a
negative predictor

for PD-L1
expression of ≥5%.

Bahig
et al. [17]
Canada—

2018
retrospective

study

Prediction
of

loco-
regional

recurrence

5 ND ND
Dual

energy—CT
scan

Kurtosis, GTVp, and
GTVn; iodine

concentration (in
mg/mL) extracted

from GTVp and GTVn
structures by

determining the iodine
partial electron density
from each voxel, using

a two-material
decomposition method.

RT

Radiomics can
represent a potential

surrogate of
microvessel density
and heterogeneity of
perfusion evaluation
method for outcome

prediction.
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Table 1. Cont.

Study Main
Objective

Number
of

Patients

Gender
(M/F) Age

Imaging
Acquisition

Method

Radiomic Feature
Extraction/

Signature Building/
Segmentation Method

Treatment
Strategy Conclusion

Li et al. [18]
China—2020
retrospective

study

Preoperative
prediction

of early
recurrence

167 160/7 ND CT
LASSO, LR;
manual VOI
delineation.

Surgery

Authors identified
the noninvasive,
predictive role of

CT-based radiomics
in the preoperative
prediction of early

recurrence of
patients

Mo et al. [19]
China—2020
retrospective

study

Prediction
of

progression-
free

survival

113 106/7 ND CT

Features extracted
corresponds to texture,

intensity, shape, and
wavelet;
LASSO.
Wavelet

HHH_glszm_Gray
LevelNonUniformity

Normalized
Wavelet-

LLH_firstorder_Maximum
Wavelet-

HLL_firstorder_Median
Wavelet-

HLH_glszm_LargeArea
Emphasis

CRT

According to the
authors, the

radiomic model
showed good

performance in
stratifying patients

into high- and
low-risk groups of

progression in
hypopharyngeal
cancer patients

treated with
chemoradiotherapy.

Hsu
et al. [20]
Taiwan—

2020
retrospective

study

Prediction
of

locore-
gional
failure

116 111/5 ND MRI LASSO, skewness, and
kurtosis. CRT

The authors
established and
validated that a
non-invasive RS

model provides a
novel and
convenient

approach to predict
1-year LRF and the
survival outcome,
including the PFS,

LFS, and OS, in
patients with locally

advanced HPSCC
who received organ

preservation
treatment.

Guo
et al. [21]

China—2020
retrospective

study

Prediction
of thyroid
cartilage
invasion

26 ND ND CT
LASSO

GLCM, GLRLM, and
GLSZM.

Preoperative
diagnosis.

Models based on CT
radiomic features

were able to
improve the
accuracy of

predicting thyroid
cartilage invasion

from LHSCC.
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Table 1. Cont.

Study Main
Objective

Number
of

Patients

Gender
(M/F) Age

Imaging
Acquisition

Method

Radiomic Feature
Extraction/

Signature Building/
Segmentation Method

Treatment
Strategy Conclusion

Zhong
et al. [22]

U.K.—2020
retrospective

study

Prediction
of early
disease

progression

40 ND ND PET-CT

PET parameters
selected by the ML

model were metabolic
tumor volume (MTV);

conventional minimum
standardized uptake

value (SUVmin);
gray-level zone length

matrix (GLZLM);
small-zone low

gray-level emphasis
(SZLGE); histogram

kurtosis; and histogram
energy.

CT parameters selected
by the ML model were

maximum CT
attenuation value;

GLZLM small-zone
emphasis (SZE); mean
CT attenuation value;
GLZLM SZLGE; and
GLZLM gray-level

non-uniformity
(GLNU).

Clinical parameters
selected by the ML

model were
duration of radiation
treatment, nodal (N)
stage, smoking, age,

and sex. The
parameters included in

the combined model
were MTV, maximum

CT value, SUVmin,
GLZLM SZLGE, and
histogram kurtosis.

CRT

FDG PET-CT
determined that

radiomic features
are potential

predictors of early
disease progression

in patients with
locally advanced

larynx and
hypopharynx SCC.

Fatima
et al. [23]
Canada—

2021
retrospective

study

Recurrence
prediction 2 48/3 61 Quantitative

US

In the quantitative
ultrasound

spectroscopy a total of
seven spectral

parameters were
calculated within each

ROI window. These
include spectral slope
(SS); spectral intercept

(SI) at 0 MHz;
mid-band fit (MBF);

average acoustic
concentration (AAC);

average scatterer
diameter (ASD);

attenuation coefficient
estimate (ACE); and

spacing among
scatterers (SAS).
Texture analysis:
GLCM, energy,

homogeneity, and
contrast.

RT

Machine learning
classifiers trained
with QUS spectral

and texture
parameters were
shown to predict

recurrence for
patients with

HNSCC receiving
RT with an accuracy
of 82% at week 4 of

treatment.
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Table 1. Cont.

Study Main
Objective

Number
of

Patients

Gender
(M/F) Age

Imaging
Acquisition

Method

Radiomic Feature
Extraction/

Signature Building/
Segmentation Method

Treatment
Strategy Conclusion

Liu et al. [24]
China—2022
retrospective

study

Pretreatment
predictor of
progression-

free
survival in

locally
advanced
hypopha-
ryngeal

carcinoma

112 103/9 61 CT

LASSO,
Wavelet-LLH_glszm_
GrayLevelNonUnifor-

mityNormalized
Gradient_glcm_Imc1

Wavelet-
LLL_ngtdm_Busyness

Wavelet-
LHL_firstorder_Maximum

Wavelet-
LHL_firstorder_Kurtosis

Wavelet-
HLH_glcm_MCC

Induction
QT,

surgery,
and RT

The authors propose
a radiomics model

based on
pretreatment with a

CT radiomics
signature for the

detection of
induction

chemotherapy
response in patients

with locally
advanced

hypopharyngeal
carcinoma.

Chen et al.
[25] China—

2022
retrospective

study

Overall
survival 136 ND 58 MRI

LASSO; Origi-
nal_Shape_Maximum3DDiameter,

Origi-
nal_Shape_Compactness,
Original_Glrlma_Run-

Length
Non-Uniformity

Normalized,
Wavelet_HLLc_Glrlma_Long

Run Emphasis,
Wavelet_LHLd_Glcmb_Joint

Entropy,
Wavelet_HLHe_Glrlma_Short
Run High Gray-Level

Emphasis

Surgical
and non-
Surgical

treatment

The
radiomics-clinical

nomogram and
radiomics score

might be
non-invasive and

reliable methods for
the risk

stratification in
patients with

hypopharyngeal
squamous cell

carcinoma.

Liu et al. [26]
China—2022
retrospective

study

Signature
analysis for
evaluation
of response
to induction
chemother-

apy and
progression-

free
survival

112 103/9 61 CT

LASSO,
Wavelet-LLH_glszm_
GrayLevelNonUnifor-

mityNormalized
Gradient_glcm_Imc1

Wavelet-
LLL_ngtdm_Busyness

Wavelet-
LHL_firstorder_Maximum

Wavelet-
LHL_firstorder_Kurtosis

Wavelet-
HLH_glcm_MCC

Induction
chemother-

apy,
surgery,
and RT

The authors propose
that a

multiparametric
CT-based radiomics

model could be
useful for predicting
treatment response

and progression-free
survival in patients

with locally
advanced

hypopharyngeal
carcinoma who

underwent
induction

chemotherapy.

Nakajo
et al. [27]

China—2022
retrospective

study

Determination
of

usefulness
of clinical
and pre-

treatment
18F-FDG-
PET-based
radiomic

features for
prognosis
prediction

in
patients

with
hypopha-
ryngeal
cancer

100 94/6 71 PET-CT

Gray-level
co-occurrence matrix

entropy
(GLCM_Entropy);

Gray-level run-length
matrix;

run-length
non-uniformity

(GLRLM_RLNU).

Surgery,
chemother-
apy, CRT,

RT.

The logistic
regression model

constructed by
UICC, T and N

stages and
pretreatment with
[18F]-FDG-PET–

based
radiomic features,
GLCM_Entropy,

and GLRLM_RLNU
may be an

important predictor
of prognosis in
patients with

hypopharyngeal
cancer.
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The main targets described in the included studies were the evaluation of textural
features as supplementary information to determine tumor-programmed death-ligand 1
(PD-L1) expression [16]; the role of radiomic features as a surrogate for microvessel density
and heterogeneity of perfusion [17]; radiomic features leading to patient stratification
into groups at high and low risk of progression [19,25]; radiomics predicting early recur-
rence [18] and 1-year locoregional failure and survival outcome, including progression-free
survival (PFS) and overall survival (OS) in patients with locally advanced HPSCC [20]; and
thyroid cartilage invasion [21], early disease progression [22], recurrence [23], induction
chemotherapy response [26], treatment response [24], and prognosis [27]. The radiomic
feature extraction, signature building, and segmentation methods are also described in
Table 1.

Looking more in depth regarding potential applications explored in recent years, Liu
et al. highlight the ability of radiomic analysis to predict response to IC in HPSCC and
hypothesized that radiomic signatures could also be capable of predicting PFS. Moreover,
these authors found that all patients can be divided into high- and low-risk groups accord-
ing to the optimal cutoff value of a proposed radiomics signature (called radscore) [26].

Hsu et al. reported an MRI-derived radiomic signature-based prediction model for
the evaluation of 1-year loco-regional control and survival in patients with HPSCC who
received organ preservation therapy as a first-line treatment, and they established a tumor
volume cut-off value of >35 cm3 as a predictor of poor prognosis [20]. Moreover, the
authors highlight the use of radiomic analysis and functional MRI modalities, such as
diffusion-weighted imaging, and their potential to provide additional information about the
prognostic imaging phenotype in patients with advanced HPSCC [19], as Leithner et al. [28]
and Dulhanty et al. [29] demonstrated in breast and prostate cancers, respectively. In the
same vein, Chen et al. developed an MRI-based radiomic nomogram to predict overall
survival in HPSCC. They demonstrated better predictive capability by implementing a
nomogram that included clinical and radiomic variables rather than the use of either
separately [25].

Guo et al. sought to demonstrate the capacity of CT-radiomic features in the prediction
of thyroid cartilage invasion in laryngeal squamous carcinoma and HPSCC. They based
their hypothesis on the low sensitivity of CT to determine thyroid cartilage invasion
(49–71%), usually due to differing rates of ossification of the cartilage, and found higher
gray-level non-uniformity values in patients with thyroid cartilage invasion [21]. In a
different setting, Bahig et al. suggest the potential role of dual-energy CT, a technology
that allows tissue characterization through material decomposition and voxel-by-voxel
quantification of iodine concentration, and tumor vessel characterization in conjunction
with a radiomic-based approach before RT to predict loco-regional recurrence rates in
laryngeal squamous carcinoma and HPSCC [16]. Similarly, Mo et al. demonstrated the
potential role of CT radiomics to predict the risk of progression in HPSCC treated with
organ preservation therapy [19].

In another study, Zhong et al. demonstrated the good predictive value of PET/CT
combined with radiomics and machine learning analysis to predict the early progression
(1 year) in patients treated with organ preservation therapy for HPSCC [21]. Further,
Chen et al. showed the value of PET/CT radiomics to determine PD-L1 expression in
this subset of patients [16]. Finally, Fatima et al. reported a clinical trial to explore the
feasibility of US-delta or quantitative US radiomics during the treatment with RT to predict
recurrence in H&N cancer patients. Despite just two patients with HPSCC having been
included in that study, the potential value of US-based radiomics should be mentioned in
this analysis [23].

According to the Oxford Centre for Evidence-Based Medicine system, seven studies
were considered to provide level three evidence and five were considered to provide level
four evidence. The MINORS scores indicating the risk of bias are listed in Table 2.
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Table 2. Assessment of Quality and Risk of Bias. OCEBM: Oxford Center for Evidence-Based
Medicine; MINORS: Methodological Index for Non-Randomized Studies.

Study OCEBM MINORS

Chen et al. [15] 4 14
Bahig et al. [16] 4 10

Li et al. [17] 3 14
Mo et al. [18] 3 14
Hsu et al. [19] 3 12
Guo et al. [20] 4 13

Zhong et al. [21] 4 11
Fatima et al. [22] 4 11

Liu et al. [23] 3 14
Chen et al. [24] 3 14
Liu et al. [25] 3 14

Nakajo et al. [26] 3 14

4. Discussion

According to our systematic review, radiomics has the potential to support HPSCC
management. Properly used, this technology has the promising potential to evaluate the
characteristics of the tumor and its surrounding microenvironment, stratify patients by
risk of progression, make predictions about treatment response, and improve survival
estimates [16,27].

Nowadays, the UICC/AJCC TNM classification and staging system continues to be
the first choice for clinical risk assessment and survival counseling [30]. Nonetheless,
patients with HPSCC within the same UICC stage group have variable treatment prog-
noses, [30–32] highlighting the need for novel predictive assessment methods to improve
patient stratification and propose individualized treatment plans. For this purpose, the
existing clinical datasets from multiple imaging modalities routinely performed in HPSCC
patients can be used in an exploratory radiomic analysis to support clinical decision-making
by multidisciplinary teams.

The suffix “omics” is used to describe various sources of large volumes of data, being
added to a name that characterizes the original materials for data collection. In line with
this, the “radiomics” field finds its way into clinical research when large amounts of data
from radiological imaging (intensity, shape, and texture) become available for analysis [33].
Specifically, texture analysis represents a set of tools to improve the characterization of
tumor heterogeneity and consists in extracting texture indices from imaging modalities
such as CT, MRI, and PET/CT [34]. Results from this type of analysis can be used as a
surrogate biomarker to complement, facilitate, and accelerate advances towards precision
medicine for cancer due to the non-invasive nature of this approach [10,35].

To translate this concept into medical or clinical research based on radiomics, the
process needs to be broken down into five steps: (1) data collection; (2) ROI segmentation:
delineation of the target area in the images; (3) feature selection: high-throughput extraction
of lesion features; (4) feature reduction: selection of features with high reliability from
the feature set for model training to improve the generalization ability of the model; and
(5) establishment of a definitive model [36,37]. All these steps make it mandatory to define
quality management protocols for radiomics application in H&N cancer patients, while
also defining the time required per patient/exploration and the potential automatization of
some parts of the process.

Moreover, there are several different useful features. First-order features describe the
pattern of distribution of gray-level pixel values within a whole tumor. The maximum
and kurtosis values describe the highest intensities of the whole tumor, which are related
to the hemodynamic parameters of the tumor and are relevant to the prediction of the
efficacy of chemotherapy [38]. The pretreatment gray-level co-occurrence matrix (glcm)
informational measure of correlation 1 (Imc1) has been studied to characterize tumor
aggressiveness and predict induction chemotherapy response. Higher values of this feature



Biomedicines 2023, 11, 805 10 of 13

are possibly associated with a good response [10]. In contrast, tumors with a higher value
of neighborhood gray-tone difference matrix (ngtdm) business might have a poor response
to neoadjuvant chemoradiation [39]. The gray-level non-uniformity feature has been
studied to predict prognosis in patients with HPSCC, and in these cases, a lower gray-level
uniformity indicates a poorer prognosis [19,40]. Similarly, lower values of glcm maximum
correlation coefficient (MCC) may indicate tumors with more aggressive behavior, which
can predict local failure after radiotherapy in locally advanced H&N cancers [41].

Regarding the potential information that we can obtain from the radiomics analysis
about tumor growth behavior, potential treatment outcome, or the analysis of the surround-
ing microenvironment, we can highlight some radiomics features such as the maximum
and kurtosis values useful to describe the highest intensities of the whole tumor, which are
related to the hemodynamic parameters of the tumor, allowing us to predict chemotherapy
efficacy [26]. The pretreatment gray-level co-occurrence matrix (glcm)_Imc1, a feature that
allows us to characterize the tumor aggressiveness, also helps us to predict chemothera-
peutic response, with a higher value associated with good treatment response [27]. We
can also use the gray-tone-difference matrix (ngtdm)_busyness, a feature that can help us to
predict neoadjuvant chemotherapy response, with this treatment being especially useful
for patients with a negative response to treatment [28]. The gray-level non-uniformity feature,
which is useful for prognosis prediction, has a low uniformity among gray levels and is a
predictor of worse prognosis [20,29]. Finally, the glcm_MCC is a useful feature to estimate
local failure after radiation therapy treatment in H&N cancer patients [30].

Summarizing the evidence available, radiomics is a non-invasive and cost-effective
technique that has great potential to expand the scope of medical imaging in HPSCC
patients [35]. Its application can provide important day-to-day information regarding rapid
anatomic change and tumor response during treatment. Nonetheless, some issues need to
be addressed.

Radiomic features require further research into the correlation between genetic and
biological imaging data. The clinical value of this tool in terms of reproducibility and
variability across different settings in HPSCC needs to be established in prospective studies.
Further, there is an ongoing debate about which imaging tool offers the best performance for
radiomic analysis: CT, MRI, or PET/CT [42]. Nowadays, we know that contrast-enhanced
CT images could provide more clear contours of tumors and important information associ-
ated with treatment response and prognosis than non-contrast CT images [40,43]. In this
vein, imaging protocols and analysis must be standardized in order to be able to use the
same radiomics models across different centers worldwide.

Functional organ preservation represents a relevant target of IC. In HPSCC, the larynx
preservation rate is an important outcome to be measured. However, there is a lack of
information in almost all the studies included; therefore, it is necessary to investigate this in
future research studies. We also have evidence about the possibility to combine radiomics
signatures and clinical data using clinical nomograms to improve our results [24,26].

Due to the heterogeneity of HNSCC, there is a need for collection and organization
of data from samples collected at multiples hospitals. In relation to this, an international
European consortium designed the BD2Decide European multicenter project to explore the
potential of big data in HNSCC for clinical outcome estimation and research. The aim of
this project is to summarize the characteristics of a unique large international multi-omics
database for the analysis of treatment differences in a selected series of patients with locally
advanced cancer treated with curative intent. In this setting, radiomics is a promising
image data mining method for the prediction of therapeutic response and prognosis, and
its use in HPSCC should be included in this kind of project [44].

5. Conclusions

Based on the limited reports in the literature, our findings suggest that radiomics
represents a potentially useful tool in the diagnostic workup as well as during the treatment
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and follow-up of patients with HPSCC. Large prospective studies are essential to validate
this technology in these patients.
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