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Abstract: Systems for medical analytics and decision making that make use of multimodal intelligence
are of critical importance in the field of healthcare. Liver cancer is one of the most frequent types
of cancer and early identification of it is crucial for effective therapy. Liver tumours share the same
brightness and contrast characteristics as their surrounding tissues. Likewise, irregular tumour shapes
are a serious concern that varies with cancer stage and tumour kind. There are two main phases
of tumour segmentation in the liver: identifying the liver, and then segmenting the tumour itself.
Conventional interactive segmentation approaches, however, necessitate a high number of intensity
levels, whereas recently projected CNN-based interactive segmentation approaches are constrained
by low presentation on liver tumour images. This research provides a unique deep Learning based
Segmentation with Coot Extreme Learning Model approach that shows high efficiency in results
and also detects tumours from the publicly available data of liver images. Specifically, the study
processes the initial segmentation with a small number of additional users clicks to generate an
improved segmentation by incorporating inner boundary points through the proposed geodesic
distance encoding method. Finally, classification is carried out using an Extreme Learning Model,
with the classifier’s parameters having been ideally chosen by means of the Coot Optimization
algorithm (COA). On the 3D-IRCADb1 dataset, the research evaluates the segmentation quality
metrics DICE and accuracy, finding improvements over approaches in together liver-coloured and
tumour separation.

Keywords: tumour prediction; coot optimization algorithm; extreme learning model; deep learning-
based interactive segmentation; intensity levels

1. Introduction

Smart healthcare systems, in particular those that make use of IoMT technology, have
benefited from recent expansions in machine learning and computer communication [1,2].
A multimedia-based medical diagnostic system is one of the major demands in the medical
healthcare business. Radiologists and doctors can benefit even more from the solutions
provided by these intelligently built diagnostic systems [3]. Liver cancer ranks as the
sixth most common form of cancer worldwide. The liver is a massive granular organ
situated inside in humans. Cirrhosis, acute and chronic liver are on the rise as a direct
result of changing lifestyles. As a direct result of these underlying conditions, liver cancer
has become the most prevalent form of the disease in many regions [4]. There are more
therapy choices available when the cancer is detected early. Liver cancer can only be
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diagnosed through imaging or radiology testing, as a physical examination is not possible.
Imagination tests aid to screen cancer at initial phase and assistance to assess the healthiness
of post-treatments [5].

CT scan is an imaging method that is used for both visualizing liver structure and
diagnosing/treating liver cancer. Clinicians can use it to assess the liver’s useful volume,
tumour size, shape, and location to better tailor a treatment plan. The radiologist needs
precise separation of liver tumours to perform these calculations [6]. Usually, the segmenta-
tion is performed by evaluating each slice of the CT scan. This process is tedious, laborious
and fraught with opportunities for error, which can be categorized into three areas. First
and foremost, errors can result from the variation in the appearance, size, and location
of tumours from one patient to the next. Second, the line dividing tumour tissue from
healthy tissue is not sharply delineated. Third, cancerous tissues can be found in close
proximity to other organs. Furthermore, due to the wide range in tumour appearances and
densities, liver tumour segmentation is a difficult task [7]. Thus, there is an immediate need
for investigate into hepatic tumour segmentation, which improves treatment planning,
lessens manual labour, and boosts the success rate of liver cancer procedures by advising
oncologists pre- and post-operation.

Over the past few decades, scientists have created numerous interactive and au-
tonomous methods for segmenting liver tumours. The radiologists’ productivity is in-
creased thanks to the development and training of semiautomatic methods made possible
by computer-aided designs (CAD). Automatic segmentation of liver tumours is challenging
due to several obstacles, such as variations in tumour size, shape, and proximity to adjacent
organs [8–10]. Incomplete volume effects and increased noise due to CT enhancement are
also among the challenges encountered. The automation of liverwort liver tumour division
is a challenging study topic with opportunity for development.

In addition, differing encoding procedures have a significant effect on the interactive
segmentation performance, making it a practical challenge for CNN-based algorithms to
properly encode user interactions. The majority of the literature encodes user relations
by translating them, the Gaussian heatmap, or the iso-contours obtained from the user’s
clicks [11–13]. However, the context of the image is ignored by these encoding techniques.
The geodesic distance transform, on the other hand, is sensitive to spatial contrast and
spatial smoothness, allowing it to encode user interactions. To handle user-provided
interactions, DeepIGeoS employs a transform with a custom-tailored verge. To truncate
the resulting geodesic distance map at a suitable threshold value, however, might be a
time-consuming process when dealing with objects of varying shapes and sizes [14,15].
In order to enhance the precision and scalability of the segmentation, we hypothesise
encoding approach is useful.

We present a new medical picture to address the aforementioned problems, with the
ultimate goal of not only achieving high presentation and competence for segmentation
of liver tumour. The usage of CNNs is central to our strategy, and the user interface is
minimal. For better segmentation from the CNN, we provide a new method based on the
Exponential zed Geodesic Distance (EGD) transform for encoding user interactions, which
is both context-aware and parameter-free. In addition, we offer an information fusion
technique that can fuse new intensity levels with the original segmentation in an effective
way. The results demonstrated that our method is significantly better than other interactive
segmentation procedures.

The rest of the paper is organised as follows: current methodologies and their details
are presented in Section 2, followed by an explanation of the proposed model in Section 3.
Section 4 compares the projected model with those currently in use, whereas Section 5
provides a summary and recommendations for future research.

2. Related Works

Amin, et al., [16] identified liver disease using optimized generative adversarial
network (GAN). The proposed model has three parts including the generation of synthetic
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images, localization, and segmentation, and the generation of synthetic images is carried
out by GAN. The features from input images are extracted using ResNet-50, whereas YOLO-
v3 is utilized to localize small liver tumours. Finally, the segmentation task is completed
by using a pre-trained model of InceptionResNet-v2. The performance of the proposed
method is simulated on the publicly available 3D-IRCADb-01 dataset. The method focused
only on segmentation, where the classification of tumours is not performed.

A more effective method of liver and tumour separation from CT images is proposed
by Ashreetha, B. [17], who suggests using Gabor Features (GF) in conjunction with three
different machine learning algorithms: Random Forest (RF), Support Vector Machine
(SVM), and Deep Neural Net (DNN). There should not be any inconsistencies or differences
in the GF-generated texture data between different slices of the same organ. In the first,
an assortment of Gabor filters is used to extract features at the pixel level. Second, liver
segmentation is performed by erasing liver from an abdominal CT image using three
distinct classifiers. Finally, the segmented liver picture is subjected to tumour segmentation
classifiers. All of the aforementioned classification techniques have been successfully
applied to pixel-wise segmentation problems, and the Gabor filter is a good approximation
to the human visual system (HVS) of perception.

The primary focus of Ayalew, Y.A., [18] was the application of a deep learning approach
to partition liver and tumour from stomach CT scan pictures, with the goal of reducing the
time and effort required to diagnose liver cancer. The algorithm’s foundation is the primary
UNet design. However, in this research, it reduced the number of filters used in each block
and introduced batch normalisation and a dropout layer afterward every block along the
shrinking path. The programme achieved a dice score of 0.96 for liver subdivision, 0.74 for
liver tumour segmentation, and 0.63 for abdominal CT scan image tumour division. The
liver results improved by 0.11 percentage points, whereas the overall liver segmentation
results improved by 0.01.

Zheng, R., et al. [19] apply a 4D deep learning model that takes advantage of 3D
memory to the issue of lesion segmentation: The projected deep learning approach uses
the four-dimensionality of DCE MRI to aid in liver tumour segmentation. A shallow
U-net-based 3D CNN module was utilised to extract the DCE phases’ 3D spatial area
features, and a 4-layer C-LSTM network module was employed to make use of the phases’
temporal domain information. Networks trained in using multi-phase DCE pictures and
multi-contrast images, which capture the dynamic nature of tissue imaging features, are
better able to understand the characteristics of HCC. The suggested model outperformed
the 3D U-net perfect, the RA-UNet model, and other models used in the ablation research
on both internal and external test sets for liver tumour segmentation, with a Dice score
of 0.825·0.077. The suggested model performs similarly to the state-of-the-art nnU-Net
perfect, which has shown to be superior in a variety of segmentation tests, while also
greatly outperforming it in terms of prediction time.

A fully automatic approach to liver segmentation from CT scans is projected by Arajo
et al. [20]. The suggested method consists of four primary steps. These processes are
procedures. The model used 131 CT LiTS database to test the suggested technique. The
average results were 95.45% sensitivity, 99.86% specificity, 95.64% Dice coefficient, 8.28%
volumetric overlap error, 0.41% relative volume difference, and 26.60 mm in Hausdorff
distance.

For better efficiency in diagnosing liver tumours, Rela, M. [21] adopts a novel model.
Histogram equalisation and filtering are used for benchmark and manually gathered
datasets. In addition, this research work use adaptive thresholding in conjunction with
level set segmentation to carry out liver segmentation. After the liver is segmented, a novel
Grey algorithm is applied to segment the tumour using an improved deep learning method
called U-Net. On top of that, the GW-CTO algorithm adopts based on a multi-objective
function because the length of features increases the difficulty of network training. To
further improve upon these carefully chosen features, the GW-CTO algorithm is applied to
a Neural Network. With a learning percentage of 85%, the DNN achieved an accuracy of
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4.3%, outperforming PSO-HI-DNN by 2.4%, O-SHO-HI-DNN by 5.2%, CTO-HI-DNN by
4.3%, and GWO-HI-DNN by 4.3%.

In [22], Liu et al. offer an AI-based approach for segmenting CT images of liver tu-
mours. K-means clustering (KMC), an AI-based approach, was proposed in this paper and
compared to the region growth (RG) technique. Using the Child–Pugh classification system,
120 patients with liver tumours at Research Hospital in Chandigarh, India, were divided
into two groups: grade A (58 instances) and grade B (62 cases). The experiments showed
that liver tumors had low density on plain CT scans and moderate enhancement during
PVP. Liver metastasis was shown to be detectable by CT more often than hepatocellular
carcinoma. Results reveal that lipiodol chemotherapy emulsion (LCTE) has a favourable
deposition effect in patients with a rich blood type (accounting for 53.14%) and a poor
blood type (accounting for 25.73%).

Using CT scan data from the 3D-IRCADb01 dataset, Sabir, M.W. [23] developed a
ResU-Net architecture with a very dense number of nodes. ResU-fundamental Net’s
feature, the residual block and U-Net architecture, allows for the withdrawal of more
information from the input data than a standard U-Net network. Data augmentation,
a Hounsfield windowing unit, and histogram equalisation are only some of the picture
pre-processing techniques used before used to measure ResU-network Net’s efficiency. The
ResU-Net system with residual connections achieved a DSC value of 0.97% for methods,
which was much higher than the presentation of state-of-the-art systems for liver tumour
documentation.

3. A Proposed System

Figure 1 shows the working flow of the proposed model.
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3.1. Dataset Selection

The proposed approach employs the 3DIRCADb1 dataset [24]. It is a repository of
anonymized medical photos and expertly drawn boundaries around organs of interest.
The DICOM format is used for all pictures and masks. We used the CT scan pictures from
20 patients found in the 3D-IRCADb1 database, which represents 75% of the tumours in
that collection. Each picture is 512 pixels by 512 pixels. The range of slices is anything from
74 to 260, and the slice thickness can be anywhere from 1.25 to 4 mm. Table 1 has all the
details. Each scan segment has an appropriate liver mask. Tumour masks, however, are
not shared between tissues and can be found in their own dedicated folders. The tumour
masks from many scans on different types of tissue were therefore merged into a single
folder for computational convenience. An initial sample of 17 patients is used as a training
set for the proposed approach, whereas the remaining sample of three patients serves as
a test set. Due of the complexity of the liver and its malignancies, this dataset is being
investigated for training and evaluation. It has many tumours that cannot seen by the
naked eye, and the tumours have a similar contrast to the liver; more specifically, their HU
values are practically identical (Figure 2).

Because of these challenges, we decided to investigate this dataset using deep learning
techniques.

3.2. Data Augmentation

Data inadequacy is a major obstacle for deep learning representations used to medical
data. Not enough data points are available in the datasets to satisfy the needs of the data-
hungry deep learning algorithms. Therefore, data augmentation is a popular and viable
option for expanding the sample size. When augmentation is required, the Augmentation
API37 is used. This package, written in Python, makes it easy to add enhancements to
data. To find the most versatile additions, we analysed all of them and settled on four:
90◦ rotation, transposition, horizontal flip, and vertical flip. Due to the limited size of the
dataset, there is a possibility of the network being overfit. Select online augmentation
strategies are utilised to prevent this situation from occurring. As a first step, the training
data is partitioned into exercise and validation sets. Next, augmentation methods are
functional to each slice, and lengthways with their corresponding ground truth (Figure 3).

Table 1. Detailed info of 3Dircadb. (F: Female; M: Male).

S. No Gender Voxel Dimensions Slices Tumours

1 F 0.57 × 0.57 × 1.6 129 7
2 F 0.78 × 0.78 × 1.6 172 1
3 M 0.62 × 0.62 × 1.25 200 1
4 M 0.74 × 0.74 × 2.0 91 7
5 M 0.78 × 0.78 × 1.6 139 0
6 M 0.78 × 0.78 × 1.6 135 20
7 M 0.78 × 0.78 × 1.6 151 0
8 F 0.56 × 0.56 × 1.6 124 3
9 M 0.87 × 0.87 × 2.0 111 1

10 F 0.73 × 0.73 × 1.6 122 8
11 M 0.72 × 0.72 × 1.6 132 0
12 F 0.68 × 0.68 × 1.0 260 1
13 M 0.67 × 0.67 × 1.6 122 20
14 F 0.72 × 0.72 × 1.6 113 0
15 F 0.78 × 0.78 × 1.6 125 2
16 M 0.70 × 0.70 × 1.6 155 1
17 M 0.74 × 0.74 × 1.6 119 2
18 F 0.74 × 0.74 × 2.5 74 1
19 F 0.70 × 0.70 × 4.0 124 46
20 F 0.81 × 0.81 × 2.0 225 0



Biomedicines 2023, 11, 800 6 of 23

Biomedicines 2023, 11, x FOR PEER REVIEW 5 of 23 
 

3.1. Dataset Selection 

The proposed approach employs the 3DIRCADb1 dataset [24]. It is a repository of 

anonymized medical photos and expertly drawn boundaries around organs of interest. 

The DICOM format is used for all pictures and masks. We used the CT scan pictures from 

20 patients found in the 3D-IRCADb1 database, which represents 75% of the tumours in 

that collection. Each picture is 512 pixels by 512 pixels. The range of slices is anything from 

74 to 260, and the slice thickness can be anywhere from 1.25 to 4 mm. Table 1 has all the 

details. Each scan segment has an appropriate liver mask. Tumour masks, however, are 

not shared between tissues and can be found in their own dedicated folders. The tumour 

masks from many scans on different types of tissue were therefore merged into a single 

folder for computational convenience. An initial sample of 17 patients is used as a training 

set for the proposed approach, whereas the remaining sample of three patients serves as 

a test set. Due of the complexity of the liver and its malignancies, this dataset is being 

investigated for training and evaluation. It has many tumours that cannot seen by the 

naked eye, and the tumours have a similar contrast to the liver; more specifically, their 

HU values are practically identical (Figure 2). 

 

Figure 2. A sample image with a very minute tumour (not visible for the human eye) and its mask. 

Because of these challenges, we decided to investigate this dataset using deep learn-

ing techniques. 

Table 1. Detailed info of 3Dircadb. (F: Female; M: Male). 

S. No Gender Voxel Dimensions Slices Tumours 

1 F 0.57 × 0.57 × 1.6 129 7 

2 F 0.78 × 0.78 × 1.6 172 1 

3 M 0.62 × 0.62 × 1.25 200 1 

4 M 0.74 × 0.74 × 2.0 91 7 

5 M 0.78 × 0.78 × 1.6 139 0 

6 M 0.78 × 0.78 × 1.6 135 20 

7 M 0.78 × 0.78 × 1.6 151 0 

8 F 0.56 × 0.56 × 1.6 124 3 

9 M 0.87 × 0.87 × 2.0 111 1 

Figure 2. A sample image with a very minute tumour (not visible for the human eye) and its mask.

Biomedicines 2023, 11, x FOR PEER REVIEW 6 of 23 
 

10 F 0.73 × 0.73 × 1.6 122 8 

11 M 0.72 × 0.72 × 1.6 132 0 

12 F 0.68 × 0.68 × 1.0 260 1 

13 M 0.67 × 0.67 × 1.6 122 20 

14 F 0.72 × 0.72 × 1.6 113 0 

15 F 0.78 × 0.78 × 1.6 125 2 

16 M 0.70 × 0.70 × 1.6 155 1 

17 M 0.74 × 0.74 × 1.6 119 2 

18 F 0.74 × 0.74 × 2.5 74 1 

19 F 0.70 × 0.70 × 4.0 124 46 

20 F 0.81 × 0.81 × 2.0 225 0 

3.2. Data Augmentation 

Data inadequacy is a major obstacle for deep learning representations used to medi-

cal data. Not enough data points are available in the datasets to satisfy the needs of the 

data-hungry deep learning algorithms. Therefore, data augmentation is a popular and vi-

able option for expanding the sample size. When augmentation is required, the Augmen-

tation API37 is used. This package, written in Python, makes it easy to add enhancements 

to data. To find the most versatile additions, we analysed all of them and settled on four: 

90° rotation, transposition, horizontal flip, and vertical flip. Due to the limited size of the 

dataset, there is a possibility of the network being overfit. Select online augmentation 

strategies are utilised to prevent this situation from occurring. As a first step, the training 

data is partitioned into exercise and validation sets. Next, augmentation methods are 

functional to each slice, and lengthways with their corresponding ground truth (Figure 3). 

Images Transpose RandomRotate 90 Vertical Flip Horizontal Flip 

     

     

Figure 3. Effect of augmentation procedures on the unique copy. 

3.3. Data Normalization 

The primary goal of data normalisation is to convert a dataset’s numeric columns to 

a more human-readable scale while maintaining the original data’s range variability. Data 

normalization is not mandatory in ML, but becomes important when the data features a 

wide range of values. Through the use of data normalisation, we can ensure that each row 

only stores the data it needs to and eliminate any potential for data duplication. The nor-

malised data takes up far less room than the alternative. The key worry for data collection 

and storage is, of course, a lot of memory. Data normalisation is employed to lessen stor-

age needs. There is a flexible database architecture in place. If the same piece of 

Figure 3. Effect of augmentation procedures on the unique copy.

3.3. Data Normalization

The primary goal of data normalisation is to convert a dataset’s numeric columns to a
more human-readable scale while maintaining the original data’s range variability. Data
normalization is not mandatory in ML, but becomes important when the data features
a wide range of values. Through the use of data normalisation, we can ensure that each
row only stores the data it needs to and eliminate any potential for data duplication. The
normalised data takes up far less room than the alternative. The key worry for data
collection and storage is, of course, a lot of memory. Data normalisation is employed to
lessen storage needs. There is a flexible database architecture in place. If the same piece of
information is stored more than once, data redundancy is committed. Regulating values
slow on multiple scales to a theoretically shared scale, frequently before averaging, is what
is meant by the term “data normalisation.” First, we assume that EFst is a data attribute, and
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then we define e f 1 and e f 2 as the minimum and maximum normalised values, respectively.
Standardization Equation (1) displays the mathematical form of data normalisation.

EFnormalization
st = (e f 1− e f 2) ∗

(
EFst − EFmin)(

EFmax − EFmin
) + e f 1 (1)

In Equation (1), the attribute of the data to be standardised is marked by EFst, the
normalised data is denoted by EFnormalization

st , the supreme attribute value connected to
each record is signified by EFmax, and EFmin mentions to the least quality value connected
to apiece record.

3.4. Segmentation

The segmentation process has two distinct phases. To begin, the user clicks a few
times in the vicinity of the target object’s (input image) border (i.e., its interior margin
point). With these points, a loose bounding box can be inferred for use in cropping the
input image. Our suggested EGD transform takes the cropped image as input and uses
the user-supplied inner margin points to generate a cue map. The cropped input image
and the cue map are fed into a CNN to produce a rough segmentation. In the additional
phase, the user clicks to highlight mis-segmented areas, and we apply Information Fusion
and Graph Cuts to refine the result (IF-GC). The refinement step can be repeated as many
times as necessary throughout testing to obtain a satisfactory end product. Our approach
requires only a limited sum of training data and can be used immediately to segment new
objects without the requirement for additional annotations or fine-tuning.

3.4.1. Inner Margin Points

Interactive cues such as scribbles, bounding boxes, and their combinations are com-
monly used, but due to variations in individuals and imaging protocols, it can be chal-
lenging and time-consuming to identify the precise extreme points in medical images,
increasing the workload on the user. We propose using inner margin points as user in-
teractions to work around these restrictions, where the user needs only a few clicks to
completely enclose the target area. For organs with complex and irregular shapes, points
can provide more shape information, which only uses an additional point. In addition, it
can be challenging for users to place clicks accurately on the object boundary, even during
testing. Therefore, it is easier to adjust inaccurate clicks by moving them closer to the object
boundary. A transform of the exponentialized geodesic distances between these locations
along the interior border can provide a good approximation of the saliency map of the
target object. As a result, interior margin points may be useful for directing CNNs as they
deal with a wider variety of unseen objects.

Every object’s internal boundary points were simulated automatically during training
using the ground truth mask and edge detector. The inner margins are calculated using
two criteria: In the first place, these points need to be positioned within the object and
close to its edge. Second, the entire object space should fit within a tranquil bounding
box computed from these locations. As a result, we use a two-stage simulation to mimic
user interactions with a training image. (1) A small number of points are picked near
the extremes of the target object on the ground truth boundary to make sure the relaxed
bounding box encompasses the entire region of interest. Then, to provide further insight
into the target’s overall form, we pick n random points from the remaining border points.
(2) In step 1, we move all these points towards the inner side of the border to simulate
genuine user clicks which may not be entirely accurate. Because users are expected to
position the inside margin points inside the border, we rotated the simulated points inwards
to reflect this need. Then, the determined bounding box is expanded outward by a few
pixels/voxels to incorporate the surrounding area. In the testing phase, the user must
supply the inner margin points in a way that complies with the aforementioned conditions.
Users’ interactions determine a loose boundary box, which is then enlarged somewhat to
incorporate further context.
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3.4.2. Exponentialized Geodesic Distance Transform

Coding user interactions efficiently is essential for CNN-based interactive approaches.
An ideal encoding technique would incorporate image context and work seamlessly with
convolutional neural networks (CNNs) without needing any custom-designed parameters.
Although these benefits are desirable, they are not shared by other existing interaction
encoding approaches such as the Euclidean distance transform, the Gaussian heatmap, the
iso-contours, or the geodesic distance transform. We suggest a context-aware approach to
this issue: a hybrid of the geodesic distance and exponential transforms.

Imagine Ss is the collection of training-stage simulated interior margin points or
user-provided test-stage inner margin points. Assuming that I is a pixel or voxel in the
contribution picture I, we can write the nameless I to Ss as

EGD(i, Ss, I) = min
j∈Ss

e−Dgeo(i,j,I) (2)

Dgeo(i, j, I) = min
p∈pi,j

∫ 1

0
‖∇I(p(n).v(n))‖ dn (3)

p is a feasible path with parameters n [0; 1], and P(i,j) is the usual of all pathways be-
tween pixels/voxels I and j. The tangent unit vector is defined as n ∈ [0; 1]. v(n) =
p′(n)/||p′(n)||. In this paper, the EGD is described for scalar images, but it may be easily
generalised to vector-valued images. Specific instances of cue maps created using various
encoding techniques applied to some interior margin points are displayed. It is clear that
maps are between the foreground and contextual. This means it could provide the CNN
a better initial segmentation result by providing additional shape, location, and context
information.

3.4.3. Early Segmentation Constructed on Cue Map and CNN

In this research, we tackle the problem of dealing with both visible and hidden objects
in a wide variety of image formats by developing a universal and efficient framework. For
this reason, our system is not restricted to any one particular CNN architecture. We employ
2D-UNet and 3D-UNet with certain modifications to show off its potential. To strike a better
balance between performance, memory cost, and time consumption, we halve the number
of feature channels and swap out the batch normalising layers for instance normalisation
layers, which can better adapt to various image types. As mentioned in Section 3.4.1, all
inside margin points and relaxed leaping boxes during training. To feed the image into the
CNN, all the points inside the margin are turned into a cue map. The user will be requested
to input inside margin points for a target in the testing phase. A preliminary segmentation
result can then be provided by the CNN. We use a refinement stage that fuses data from
the first segmentation with data from further user clicks to fix the mis-segmentation, as
will be seen in Section 3.4.4.

3.4.4. Refinement Constructed on Data Fusion among Preliminary Segmentation and Extra
User Clicks

Refining a preliminary segmentation is crucial for interactive segmentation based on
deep learning. Traditional approaches either need to fine-tune the perfect for a particular
image or require an extra model for refinement. These methods of refinement need a
lot of resources, especially time and memory, and they are not yet ready for usage with
unseen objects. CNN’s prediction was additionally refined automatically by CRF and
these CRF-based refining approaches were not intended for interactive segmentation. In
contrast to existing approaches, we present a unique strategy for information fusion among
original segmentation and further user connections that yields improved generalisation to
unknown items without the need for extensive re-training.

During the refinement phase, the user is prompted to click on areas of the image
that were incorrectly segmented as foreground or background. We re-apply the projected
EGD transformation to generate two more interaction-derived cue maps, which we then
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use to efficiently encode the newly discovered interactions: E f and Eb are EGD-derived
cue maps that influence the user’s foreground and background clicks to hone down on
certain features. Please take note that in the refinement stage, we do not simply recycle
the original EGD map we received in the first phase, but instead use a combination and
refinement clicks to determine the new EGD maps. Similarity clicks are represented by the
values of E f and Eb, which fall in the range [0; 1]. The initial foreground and background
probability map that is obtained by CNN are denoted as P f and Pb and a pixel/voxel is
defined as i in the input image I, respectively. It is suggested that P f and Pb be fine-tuned
in accordance with E f and Eb using the information fusion technique. When pixel I is near
the refinement clicks, we want to automatically emphasise E f and Eb; otherwise, P f and Pb

will be left unaltered. Probabilities of being in the forefront (R f
i ) or background Rb

i ) at pixel
I as defined by the user, are defined here as

E f
i =

e−D f
i

e−D f
i + e−Db

i

(4)

Eb
i =

e−Db
i

e−D f
i + e−Db

i

(5)

R f
i = (1− ai) ∗ P f

i + ai ∗ E f
i (6)

Rb
i = (1− ai) ∗ P f

i + ai ∗ Eb
i (7)

ai = e−min(D f
i ,Db

i ) (8)

for some weighting factor αi ∈ [0; 1] that changes on its own and dynamically. When I
is near the clicks, R f

i (Rb
i is more affected by E f

i (Eb
i ), and I is nearer to 1.0. If we receive

no input for the foreground (background), we will use a fixed value for D f
i , Db

i . So, if we
call the foreground clicks “C f ” and the background clicks “Cb,” then the total number of
clicks is C = C f ∪ Cb. Let us call this pixel’s user-supplied label ci; if it’s in the clicks, then
ci = 1 if i ∈ C f and ci = 0 if i ∈ Cb. For the final, refined segmentation, we use a (CRF) that
incorporates both R f and Rb:

E = ∑i φ(yi|I) + λ. ∑i,j ψ
(
yi, yj

∣∣I) (9)

Subject to : yi = ci if i ∈ C (10)

where φ then ψ are the energy terms, correspondingly. λ postulates a comparative weight
among φ and ψ. In paper:

φ(yi|I) = −(yi log(ri) + (1− yi) log(1− ri)) (11)

ψ
(
yi, yj

∣∣I) ∝ exp

(
−
(

Ii − Ij
)2

2σ2

)
.

1
distij

(12)

ri signifies the value of pixel i in R f , and yi = 1 if I belong to the forefront and 0 then. Ii
and Ij mean pixel i and j in image I, respectively. distij is the Euclidean distance among
pixel/voxel i and j. σ is a limitation to controller. The CRF problem expressed in Equation
(8) is shown to be submodular and solvable by Graph Cut using the max-flow/min-cut
algorithm.

3.4.5. Gradient Computation

The following equations are then used to determine the gradients at each pixel in the
image:

dx = I(x + 1, y)− I(x, y) (13)
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dy = I(x, y + 1)− I(x, y) (14)

θ(x, y) = tan−1
(

dy
dx

)
(15)

3.4.6. Dividing the Input Image into Cells and Blocks

The gradient image generated at the end is divided into 105 squares by tiling it into
8 × 8-pixel cells and pushing a 16 × 16-pixel window across the cells. This window covers
four adjacent cells at a time, and the cells in each group of four are combined to form a
block. This block sections are created using this HOG-style image partitioning technique
can be observed in the resulting image of size 64 × 128 pixels. It is essential for further
procedures including feature extraction. Figure 4 presents the sample images for ground
truth and liver segmentation. Figure 5 presents the tumour segmentation.
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3.4.7. Construction of the Histogram of Concerned with Gradient Using Selective Sum of
Histogram Bins

A histogram of the gradient’s direction is built for each block. To achieve this, the
orientation angles of each pixel are used to cast a vote for placement in one of a set number
of histogram bins. More bins will be used to extract more specific orientation information
from the image, but more features will be generated as a result.

Varying sections of the image use a different sum of histogram bins to minimise
the feature size while still preserving the critical information in the feature. For regions
that could be part of a human figure, a higher sum of histogram bins is used to extract
characteristics, whereas a lesser number of bins is employed for the remaining regions.
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An average image is built using 739 positive training samples to locate possible human
body parts. The shaded blocks’ features are extracted using a larger sum of histogram
bins, whereas the remaining blocks’ characteristics are extracted using a smaller sum of
histogram bins. In practise, the optimal values for the high and low number of bins to
employ are found by trial and error.

3.5. Classification Using Extreme Learning Machine

A neural network enhanced by the gradient method, an ELM. Whereas other gradient
learning methods require frequent iterations to maintain optimal network parameters, ELM
merely requires a random initialization of the connection weights among the input and
output layers and the bias parameters in the hidden layer prior to data training. Once the
hidden layer’s neuron count is determined, a single optimal key can be obtained. This type
of learning algorithm can speed up the learning process and decrease the amount of time
spent analysing data.

In the construction of the ELM, there are N random examples (Xi, ti), where Xi =[
x1i, x2i, . . . , xni]

T ∈ Rn, ti =[ t1i, t2i, . . . , tqi, . . . , tmi]
T ∈ Rm. A single-hidden-layer neural

uttered as
∑L

i=1 βig
(
Wi.Xj + bi

)
= oj, j = 1, . . . , N (16)

where, g(x) is the start of the hidden neuron, Wi = [wi,1, wi,2, . . . , wi,n]
T is the input weight,

βi is the output weight layer expressed as

∑N
j=1 ‖oj − tj‖ = 0 (17)

Specifically, there are proper βi, Wi, bi which can content the Equation (4). This formula
can be signified as

Hβ = T (18)

where H is the hidden layer’s output matrix, is the hidden layer’s output weight, and T is
the predictable output. Finding the optimal values for ŵi, b̂i, β̂i is equivalent to solving the
minimal cost function, which is what is required to network.

E = ∑N
j=1

[
∑L

i=1 βiG
(
wi.Xj + bi

)
− Tj

]2
(19)

A universal classifier that can accomplish, the aforementioned ELM is exactly what
is needed. Binary and multiclass classification are both possible with ELM in the field
of classification. The learning pace can be drastically increased without the necessity for
iterative learning. Although ELM has universal approximation, it requires considerable
hidden nodes to ensure a good generalization performance, which is prone to overfitting.
This makes the prevention of overfitting an urgent problem of ELM. As a regularization
method for fully connected networks, Dropout [25] and DropConnect [26] can effectively
prevent overfitting [27]. The steps of the ELM algorithm are as follows [28].

Step 1: Give training set ψ = (xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, . . . , N , activation function
G(x), and the sum of hidden neuron L.

Step 2: Arbitrarily assign the value of the input weight wi and the bias bi. The optimal
solution for weight is identified by COA, which is described in Section 3.5.1.

Step 3: Compute the hidden layer production matrix H.
Step 4: Compute the output weight β : β = H † T, where H† is the Moore–Penrose

widespread inverse matrices H. Figure 6 presents the sample label output of input image,
which is obtained from the classifier ELM. The binary output “0” and “1” is obtained by
ELM, which is labelled by the input image and shown in Figure 6.
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3.5.1. Coot Optimization Algorithm

In [29], a new optimization algorithm called the COA is introduced, and its design is
based on the behaviour of coot birds. COA makes an effort to imitate the flock’s behaviour
as a whole. A few coots floating on the water’s surface are in charge of guiding the flock.
From what we can tell, they exhibit four distinct behaviours: random wandering, moving
in chains, shifting their positions relative to the group leaders, and guiding the pack to the
best possible location. These behaviours cannot be implemented without a mathematical
model.

Initial conditions include the generation of a random population of coots. Let us
pretend we have a D-dimensional problem that needs solving. Using Equation (20), we can
construct a population of N coots.

PosCoot(i) = random(1, D)× (UB− LB) + LB, i = 1, 2, ., N (20)

Based on the upper boundaries UB and lower bounds LB calculated for each dimension,
Equation (20) generates a uniform distribution of coot positions in a higher-dimensional
space. The coots cannot go beyond or below these levels of protection. A specified fitness
function, as shown in Equation (21), is applied to this initial random population as well.

F(i) = Fitness(PosCoot(i)), i = 1, 2, . . . , N (21)

First, a random location is generated using Equation (22) to represent the unpredictable
behaviour of coots. Second, we calculate the coot’s new location using Equation (23).

R = random(1, D)× (UB− LB) + LB (22)

PosCoot(i) = PosCoot(i) + A× RN2× (R− PosCoot(i)) (23)

In Equation (23), RN2 is an arbitrary number between zero and one. Both A and B are
calculated using Equation (24):

A = 1−
(

T(i)× 1
IterMax

)
, B = 2−

(
T(i)× 1

IterMax

)
i = 1, 2, . . . , IterMax (24)

T(i) is the current repetition in Equation (24), and IterMax is the maximum sum of
iterations allowed. The average location of two coots is used to bring one closer to another
in order to accomplish chain movement, as shown in Equation (25).

PosCoot(i) = 0.5× (PosCoot(i− 1) + PosCoot(i)) (25)
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Coots also choice a leader coot and shadow them using Equation (26):

Lind = 1 + (iMOD NL) (26)

NL is the parameterized number of leaders, and Lind is the leader index, in Equation
(19). To go along with this, we also have the concept of a probability, denoted by p. When
all else fails, we turn to Equation (27)’s rules for assigning leadership roles.

LeaderPos(i) =
{

B× R3× cos(2Rπ)× (gBest− LeaderPos(i) + gBest R4 < P)
B× R3× cos(2Rπ)× (gBest− LeaderPos(i) + gBest R4 ≥ P

}
(27)

Because gBest is the current worldwide best and is 3.14, R3 and R4 are arbitrary
statistics in the interval [0, 1]. The COA’s pseudocode is provided in Algorithm 1 [30].

Algorithm 1: Pseudocode of the COA.

1. Initialize the f irst population o f coots randomly or weights parameters o f ELM
by Equation (20)

2. Initialize the termination or stopping condition f or optimal solution, probability p,
number o f leaders and number o f coots

3. Ncoot = Number o f coots− Number o f leaders
4. Random selection o f leaders f rom the coots
5. Calculate the f itness o f coots and leaders
6. Find the best coot or leader a the global optimum while the end criterion is not satis f ied
7. Calculate A, B parameters by Equation (24)
8. I f rand < P
9. R, R1, and R3 are random vectors along the dimensions o f the problem
10. Else
11. R, R1, and R3 are random number
12. End
13. For i = 1 to the number o f the coot
14. Calculate the parameter o f K by Equation (26)
15. I f rand > 0.5
16. Update the position o f the coot by Equation (27)
17. Else
18. I f rand < 0.5 i ∼= 1
19. Update the position o f the coot by Equation (27)
20. Else
21. Update the position o f the coot by Equation (25)
22. End
23. End
24. Calculate the f itness o f coot
25. I f the f itness o f coot
26. I f the f itness o f coot < the f itness o f leader (k)
27. Temp = Leader(k); leader(k) = coot; coot = Temp;
28. End
29. For number o f Leaders
30. Update the position o f the leader using the rules given in Equation (27)
31. I f the f itness o f leader < gBest
32. Temp = gBest; gBest = leader; leader = Temp; (update global optimum)
33. End
34. End
35. Iter = iter + 1;
36. End
37. Postprocessor results
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4. Results and Discussion
4.1. Segmentation Analysis

Dice Similarity Coefficient

DSC, or Dice resemblance coefficient, is commonly used to compute the similarity
between two samples. In this research work, this performance measure determined the
overlap among two binary masks. It can be mathematically defined as the size of the
overlay between two segmentations alienated by objects. The provided range of DSC is
usually from 0 (no overlap) to 1. DSC is calculated using the following equation:

DSC =

(
2TP

2TP + FP + FN

)
(28)

Jaccard Similarity Coefficient

JSC gives binary mask values precisely. It is also defined as the ratio of similarity and
diversity of samples used in experimentation. In mathematical terms, it is the relation of
the connexion between two binary covers with their union. JSC is calculated according to
the equation given below:

JSC =
TP

TP + FP + FN
(29)

Accuracy

Accuracy is one of the most significant presentation measures that determine the
efficiency and effectiveness of any model. Accuracy represents total number of samples [31].

Symmetric Volume Difference

SVD provides the alteration of the segmented images from the ground truth. If the
value of SVD is zero, it represents a promising resultant segmentation value. The equation
determines how to calculate SVD, where DSC is the Dice similarity coefficient:

SVD = (1− DSC) (30)

Sensitivity

The properly identified proportion of true positives is measured using sensitivity [32].

Specificity

The correctly identified proportion of true negatives is measured using specificity [32].
The existing technique GW-CTO [21] is implemented in our system and results are

averaged in Table 2.

Table 2. Segmentation Results on 3DIRCADb1 dataset.

Method Dice Score Jaccard Accuracy Specificity Sensitivity SVD

GW-CTO [21] 67.5 ± 27.8% 56.0 ± 30.7% 92 ± 3.8% 70.1 ± 29.6% 64.8 ± 32.2% 0.33
Proposed 77.11 ± 21.0% 67.8 ± 26.9% 93 ± 3.7% 79.16 ± 20.56% 76.03 ± 24.56% 0.23

Based on the accuracy analysis, the proposed model achieved 93%, whereas the
existing GW-CTO method achieved 92%. Additionally, the proposed model obtained a Dice
score of 77.11%, which is higher than the existing technique that had a Dice score of 67%.
In addition, GW-CTO achieved 56% of Jaccard, 70% of specificity and 64.8% of sensitivity,
where the proposed model achieved 67.8% of Jaccard, 79.16% of specificity, and 76.03%
of sensitivity. In order to test the generability of the proposed model, its effectiveness is
tested with other dataset called Silver07 and it has a lateral resolution of [0.56, 0.8] mm and
a z-axis resolution of [1, 3] mm. All sizes of tumours, metastases, and cysts are represented.
The central venous phase of all datasets included contrast-enhanced drugs. There are a total
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of 30 sets in the dataset; 20 for training and 10 for testing. Table 3 presents the comparative
analysis of the proposed model with existing technique on second dataset.

Table 3. Segmentation Results on Silver07 Dataset.

Method Dice Score Jaccard Accuracy Specificity Sensitivity SVD

GW-CTO [21] 70.7 ± 24.9 % 69.5 ± 34.6% 91 ± 3.9% 73.5 ± 27.6% 67.6 ± 33.26 0.25
Proposed 77.54 ± 21.5% 65.5 ± 32.5% 92 ± 3.9% 80.36 ± 4.6% 77.51 ± 25.66 0.22

In the analysis of accuracy, the proposed model achieved 92% and existing model
achieved 91%, where the reason for better performance is the proposed model focused on
liver and tumour segmentation using various models. When these models are tested with
the Dice score, the existing technique has 70.7% and the proposed model has 77.54%. The
sensitivity and specificity of the proposed model is 77.51% and 80.36%, where the existing
techniques achieved only 66.6% and 73.5%.

4.2. Classification Analysis

Evaluation metrics

Accuracy: “ratio of the observation of exactly predicted to the whole observations”.
This is exposed in Equation (31).

Taccuracy =
(Trp + Trn)

Trp + Trn + Fap + Fan (31)

Sensitivity: “the number of true positives, which are recognized exactly”.

Se =
Trp

Trp + Fan (32)

Specificity: “the number of true negatives, which are determined precisely”.

Sp =
Trn

Fan (33)

Precision: “the ratio of positive observations that are predicted exactly to the total
number of observations that are positively predicted”.

Pr =
Trp

Trp + Trp (34)

FPR: “the ratio of count of false positive predictions to the entire count of negative
predictions”.

FPR =
Fap

Fap + Trn (35)

FNR: “the proportion of positives which yield negative test outcomes with the test”.

FNR =
Fan

Trn + Trp (36)

NPV: “probability that subjects with a negative screening test truly don’t have the
disease”.

NPV =
Fan

Fan + Trp (37)

FDR: “the number of false positives in all of the rejected hypotheses”.

FDR =
Fap

Fap + Trp (38)
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F1 score: It is distinct as the “harmonic mean between precision and recall. It is used as
a statistical measure to rate performance”.

F1score =
Se.Pr

Pr + Se
(39)

MCC: It is a “correlation coefficient computed by four values”.

MCC =
Trp × Trn − Fap × Fan√

(Trp + Fap)(Trp + Fan)(Trn + Fap)(Trp + Fan)
(40)

When comparing with existing techniques, the proposed model achieved better per-
formance than existing techniques such as RF, SVM, DNN-GF [17] and HI-DNN [21]. The
existing techniques are implemented in our dataset and system, then results are averaged
in Table 4. Initially, without considering the segmentation process, all techniques identified
the tumours, which shows poor performance. For instance, the proposed model has 88% of
accuracy, 92% of specificity, 92% of NPV and existing techniques achieved nearly 89% of
NPV, 69% to 87% of specificity and 86% of accuracy. Figures 7 and 8 presents the graphical
analysis of the proposed model with existing techniques. In the next analysis, all techniques
are tested with segmentation and it is provided in Table 5.

Table 4. Classification results without segmentation.

Metrics RF SVM DNN-GF HI-DNN Proposed

FDR 0.2 0.11765 0.2105 0.14211 0.085715
F1-Score 0.76712 0.83333 0.70345 0.79355 0.87672
Accuracy 0.77642 0.84211 0.85174 0.86241 0.88258
Sensitivity 0.73684 0.78947 0.80263 0.75 0.84212
Specificity 0.81579 0.89474 0.68421 0.65789 0.92105
FNR 0.26316 0.21053 0.078947 0.15789 0.15789
NPV 0.81579 0.89474 0.31579 0.34211 0.92105
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Table 5. Classification results with segmentation.

Metrics RF SVM DNN-GF [17] HI-DNN [21] Proposed

FDR 0.045198 0.032967 0.033898 0.037037 0.016216
F1-Score 0.91599 0.94118 0.92683 0.95539 0.96553
Accuracy 0.91927 0.94271 0.92969 0.95573 0.96615
Sensitivity 0.88021 0.91667 0.89063 0.94892 0.96792
Specificity 0.95833 0.96885 0.96875 0.96354 0.98438
Precision 0.9548 0.96703 0.9661 0.96296 0.98378

FPR 0.041667 0.03125 0.03125 0.036458 0.01562
FNR 0.11979 0.083333 0.10948 0.052083 0.05208
NPV 0.95833 0.96875 0.96875 0.96354 0.98438
MCC 0.84111 0.88662 0.86201 0.91157 0.93291

When segmentation techniques are considered, the results for even existing techniques
have better performance. For instance, the existing techniques achieved nearly 92% to
95% of accuracy and the proposed model achieved 96% of accuracy. The reason for better
performance is that the kernels are optimally selected by using COA and segmentation
of liver is considered. The existing techniques did not use any optimization models for
optimal parameter selection and achieved poorer performance than the proposed model.
The FPR is high for RF, where other existing techniques has 0.03 and the proposed model
has 0.01. Figures 9 and 10 presents the graphical analysis for various metrics. The analysis
of ROC for the proposed model is presented in Figure 11.
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4.3. Cross-Valdiation Analysis

Here, the analysis is carried out on various k-fold cross validations. Table 6 presents
the analysis of the proposed model with existing techniques by considering different cross
validations.

Table 6. Analysis for Cross-Validation.

Model 90-10 Split 80-20 Split 70-30 Split Cross Validation

Proposed 98.9 96.3 93.45 96.65
HI-DNN 97.4 95.4 91.0 95.57
DNN-GF 96.7 94.5 90.2 92.96

SVM 94.5 92.6 88.3 94.27
RF 93.3 91.4 86.1 91.92

The above table presents the different ratio of training images and testing images, with
cross-validation analysis. It is shows that the proposed model achieves nearly 96% to 98%
for 80-20, 90-10, and cross-validation, but the same model achieved only 93.45% accuracy,
when the training is 70% and testing is 30%. This shows that the splits play an important
role for classification accuracy. The existing techniques such as HI-DNN and DNN-GF
achieved nearly 93% to 96% of accuracy for 90-10 split, 80-20 split, and cross-validation,
where those models achieved only 91% of accuracy, when the split is 70-30. For the analysis
of coot optimization in the proposed model, Table 7 provides the experimental analysis.
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Table 7. Computation Cost and Memory Analysis of Different Techniques.

Model Size (MB) MACs (G)

Proposed 237.89 0.71
HI-DNN 461.10 1.03
DNN-GF 370.88 1.14

SVM 270.87 1.13
RF 289.11 1.18

The computational cost of the proposed model is lower (0.71 GB) compared to the
existing methods, and it also requires less memory size (237.89 MB). However, the existing
RF model has 1.18 G of computation cost and uses 289.11MB of memory size to process the
identification. This leads to poor classification performance and the main reason is that a
trained RF requires high memory for storage, due to the need for retaining the information
from several hundred individual trees. In addition, the requirement of training time and
testing time of various algorithms is depicted in Table 8.

Table 8. Training and testing time analysis.

Model Training Time (s) Testing Time (Image/s)

RF 2804 38.7
SVM 2705 17.6

DNN-GF 2506 15.9
HI-DNN 2011 13.1

Proposed model 2103 10.3

From the above experiments, it is clearly proven that the proposed model has less
training time and testing time of input liver images. When compared with all techniques,
RF has high training time and testing time due to hundreds of trees, which is previously
explained in Table 6. The other existing models such as DNN-GF and HI-DNN has nearly
2300 s of training time and 14 s for testing the input image.

4.4. Analysis of Proposed Classifier Model on Silver07 Dataset

Table 9 compares the proposed model to existing techniques for the Silver07 dataset
with regards to segmentation.

Table 9. Classification Results with Segmentation.

Metrics RF SVM DNN-GF [17] HI-DNN [21] Proposed

FDR 0.14286 0.21429 0.25625 0.083355 0.06587
F1-Score 0.82759 0.75862 0.69565 0.85631 0.84615
Accuracy 0.83871 0.77419 0.80645 0.838771 0.87097
Sensitivity 0.80000 0.73333 0.85204 0.93752 0.99368
Specificity 0.87525 0.8125 0.99965 0.98752 0.99787
Precision 0.85714 0.78571 0.99654 0.91667 0.99368

FPR 0.12525 0.1875 0.06548 0.0654 0.0587
FNR 0.22221 0.26667 0.46667 0.26651 0.21488
NPV 0.8741 0.8125 0.98756 0.9375 0.56845
MCC 0.67783 0.54812 0.60911 0.6825 0.76594

In the analysis of accuracy, the existing ML achieved nearly 78/5 to 83%, DNN-GF
achieved 80%, HI-DNN model achieved 83%, and the proposed model achieved 87.09%.
The reason for better performance is that the ELM’s weight parameters are optimally
selected by COA, where existing techniques did not consider parameter selection operation.
In the analysis of FPR, the RF has 0.12, SVM has 0.18, DNN-GF and HI-DNN have 0.06, and
the proposed ELM has 0.05. The sensitivity and specificity of the proposed model achieved
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nearly 99%, where the existing models such as RF has nearly 80–87%, SVM has 73–81%,
and HI-DNN achieved nearly 93% to 98%. The importance of COA in ELM is tested with
both datasets, which is provided in Table 10.

Table 10. Comparative analysis of the proposed ELM with and without COA.

Dataset 3DIRCADb1 Dataset Silver07

Metrics Without COA With CoA Without COA With CoA

FDR 0.057497 0.016216 0.098421 0.06587
F1-Score 0.68794 0.96553 0.75297 0.84615
Accuracy 0.87668 0.96615 0.81067 0.87097
Sensitivity 0.83458 0.96792 0.95485 0.99368
Specificity 0.96568 0.98438 0.98365 0.99787
Precision 0.95584 0.98378 0.94658 0.99368

FPR 0.17278 0.1562 0.19780 0.15687
FNR 0.15684 0.05208 0.86925 0.21488
NPV 0.70654 0.98438 0.46825 0.56845
MCC 0.61545 0.93291 0.41892 0.76594

In the first dataset (3DIRCADb1), the proposed model achieved 87% without COA
and the same model achieved 96% with COA. This analysis shows the importance of COA
in ELM’s parameter selection. Likewise, without COA, the proposed ELM achieved 68%
of F-measure, 83% of sensitivity, 96% of specificity, and 95% of precision. The same ELM
model achieved 96% of F-measure, sensitivity, and it has 98% of specificity and precision,
when it is tested with COA. In the second dataset, the ELM has 81% of accuracy, 75% of
F1-score, 95% of sensitivity, 98% of specificity, and 94% of precision without COA. However,
when the ELM was tested with COA, it achieved 87% of accuracy, 84% of F1-score, 99% of
sensitivity, 99% of specificity, and 99% of precision. In the analysis of FPR, the proposed
model has 0.17 on first dataset and 0.19 for second dataset without COA. However, the
same ELM achieved 0.15 of FPR on first dataset and second dataset, when it tested with
COA.

5. Conclusions

We present a deep learning-based communicating system with high accuracy for
segmenting tumours from liver pictures. To encode user communications to direct CNN
for a decent initial subdivision, a new context-aware approach was presented. In addition
to the encoding technique, we also suggested a powerful refining strategy to boost the
precision of the segmentation outcomes. Segmentation is an important goal for models built
using deep learning, and this framework is intended to help achieve that goal. The results of
our experiments on a broad variety of input photos demonstrate that (1) our inner margin
points and EGD architecture provides superior accuracy and efficiency learning-based
interactive segmentation tools. In addition, the suggested framework is very generalizable
with regards to liver tumour identification. As an annotation tool, it might be used to
produce segmentation masks quickly and precisely for various objects. As a future work,
the classification accuracy could be improved by introducing the deep learning model in
the research work for classification instead of a machine learning model.
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15. Budak, Ü.; Guo, Y.; Tanyildizi, E.; Şengür, A. Cascaded deep convolutional encoder-decoder neural networks for efficient liver
tumor segmentation. Med. Hypotheses 2020, 134, 109431. [CrossRef] [PubMed]

16. Amin, J.; Anjum, M.A.; Sharif, M.; Kadry, S.; Nadeem, A.; Ahmad, S.F. Liver tumor localization based on YOLOv3 and 3D-semantic
segmentation using deep neural networks. Diagnostics 2022, 12, 823. [CrossRef]

17. Ashreetha, B.; Devi, M.R.; Kumar, U.P.; Mani, M.K.; Sahu, D.N.; Reddy, P.C.S. Soft optimization techniques for automatic liver
cancer detection in abdominal liver images. Int. J. Health Sci. 2022, 6, 10820–10831. [CrossRef]

18. Ayalew, Y.A.; Fante, K.A.; Mohammed, M.A. Modified U-Net for liver cancer segmentation from computed tomography images
with a new class balancing method. BMC Biomed. Eng. 2021, 3, 4. [CrossRef]

19. Zheng, R.; Wang, Q.; Lv, S.; Li, C.; Wang, C.; Chen, W.; Wang, H. Automatic liver tumor segmentation on dynamic contrast
enhanced mri using 4D information: Deep learning model based on 3D convolution and convolutional lstm. IEEE Trans. Med.
Imaging 2022, 41, 2965–2976. [CrossRef] [PubMed]

20. Araújo, J.D.L.; da Cruz, L.B.; Diniz, J.O.B.; Ferreira, J.L.; Silva, A.C.; de Paiva, A.C.; Gattass, M. Liver segmentation from computed
tomography images using cascade deep learning. Comput. Biol. Med. 2022, 140, 105095. [CrossRef]

21. Rela, M.; Suryakari, N.R.; Patil, R.R. A diagnosis system by U-net and deep neural network enabled with optimal feature selection
for liver tumor detection using CT images. Multimed. Tools Appl. 2022, 82, 3185–3227. [CrossRef]

22. Liu, L.; Wang, L.; Xu, D.; Zhang, H.; Sharma, A.; Tiwari, S.; Kaur, M.; Khurana, M.; Shah, M.A. CT image segmentation method of
liver tumor based on artificial intelligence enabled medical imaging. Math. Probl. Eng. 2021, 2021, 9919507. [CrossRef]

23. Sabir, M.W.; Khan, Z.; Saad, N.M.; Khan, D.M.; Al-Khasawneh, M.A.; Perveen, K.; Qayyum, A.; Azhar Ali, S.S. Segmentation of
Liver Tumor in CT Scan Using ResU-Net. Appl. Sci. 2022, 12, 8650. [CrossRef]

24. IRCAD. 2022. Available online: https://www.ircad.fr/research/3dircadb/ (accessed on 5 July 2022).

http://doi.org/10.1158/1078-0432.CCR-17-0853
http://www.ncbi.nlm.nih.gov/pubmed/28982688
http://doi.org/10.1016/j.jhepr.2020.100100
http://doi.org/10.1038/s41746-020-0232-8
http://www.ncbi.nlm.nih.gov/pubmed/32140566
http://doi.org/10.1007/s00330-019-06214-8
http://doi.org/10.3389/fonc.2020.00680
http://doi.org/10.1109/JBHI.2018.2886276
http://www.ncbi.nlm.nih.gov/pubmed/30561355
http://doi.org/10.1109/JBHI.2019.2949837
http://doi.org/10.1002/acm2.13003
http://doi.org/10.1002/mp.13122
http://www.ncbi.nlm.nih.gov/pubmed/30098025
http://doi.org/10.1016/j.mehy.2019.109431
http://www.ncbi.nlm.nih.gov/pubmed/31669758
http://doi.org/10.3390/diagnostics12040823
http://doi.org/10.53730/ijhs.v6nS1.7597
http://doi.org/10.1186/s42490-021-00050-y
http://doi.org/10.1109/TMI.2022.3175461
http://www.ncbi.nlm.nih.gov/pubmed/35576424
http://doi.org/10.1016/j.compbiomed.2021.105095
http://doi.org/10.1007/s11042-022-13381-2
http://doi.org/10.1155/2021/9919507
http://doi.org/10.3390/app12178650
https://www.ircad.fr/research/3dircadb/


Biomedicines 2023, 11, 800 23 of 23

25. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing
co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.

26. Wan, L.; Zeiler, M.; Zhang, S.; Cun, Y.L.; Fergus, R. Regularization of neural networks using Dropconnect. In Proceedings of the
International Conference on Machine Learning, Atlanta, GA, USA, 23–29 June 2013; pp. 1058–1066.

27. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

28. Wang, J.; Lu, S.; Wang, S.H.; Zhang, Y.D. A review on extreme learning machine. Multimed. Tools Appl. 2021, 81, 41611–41660.
[CrossRef]

29. Mostafa, R.R.; Hussien, A.G.; Khan, M.A.; Kadry, S.; Hashim, F.A. Enhanced coot optimization algorithm for dimensionality
reduction. In Proceedings of the 2022 Fifth International Conference of Women in Data Science at Prince Sultan University (WiDS
PSU), Riyadh, Saudi Arabia, 28–29 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 43–48.

30. Kuran, E.C.; Kuran, U.; Er, M.B. Sub-Image Histogram Equalization using Coot Optimization Algorithm for Segmentation and
Parameter Selection. arXiv 2022, arXiv:2205.15565.

31. Afzal, S.; Maqsood, M.; Nazir, F.; Khan, U.; Aadil, F.; Awan, K.M.; Mehmood, I.; Song, O.-Y. A data augmentation-based
framework to handle class imbalance problem for Alzheimer’s stage detection. IEEE Access 2019, 7, 115528–115539. [CrossRef]

32. Afzal, S.; Maqsood, M.; Mehmood, I.; Niaz, M.T.; Seo, S. An Efficient False-Positive Reduction System for Cerebral Microbleeds
Detection. CMC Comput. Mater. Contin. 2021, 66, 2301–2315. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11042-021-11007-7
http://doi.org/10.1109/ACCESS.2019.2932786
http://doi.org/10.32604/cmc.2021.013966

	Introduction 
	Related Works 
	A Proposed System 
	Dataset Selection 
	Data Augmentation 
	Data Normalization 
	Segmentation 
	Inner Margin Points 
	Exponentialized Geodesic Distance Transform 
	Early Segmentation Constructed on Cue Map and CNN 
	Refinement Constructed on Data Fusion among Preliminary Segmentation and Extra User Clicks 
	Gradient Computation 
	Dividing the Input Image into Cells and Blocks 
	Construction of the Histogram of Concerned with Gradient Using Selective Sum of Histogram Bins 

	Classification Using Extreme Learning Machine 
	Coot Optimization Algorithm 


	Results and Discussion 
	Segmentation Analysis 
	Classification Analysis 
	Cross-Valdiation Analysis 
	Analysis of Proposed Classifier Model on Silver07 Dataset 

	Conclusions 
	References

