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Abstract: For almost nearly a century, memory functions have been attributed only to acquired
immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing
that innate immune cells are capable of exhibiting memory-like features resulting in increased
responsiveness to subsequent challenges, a process known as trained immunity (known also as
innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an
immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory
capacity. Both training as well tolerance as adaptive features are reported to be accompanied by
epigenetic and metabolic alterations occurring in cells. While training conveys proper protection
against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in
the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive
effects, promoting an increased susceptibility to secondary infections—tolerance, or contribute to
the progression of the inflammatory disorder—trained immunity. This review aims at the discussion
of these opposing manners of innate immune and non-immune cells, describing the molecular,
metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various
inflammatory pathologies.

Keywords: trained immunity; tolerance; inflammatory; dose; PAMPs; DAMPs; epigenetic; metabolic;
signaling; diseases

1. Introduction

In the early 20th century, the Nobel laureate Paul Ehrlich, in a spectacular lecture,
introduced the concept of specific antigen–antibody interaction, which established the
fundamental basis of the adaptive arm of immune responses. Later, several reports clarified
major questions related to adaptive (acquired) immunity, which relies mainly on two
different types of lymphocytes, T and B cells, able to recognize pathogen-specific antigens
and develop immunologic memory against them whilst promoting the long-term specific
elimination of the pathogen after a subsequent encounter [1,2].

Different from the acquired immune system, innate immune cells were considered as
evolutionary archaic due to the lack of memory responses, characterized particularly by a
rapid cell recruitment to the site of infection, producing various inflammatory mediators
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(i.e., cytokines and chemokines), and by engulfing the pathogen, thus eliminating the infec-
tious invader [3,4]. The overall impression that immunological memory was an exclusive
hallmark of the adaptive immune response was challenged by several studies in plants and
invertebrates, indicating a greater protection against reinfection [5–7]. Interestingly, since
the last universal common ancestor of all cells (LUCA) evolved into diverse phylogenic
groups where the majority (>95%) of the living organisms relies on the protection responses
driven mainly by the innate immune system, the acquisition of adaptive-like immune
memory for innate immune cells may be considered as an evolutionary success [7–10].
Initial observations about memory effects arising from the innate immune system were
reported in 1934 by a Swedish scientist Naeslund, then followed by a report of Mackaness
(in 1968) and later from Garly et al. (in 2003), showing that mammals vaccinated by Bacil-
lus Calmette–Guerin (BCG) improved survival rates with effects exceeding the burden
of tuberculosis, affording appropriate non-specific protection against various infectious
diseases [11–14]. Similar findings about the non-specific protective effects of BCG as well
as measles were reported by other groups [15–19].

Netea and colleagues, in a seminal report in 2011, suggested the concept of trained
immunity, defining it as a non-specific property of innate immune cells as well as tissue-
resident stem cells to act against secondary infectious challenges [20,21]. Trained immu-
nity, known also as innate memory or trained innate memory (abbr. TRIM), describes
a long-term functional reprogramming evoked by various endogenous danger signals
(damage-associated molecular patterns, DAMPs) released upon cellular stress or tissue
injury, or exogenous pathogenic conserved molecules (pathogen-associated molecular
patterns, PAMPs) [21–24]. Notably, recent studies have demonstrated also the capabil-
ity of hormones to support the induction of trained immunity, especially by sex-related
(i.e., β-estradiol) hormones or aldosterone as a mineralocorticoid that regulates electrolyte
homeostasis and affects many cardiovascular inflammatory events [25,26].

Trained cells adopt a prolonged activated phenotype characterized by enhanced
levels of pro-inflammatory mediators ( such as IL-1β, TNF-α, IL-6 and reactive oxygen
species (ROS)) and increased antimicrobial and antitumoral activities, a process regulated
mainly by epigenetic changes with resulting changes in metabolism and their functional
reprogramming [27,28]. In contrast to trained immunity, endotoxin tolerance (ET) as an
opposing feature is well known and represents a transient unresponsive state of immune
cells against further challenges characterized by decreased pro-inflammatory signatures
and an increased anti-inflammatory mode [29,30]. Chromatin modifications and gene
reprogramming supported by metabolic changes have been demonstrated as crucial devel-
opments supporting ET [30–37]. Innate immune cells sense different PAMPs and DAMPs
by germline-encoded pattern recognition receptors (PRRs), resulting in downstream sig-
naling events culminating in the release of various inflammatory mediators [38–40]. To
date, training as well as tolerance reactions are mainly imposed by alterations occurring
in different classes of PRRs, such as Toll-like receptors (TLRs), nucleotide oligomerization
domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors
(RLRs) and C-type lectin receptors (CLRs) instructing local and systemic inflammatory
responses in the living organisms [40–43]. Altogether, the activation of these signaling
pathways contributes to the evolvement of inflammatory diseases. To date, an increas-
ing number of studies has shown the clinical importance of trained immunity as well as
tolerance implicated in numerous inflammatory diseases [21,23,44–48].

Trained innate immunity as well as the topic of endotoxin tolerance have gained
considerable interest through the years (Figure 1). In the present review, we discuss in
depth the different characteristic properties of trained immunity and endotoxin tolerance
and their role in various inflammatory diseases.
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2. Trained Immunity

Trained immunity represents a functional state of the innate immune cells and tissue-
resident stem cells adjusting their response to subsequent insults, characterized particularly
by a prolonged activation after a resting period, orchestrated mainly by epigenetic re-
programming and the metabolic rewiring of cells [24]. It describes a property of innate
immune system to mount memory-like responses against past microbial and non-microbial
challenges [20,21,24]. To date, studies have shown that trained immunity can be maintained
in innate immune cells for months up to decades, a process occurring in the bone marrow
progenitor cells–central trained immunity, or for days up to a week in circulating innate
immune cells–peripheral training [21,49–52].

Emerging investigations have revealed two distinct hypotheses about the induction
of trained immunity and tolerance in innate immune cells: first, the stressor-dependent
hypothesis, where priming by specific PAMPs/DAMPs (i.e., β-glucan, BCG, oxidized
low-density lipoprotein (oxLDL) and heme) triggers the induction of training, whereas the
Gram-negative endotoxin (i.e., lipopolysaccharide (LPS)) promotes only tolerant reactions;
and the dose-dependent hypothesis, which demonstrates a biphasic dose–response where
low-dose priming results in a trained phenotype, whereas high-dose exposure triggers an
immune-suppressive phenotype (tolerance) after a secondary insult [20,21,53,54]. Moreover,
other reports elaborated also the role of corticosteroid hormones, dietary restriction and
maturation state supporting the induction of these adaptive cues in innate immune cells.

2.1. Stressor-Dependent Induction of Trained Innate Memory

Innate immune cells as gatekeepers recognize various pathogens, mounting immediate
immune resistance reactions aimed at eliminating the microbial intruder [53]. In the
early 20th century, Shwartzman described long-term adaptation reactions occurring by
continuous intravenous injections of the same filtrate promoting hemorrhagic necrosis
at the site of injection in the skin [55]. This phenomenon, where cells sense the initial
injection supporting resistance mechanisms against a secondary challenge, is known as
Shwartzman reaction.

Later, Netea and colleagues proposed the concept of stressor-dependent induction
of trained immunity in innate immune system [20]. They principally showed that the
pre-exposure of monocytes to the fungal-cell-wall-constituent β-glucan (C. albicans) trig-
gers an exaggerated burst of inflammatory responses upon secondary infectious stimuli
(i.e., LPS), a process called trained immunity [56,57]. Further in vitro and in vivo studies
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demonstrated comparable effects when innate immune cells (monocytes, macrophages,
microglia, neutrophils, mast cells and dendritic cells) as well as hematopoietic stem cells,
primed by β-glucan or Candida albicans infections, promote protective reactions against
various infections (such as Mycobacterium tuberculosis, Leishmania braziliensis and influenza)
or support anti-tumoral effects in a ROS- or CCR2-dependent manner [52,58–64]. C. albicans
as well as β-glucan induce a functional reprogramming of innate immune cells, resulting in
enhanced release of pro-inflammatory mediators (i.e., IL-1β, TNF-α, IL-6, IL-32 and ROS)
mediated by an IL-1-dependent signaling [58,59,62]. Similarly, LPS guides the induction of
training or tolerance depending on the type of secondary stimulus [65].

Extensive studies from different research groups have led to the identification of other
inducers of trained immunity. Muramyl dipeptide (MDPs) and tripeptide (MTPs), as bacte-
rial wall peptidoglycans recognized by NOD2 receptors, were reported to induce trained
immunity and inhibit cancer growth by sensitizing melanoma cells to inhibitory check-
point therapy [66,67]. Likewise, Pseudomonas aeruginosa serves as an important pathogen-
associated microbial component, causing acute and chronic lung infections [68,69]. Bigot
et al., in a proof-of-concept study, demonstrated the ability of human respiratory epithe-
lial cells to memorize former exposures to P. aeruginosa and provide protective reactions
against a wide spectrum of pathogens, a process relying on epigenetic regulation [70].
Similarly, in another investigation, where mice were trained by a wide range of infections
such as S. aureus, L. monocytogenes, E. coli, C. rodentium and P. aeruginosa to mimic systemic
infections, peritonitis, enteritis and pneumonia, the ability of mice to exhibit wide-range
protective effects from heterologous infections at distant anatomic sites from the training
site, particularly regulated by IL-1 pathway, was revealed [71,72]. The data presented by
these studies may be of crucial importance since they provide a double-edge property of
trained immunity: first, providing antimicrobial responses against heterologous infections,
and second, serving as a therapeutic tool to control inflammatory exacerbations during
multi-microbial infections. However, these findings should be considered with caution
since P. aeruginosa, during pulmonary infections, might utilize the host defense system to
its advantage by redirecting the host metabolism toward itaconate production, promoting
biofilm formation resulting in human tissue colonization [73]. Extensive studies are re-
quired to further determine all the detrimental factors (i.e., epigenetic regulation, metabolic
rewiring and former exposures) that can promote trained immunity and further elucidate
the clinical relevance.

To date, it is well-known that BCG vaccination is associated with decreased mortality
rates, driven mainly by its non-specific protective actions against other infections in addition
to the targeted pathogens [14,74–76]. Furthermore, it has been hypothesized that these non-
specific protective effects of certain vaccines, such as BCG, measles and polio, are driven
by the innate immune system. Kleinnijenhuis and colleagues provided firm evidence
that BCG promotes the non-specific long-term boosting of innate immune system, trained
immunity, mediated by a NOD2-dependent regulation of epigenetic marks such as histone
H3 at lysine 4 (H3K4) trimethylation [77,78]. γδ T cells, as a unique T-cell subpopulation
featuring functions of both immune systems, innate and adaptive, not restricted to the
major histocompatibility complex (MHC) of signaling, represent a key role for the innate
immune system of responses to various microbial infections [79,80]. A growing body of
evidence demonstrated that γδ T cells are early responders sensing different viruses by
their PRRs, natural killer type receptors (NKRs) or via T-cell receptors (TCRs) exerting
their protective function by a rapid and effective resolution of the viral infection [80–85].
In a recent work, Röring et al., elaborated on the role of the measles, mumps and rubella
(MMR) vaccine, affording a broader protection against heterologous infections, and found
that MMR triggers profound long-term functional changes (trained immunity) in γδ T cells
characterized by increased levels of TNF-α and IFN-γ as well as an enhanced reliance on
mitochondrial metabolism [86]. Moreover, several studies have reported the analogous
contribution of BCG vaccination to γδ T cells expressing a typical heterologous effect
observed in trained immunity [87–90].
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In a recent report, Debisarun et al., demonstrated that the quadrivalent inactivated
influenza vaccine triggers the transcriptional reprogramming of innate immune cells,
training effects, resulting in fine-tuned anti-SARS-CoV-2 responses supporting enhanced
protective reactions against COVID-19 [91]. Moreover, a study indicates that a single dose
of the ChAdOx1 nCoV-19 vaccine (AZD1222), which uses an adenoviral vector, displayed
a prolonged effective protection by myeloid cells characterized by heightened levels of
pro- and anti-inflammatory cytokines (i.e., IL-1β, IL-6, CXCL1 and IL-10) in response to
subsequent unrelated stimuli, featuring innate memory cues [92]. Other attempts included
the investigation of viral components promoting innate memory. Comparable effects have
been shown also by murine infections with cytomegalovirus (CMV) displaying a T/B-
cell-independent and natural killer cell (NK)-dependent protective mechanism against re-
infections [93,94]. In addition, earlier studies related to NK cells revealed a unique property
of this type of cells expressing memory-like features driven by previous encounters to
CMV infection or mediated by a cocktail of inflammatory cytokines (IL-12, IL-15 and
IL-18) [95–98]. Both, murine and human CMV promoted the antigen-specific induction
of memory NKs [93,98–100]. Nevertheless, cytokine-mediated memory NKs expressed
non-specific adaptive manners with enhanced proliferative capacity, elevated interferon-γ
(IFN-γ) and prolonged persistence [98,101–103]. Because of these adaptive cues, NK cells
can be considered as an evolutionary bridge between acquired and innate immune system.

Different ventures of existing vaccines or viral components to induce trained immu-
nity seek to improve conventional vaccines toward the new formulations of the so-called
trained immunity-based vaccines (TIbV), aimed at stimulating broader responses beyond
their specific antigens, an approach that could make it possible to afford proper resistance
against viral outbreaks [104–107]. However, this might not be the case for allergen vac-
cines. In a recent study Benito-Villalvilla et al., it was demonstrated that allergoid–mannan
conjugates, which serve as next-generation vaccines for allergen-specific immunotherapy
(AIT), contribute to allergen tolerance by the differentiation of monocytes into tolerogenic
dendritic cells (DCs), but lack the capacity to induce any trained immunity effects [107,108].
Similarly, the innate counterparts of T cells—innate lymphoid cells (ILCs)—primed by IL-33
or allergic inflammation mount enduring memory-like responses against other allergens,
which can serve as double-edged sword, on the one side affording proper protection against
infectious diseases and, on the other side, by contributing to pathology or disease progres-
sion [109–111]. Altogether, these data indicate that further research is necessary to clarify
the role of different vaccines, allergens or cytokines promoting training or tolerant reactions.

The multifold interplay between microbiota and the immune system during homeosta-
sis or diseases represents a crucial factor orchestrating continuously the development of
host’s immune responses whilst maintaining its microbiota composition [54,112,113]. The
probiotic gut commensal Limosilactobacillus reuteri recalls enhanced responses with mixed
secondary responses in human monocyte-derived DCs upon subsequent exposure, accom-
panied with enriched histone modifications and portrayed particularly by an increased
IL-1β and IL-6 phenotype, but diminished TNF-α, IL-23 and IL-27 [114]. However, blood
DCs primed by L. reuteri exclusively resembled a tolerant phenotype upon a second chal-
lenge. Furthermore, our group demonstrated that gut microbiota cell-derived nano-sized
biovesicles, known as extracellular vesicles (EVs), drive the induction of innate memory in
murine bone-marrow neutrophils in a TLR2-dependent manner in vitro [115]. Similarly,
the role of extracellular vesicles from HIV-infected humans maintaining persistent chronic
inflammatory responses (phenomenon of trained immunity) of myeloid cells, associated
with increased morbidities against secondary infections, has been described by Dubrovsky
et al. [116]. Although there are still many issues to be clarified, these studies nonetheless
shed some encouraging light to the role of microbiota or bilipid-enclosed envelopes, such
as EVs, encouraging trained effects in innate immune cells.

In addition to the aforementioned PAMPs, DAMPs, such as oxLDL, heme, urate,
vimentin and high-mobility group box 1 (HMGB1), recognized mainly by TLR4, can be
targeted for trained immunity modulation [24,117,118]. Pre-exposure to specific DAMPs
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as non-microbial triggers can induce the functional reprogramming of innate immune
cells triggering an altered immune response toward a subsequent challenge [117]. DAMPs
released during tissue injury from cell death or after organ transplantation allow innate
immune cells to elicit long-term epigenetic changes at the promoters of inflammatory
genes and cause metabolic rewiring [24,119]. Vimentin and HMGB1 represent inflam-
matory mediators upregulated during organ transplantation, responsible for acute and
chronic transplant rejection [120,121]. A study by Braza et al., demonstrated that vimentin
and HMGB1 drive the trained immunity-associated cytokine production of infiltrating
macrophages during allograft rejection [23]. Moreover, a large number of infiltrating in-
nate immune cells, especially macrophages and neutrophils during transplant rejection,
present a significantly higher phagocytic activity if exposed to HMGB1 [122–124]. Another
well-described consequence of oxidative stress, oxLDL, is associated with an increased
probability of graft rejection [125–128]. Patients with chronic kidney disease (CKD) dis-
play higher serum levels of oxLDL, characterized by an hyperinflammatory phenotype
of monocytes accompanied by an increased production of pro-inflammatory cytokines
(i.e., TNF-α, IL-1β and IL-6) [128–131]. Priming by oxLDL, upon secondary exposure to
TLR2 and TLR4 agonists, resulted in a training phenotype of macrophages characterized
by increased production of inflammatory cytokines, monocyte chemoattractant protein 1
(MCP-1) and matrix metalloproteinase 2 (MMP2) and 9 (MMP9) [117,132]. Likewise, human
non-immune cells from the vascular wall primed by oxLDL exhibit pro-inflammatory fea-
tures regulated presumably by trained immunity effects [133]. Although it is well-known
that oxLDL induces trained immunity in myeloid cells by shifting the metabolism toward
glycolysis, there are still no data about the role of training in CKD or dialysis patients [24].

Hyperuricemia represents one of the main factors linked to gouty arthritis, caused by
elevated levels of uric acid (urate) [134–136]. Existing evidence demonstrated that urate
induces transcriptional and epigenetic modifications in circulating monocytes resulting
in enhanced responsiveness marked by increased levels of IL-1β, indicating a crucial role
of trained immunity [136–138]. Moreover, heme is another DAMP involved in multiple
biological processes that regulate trained responses of innate immune cells by increasing the
frequency of myeloid-biased multipotent progenitors, associated with increased monocyte
and neutrophil infiltration in the murine peritoneum [139,140].

Mechanistically trained immunity is reported to be supported by different alterations
occurring on the PRRs, driving the activation of the mechanistic target of rapamycin
(mTOR) through phosphoinositide 3-kinases (PI3Ks) triggering downstream signaling
events promoting the activation of nuclear factor-κB (NF-κB), resulting in the production of
several inflammatory mediators [21,59,117,141]. Cheng et al., identified a canonical hypoxia
sensing system required for the induction of memory-like responses in monocytes, where
dectin-1-dependent activation of mTOR by β-glucan provokes increased expression of
hypoxia-inducible factor 1α (HIF-1α) [142]. Ongoing studies showed that the downstream
activation of intermediate proteins, such as protein kinase B (Akt), by PI3Ks, encouraged
by TLR4 activation serves as crucial factor for the induction of innate memory in murine
microglial cells [46,143]. Similarly, a recent work elaborated the role of trained immunity
driving the pathological inflammation in a murine model of Duchenne muscular dystrophy
(DMD), a genetic disease affecting more commonly males than females, revealing TLR4-
dependent activation of bone-marrow-derived macrophages as the central cause for the
DMD pathogenesis [144]. Furthermore, the activation of PRRs, notably dectin-1 by β-glucan
or TLR4 by LPS, triggered the activation of mitogen-activated protein kinase (MAPK)-
mediated pro-inflammatory pathway, exclusively extracellular signal-regulated kinase
(ERK) 1/2, p38 and Jun N-terminal protein kinase (JNK) supporting the production of pro-
inflammatory mediators [56,59,143]. Comparable mechanistic events have been shown also
by neutrophils and macrophages primed by lipoteichoic acid (LTA) from the Gram-positive
Staphylococcus aureus as a TLR2-activator [145–148].

Epigenetic reprogramming at the promoters of inflammatory genes with resulting
changes in cell metabolism have been identified to orchestrate memory-like features in
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innate immune cells [21,24,28,149]. Epigenetic signatures triggering trained immunity are
driven by histone modifications, such as histone methylation and acetylation, resulting in
chromatin reconfiguration, rendering a more accessible form of chromatin facilitating the
transcription of pro-inflammatory genes [28,117,150]. Current data determined the specific
epigenetic hallmarks of trained immunity, including monomethylation or trimethylation of
histone 3 lysine 4 (H3K4me1 or H3K4me3) at the promoters of stimulated genes, and the
acetylation of histone 3 lysine 27 (H3K27ac) at distal enhancers [21,59,117,151]. MicroRNAs
(miRNAs) as small non-coding regulatory RNAs are known epigenetic modulators that
can alter the levels of target mRNAs, regulating also the induction of innate memory
in innate immune cells [21,152]. Several studies identified miR-155, miR-146a-5p and
miR-9-5p to be critical regulators of trained immunity supporting the hyperactivation of
myeloid cells [153–156]. These may likely be a conjoint result of the decreased activity
of phosphatases (i.e., SHIP1) by miRNAs [157]. A specific set of long non-coding RNAs
(lncRNAs), known as immune gene-priming lncRNAs (IPLs), alters histone modifications,
especially H3K4me3 on promoters of pro-inflammatory cytokines supporting trained
immunity in macrophages [158]. Moreover, a study suggested that changes occurring in the
DNA methylation pattern may discriminate between ‘responders’ and ‘non-responders’,
identifying several genes that can be used as predictors of training effects [21,159].

The interplay of numerous intracellular metabolic pathways, such as glycolysis, oxida-
tive phosphorylation (OXPHOS), accumulation of metabolites from the tricarboxylic acid
cycle (TCA) and cholesterol biosynthesis, serve as fundamental immune-metabolic circuits
endorsing the effects of trained immunity [160–162]. The activation of the dectin-1- mTOR-
HIF-1α pathway resulted in a shift of metabolism toward aerobic glycolysis with increased
glucose consumption, higher levels of L-lactate and elevated levels of its reduced form of
nicotinamide adenine dinucleotide (NADH) [142]. The overall notion of glycolysis-induced
trained immunity has been challenged by several reports, showing that oxLDL-, LPS-, β-
glucan or BCG-trained macrophages adopt OXPHOS as an immunometabolic mechanism
to express increased hyperresponsiveness [163–166]. The accumulation of intermediary
metabolites of the TCA cycle, such as fumarate, as a result of glutamine replenishment
(glutaminolysis), altogether with cholesterol synthesis contributes to the induction of innate
immune memory in myeloid cells, downregulating the activity of KDM5 histone demethy-
lases [167,168]. Moreover, mevalonate as an upstream metabolite of cholesterol synthesis
triggers the training of monocytes by an insulin-like growth factor 1 receptor (IGF1-R) and
mTOR-dependent signaling pathway, a mechanism that may further explain the hyperacti-
vated phenotype of hyper-immunoglobulin D syndrome (HIDS) pathology [21,169]. Since
training effects have been portrayed by enhanced levels of ROS, Ferreira et al., investigated
the role of its intracellular molecule scavenger- glutathione, showing a close association of
glutathione with the increased production of pro-inflammatory mediators upon trained
immunity in human monocytes [170]. Other attempts to understand the role of the pentose
phosphate pathway (PPP) in trained immunity responses by the pharmacological blockage
of this metabolic event demonstrated this pathway as a dispensable occasion [161,167,171].
Even though, to date, there have been several papers indicating the crucial role of several
metabolic pathways supporting the induction of training effects in innate immune cells,
individual metabolic variations (i.e., glycolytic variability in diabetes patients) of the or-
ganisms should be taken into consideration since they significantly alter this resistance
reaction [172].

Neutrophils, monocytes, macrophages, dendritic cells as well as microglial cells
as a part of innate immune system are well known to be active phagocytes, produc-
ing a variety of antimicrobial substances (i.e., degrading enzymes, antimicrobial pep-
tides and ROS) eliminating invaders [173–175]. To date, it has been shown that trained
cells display greater antimicrobial efficacy characterized with increased phagocytic activ-
ity [50,62,176–178]. However, opposing findings were reported for the murine resident
macrophages of the central nervous system, microglia, where the enhanced phagocytic
capacity was featured exclusively by tolerant microglial cells resulting in decreased accu-
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mulation of β-amyloid plaques [46,179,180]. Anti-tumoral effects resulting from trained
immunity-induced myelopoiesis caused by epigenetic and transcriptomic rewiring was
reported in β-glucan-treated mice manifesting reduced tumor burden in a ROS-dependent
manner [61,63]. The increased production of MCP-1 by trained cells triggers altered
immune-regulatory properties, specifically elevated cell recruitment and the migration of
myeloid cells, maintaining proper immune responses in health and diseases [92,176,181].

Contradictory data have arisen about the intergenerational inheritance of trained
immunity providing heterologous resistance against infections in offspring [182,183]. Katz-
marski et al., showed that sublethal infections o C. albicans or zymosan drive immune-
resistance reactions to the progeny against heterologous infections caused by LPS or E. coli
and L. monocytogenes infections [182]. Opposing findings were reported by Kaufmann et al.,
where the pre-exposure of parental mice to BCG, β-glucan or C. albicans did not exhibit any
protective responses against viral, bacterial or fungal infections in the offspring [183]. A
plausible explanation for this discrepancy of data likely involves several housing or dietary
factors, the composition of the microbiome, environmental conditions as well as previous
expositions to any infectious stressors [184].

To date, an increasing number of studies has investigated the role of different PRRs,
epigenetic marks as well as metabolic changes involved in the induction of training effects,
yet many aspects remain obscure. An illustrative demonstration of all the above-mentioned
stressor-dependent inducers of trained immunity and their characteristics is presented in
Figure 2.

2.2. Dose-Dependent Induction of Trained Innate Memory and Immune Tolerance

“The dose makes the poison” (lat. dosis sola facit venenum) was one of quotes credited
to Paracelsus underlining the importance of dose exhibiting beneficial or toxic events in
organisms. Ongoing studies showed that cells strive to demonstrate hormetic or biphasic
dose responses if exposed to a stimuli (intrinsic or extrinsic), where low doses promote
stimulatory effects and high doses trigger inhibitory responses [185–187]. A similar concept
has been proposed for the adaptive responses introduced by innate immune cells upon a
secondary insult, where low-dose priming can trigger resistance (training) responses and
high-dose priming results in tolerance reactions [53,54,188].

Actually, the role of low-dose priming enhancing the capacity of myeloid cells to
subsequent challenges by bacterial infectious constituents was reported in the late 1980s,
where the priming of monocytes and macrophages by endogenous IFN-γ upon a secondary
stimulus by LPS triggered heightened immune responses [189–191], a process regulated par-
ticularly by the transcription factor NF-κB [192]. A suitable explanation for this hypothesis
may serve the mechanistic interplay of mTOR and AMP-activated protein kinase (AMPK)
as central regulators of cell metabolism [193–195]. AMPK is known to inhibit mTOR ac-
tivity, orchestrating a cellular adaptive response promoting catabolic pathways and thus
modulating the resistance mechanism toward an immune-suppressed phenotype [196,197].
In contrast, mTOR is well-known to support resistance mechanisms in innate immune cells
and promote the memory-like cues of innate immune cells [142,198]. Interestingly, the acti-
vation of these signaling pathways depends also on the dose of stressors, where super-low
doses promote resistance by a mTOR-dependent mechanism, and tolerant responses are
promoted by high-stressor loads mediated by AMPK [53,196,199,200].



Biomedicines 2023, 11, 766 9 of 32
Biomedicines 2023, 11, x FOR PEER REVIEW 9 of 38 
 

 
Figure 2. Stressor-dependent induction of trained immunity. Innate immune cells as well as non-immune cells primed by specific exogenous (i.e., PAMPs) and 
endogenous (i.e., DAMPs) signals evoke long-term non-specific functional modifications mediated by epigenetic and metabolic rewiring toward a secondary 
insult. Trained cells express a multi-level entity of features characterized by the increased production of inflammatory mediators and altered epigenetic and 
metabolic marks, and reflected functionally by changes occurring in several cellular activities. 

Figure 2. Stressor-dependent induction of trained immunity. Innate immune cells as well as non-immune cells primed by specific exogenous (i.e., PAMPs) and
endogenous (i.e., DAMPs) signals evoke long-term non-specific functional modifications mediated by epigenetic and metabolic rewiring toward a secondary insult.
Trained cells express a multi-level entity of features characterized by the increased production of inflammatory mediators and altered epigenetic and metabolic
marks, and reflected functionally by changes occurring in several cellular activities.



Biomedicines 2023, 11, 766 10 of 32

A growing body of evidence demonstrated comparable dose-dependent features being
responsible for the induction of training and tolerance responses in myeloid cells. The
application of low doses of LPS prior to any septic insults resulted in the increased mortality
of mice characterized with heightened levels of inflammatory mediators, distinct from high-
dose LPS pre-conditioning, which triggered an immune-suppressed phenotype portrayed
by diminished levels of TNF-α and reduced sepsis mortality [201]. Furthermore, other
in vitro studies revealed similar adaptive dose-dependent responses for LPS in murine
monocytes and macrophages, where an increased expression of pro-inflammatory media-
tors by a low-dose LPS is preferentially dependent on the removal of negative modulators
such as B-lymphocyte-induced maturation protein-1 (Blimp-1), different from tolerized
cells induced by high doses of LPS supporting an anti-inflammatory phenotype [202–205].
Likewise, murine bone-marrow neutrophils primed with low doses of Gram-negative (i.e.,
LPS) or Gram-positive (i.e., LTA) constituents or gut microbiota-derived bacterial EVs upon
a secondary stimulus by endotoxin exhibit an increased production of pro-inflammatory
cytokines by a TLR4- and TLR-2-dependent manner activation of NF-κB by intermedi-
ate signaling of PI3Ks/MAPKs [115,145,206]. In contrast, high-dose priming promoted
immune-suppressed anti-inflammatory characteristics with a decreased production of
pro-inflammatory cytokines and increased IL-10 [115,145,206]. Mechanistically, the cru-
cial role of NF-κB mediating adaptive manners has been reported for various myeloid
cells [143,169,202,204,206]. In humans, a study showed that the increased immune response
by monocytic cells relies on the production of IL-6 and IL-12 [207].

Accumulating reports showed that murine microglial cells can express both types
of immunological imprinting, training and tolerance, which may impact the pathological
hallmarks of neurological diseases [46,143,180,208]. The application of low/single doses of
LPS resulted in higher inflammatory responses (trained microglia), exacerbating cerebral
β-amyloidosis in a murine model of Alzheimer’s disease [46,143,180]. On the contrary,
high/repeated doses of LPS exhibited a tolerant phenotype of microglia supporting neu-
roprotective effects [46,143,208]. The capability of microglia to retain long-term memory
features relies mainly on epigenetic modifications, enrichment (training) or loss (tolerance)
of epigenetic marks at enhancer regions [46,143,209,210].

Contradictory findings arise about the role of endotoxin tolerance on the antimicrobial
efficacy. While Grondman and colleagues demonstrated that human immunotolerant mono-
cytes display decreased antimicrobial activities ex vivo, other studies revealed contrasting
effects, where tolerant myeloid cells are capable to express an elevated antimicrobial capac-
ity characterized by increased phagocytosis [211–214]. Similar divergent findings have been
reported in high-dose primed cells, where murine tolerant microglia expressed increased
phagocytic activity in vivo and in vitro, whereas bone-marrow-tolerant neutrophils exhib-
ited diminished phagocytosis in vitro [143,179,206]. This issue needs further investigation
in order to clarify under which circumstances immunotolerant cells express increased or
decreased killing activities.

As mentioned previously, trained cells express anti-tumoral features, different from
immunosuppressive tolerant cells that mimic the M2 phenotype expressing pro-tumoral
activities while promoting angiogenesis and tissue repair [215–218].

A respective illustration of the dose-dependent induction of trained immunity and
tolerance response is shown in Figure 3. Since the topic of pathogen dose supporting
the induction of opposing adaptive responses is growing, we hypothesize that similar
findings will be reported for other PAMPs and DAMPs in several innate immune and
non-immune cells.

2.3. Ageing, Hormones and Dietary Restrictions as Decisive Modifiers of Innate Memory

The biological mechanism of aging exposes the organism to a high susceptibility to
infectious diseases due to an immune-compromised system that is incapable of mounting
proper immune reactions [219–222]. Recent findings have revealed that aging relies on
immune responses driven by the innate immune cells characterized by a chronic state of
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activation, inflammaging, which hampers T-cell recall responses to infections resulting
in diminished responses of the acquired immune system [223,224]. To date, the role of
innate immune memory by the innate immune compartment during ageing has only been
slightly elaborated.

The investigation of human monocytes trained by β-glucan showed that trained cells
from aged healthy volunteers exhibit an increased production of the pro-inflammatory TNF-
α compared to young healthy individuals [225]. IL-6 was not significantly altered between
the groups, while the heightened levels of cell surface markers and TNF-α were associated
with an increased acetylation of H3K27 as well as enhanced metabolic capacity [225]. Addi-
tionally, as mentioned above, murine microglia as resident innate immune cells in the CNS
also mount memory-like responses depending on the pathogen dose [46,143,208]. Different
from the human monocytes trained by β-glucan, the trained phenotype of aged microglia
induced by low doses of LPS lost the ability to express training effects in vitro [180]. This
study demonstrated the pronounced plasticity of newborn microglia to introduce training
effects by LPS upon a secondary stimulus. These data may be of relevance to explain the
increased neuro-inflammatory susceptibility of the immature brain [180]. Moreover, it is
well known that microglia during aging express a so-called “sensitized/primed” state
mirrored by a heightened inflammatory profile [221]. High-dose LPS-induced immune
tolerance was further significantly pronounced in aged microglial cells in vitro, which can
be the result of cells attenuating excessive damage after any recurrent systemic inflam-
mation [180]. This conclusion is also supported by other studies where tolerant microglia
promotes neuroprotective reactions in the murine brain [46,208]. However, since the topic
of innate memory is quite recent, there are still many aspects of aging that remain unclear
and need further investigation.

Aldosterone as a mineralocorticoid hormone is essential for blood pressure and elec-
trolyte homeostasis [226,227]. High levels of aldosterone are associated to plaque formation
by monocyte-derived macrophages during atherosclerosis [228,229]. The role of aldos-
terone promoting training effects has been elaborated lately and the data showed that brief
exposure to high amounts of aldosterone in human monocytes upon a secondary challenge
by TLR2 and TLR4 ligands in vitro, resulted in enduring memory features with increased
levels of pro-inflammatory mediators (TNF-α, IL-6 and ROS) regulated by H3K4me3 modi-
fications occurring at promoters of genes important for the fatty acid synthesis pathway [26].
Therefore, the identification of such relation between supranormal levels of aldosterone
and atherosclerosis may be of profound interest to understand the molecular mechanism
and for the development of new therapeutic strategies to control the risk of cardiovascular
diseases [26,227]. Similarly, sex hormones, such as estradiol (E2), regulates β-glucan-
induced trained immunity responses in females, as shown in a septic mouse model via
the non-canonical NF-κB pathway inhibiting the nuclear translocation of RelB [25]. These
findings serve as a good basis to perceive the common understanding of males being
more vulnerable to septic reactions than females and further offer a possible explanation
about the sexual dimorphism existing in a variety of immune processes, such as individual
responses to vaccines and pathogens, a process linked particularly to epigenetic changes
occurring in the immune system [25,230,231]. On the contrary, an in vitro study by D’Avila
et al., demonstrated that BCG training with increased production of pro-inflammatory
cytokines can be suppressed by sex hormones [231,232]. However, the role of sex hormones
altering the inflammatory state of innate immune cells remains controversial and needs
further investigation.

Dietary mode serves as another important element that can govern the induction of
trained immunity in innate immune cells [233]. Caloric restriction is known to improve
health outcomes and longevity, hindering systemic inflammation driven by excessive
energy intake and adiposity [233–236]. To date, reports have shown that the Western diet or
the ketogenic diet, exclusively enriched in saturated fatty acids (SFAs), confers heightened
responsiveness in myeloid cells upon a secondary challenge by endotoxins [237,238]. A
NLRP3-dependent long-term functional reprogramming of precursor cells was reported
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as the main mechanistic event promoting trained immunity by dietary constituents [237].
Similarly, dietary components, such as bovine milk and milk-derived immunoglobulin G
(IgG), drive the training effects on human monocytes in vitro upon a secondary insult by
TLR ligands [239]. Altogether, these studies highlight the plasticity of innate immune cells
to be reprogrammed by dietary supplementation types, resulting in the effective clearance
of an infection or further potentially contributing to the severity of inflammatory diseases.
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Figure 3. Dose-dependent induction of opposing adaptive inflammatory cues in innate immune sys-
tem and non-immune cells. Innate immune cells primed by low/single dose PAMPs/DAMPs trigger
a trained phenotype after subsequent encounter to a heterologous challenge, whereas high/repeated
doses of PAMPs/DAMPs result in an immunotolerant phenotype. Both memory-like manners are
mediated by epigenetic modifications with resulting effects on metabolism, altering various func-
tional properties of the cells. This figure serves only for illustrative explanation of the hypothesis,
since there are still missing data for such dose–response behaviors for certain types of cells.

3. Endotoxin Tolerance

In contrast to the above-mentioned Schwartzman reaction, Beeson observed a progres-
sive diminution of immune responses, Immune tolerance, in rabbits treated continuously
by bacterial filtrates [53,240]. The phenomenon of ET was described as a key mechanistic
development in myeloid cells regulating uncontrolled extensive inflammatory events, pre-
venting harmful pathologies (i.e., sepsis) [30]. During ET, the cells enter into a temporary
unresponsive state characterized by a decreased release of pro-inflammatory elements,
such as TNF-α, IL-1 family of pro-inflammatory cytokines and IL-6 due to an impaired
NF-κB translocation, as well as increased levels of the anti-inflammatory mediators, such
as IL-10, TGF-β and arginase-1 (Arg-1) [29,30]. Inducible nitric oxide synthase (iNOS), as
one of the main bacterial killing pathways, is also attenuated during ET [241]. A close
competitive interplay of Arg-1 and iNOS regulating ET was reported since both enzymes
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share the common substrate L-arginine [242–244]. To date, numerous studies proclaim that,
in addition to myeloid cells (i.e., monocytes, macrophages, dendritic cells, microglia and
neutrophils), the development of ET also occurs in lymphoid cells, such as T cells, and
non-immune cells (i.e., endothelial cells) [245–252].

The phenomenon of ET is a non-specific event, which is not limited to a specific
receptor or element as the main reason for the cell anergy, since many cytokines, pathogens,
fever or endogenous glucocorticoids can mimic the effects of endotoxin and LPS [253].

The activation of TLR4 by LPS recruits two distinct signaling routes, the MyD88-
dependent and -independent (TRIF) pathways [254]. Both signaling events trigger the
activation of NF-κB in a TRAF6 or TBK1-dependent manner, respectively [254]. How-
ever, during ET, most LPS-induced signaling events are impaired, but not entirely shut
down since several anti-inflammatory mediators (i.e., IL-10) are upregulated—a process
driven particularly by the delayed signaling of the MyD88-independent pathway [254,255].
TREM-1, as an orphan immunoreceptor, drives the inhibition of MMPs, also resulting in
a diminished cytokine production thus contributing to the control of ET [47,256,257]. To
date, researchers identified many negative regulators (SHIP, IRAK-M, SOCS1 and A20) that
are implicated in the development of ET and innate immune homeostasis [254,258–260].
Furthermore, ongoing studies have demonstrated that the elevated release of IL-10 counter-
acts pro-inflammatory responses by sustaining the phosphorylation of Stat3 proteins [261].
AMPK serves as another well-known sensor and mediator of energy expenditure exerting
the regulatory features of ET by suppressing LPS-induced TNF-α release and supporting
anti-inflammatory reactions [196,197,262].

The transcriptomic and epigenetic analysis of myeloid cells undergoing ET have shown
that this mechanistic process is accompanied by epigenetic modifications occurring on
histones and regulated mainly by miRNAs. Histone modifications, especially deacetylation
or methylation, cause gene silencing and are associated directly with the development of
ET [30,263]. Tolerant human leukocytes display defective p65 activation on the promoter
of IL-1β driven by the repressor transcription factor RelB via histone H3K9 dimethylation
(H3K9me2) [35]. Comparable findings have been reported for human leukocytes, where
the transcription silencing of acute pro-inflammatory genes (repression phase) during
the severe systemic inflammation (SSI) is linked to chromatin remodeling, specifically to
H3K9 histone methylation and RelB binding [264]. Likewise, both types of positive histone
modifications, such as H3K4me3 and H4 acetylation, are selectively lost on the promoters
of some pro-inflammatory genes, such as IL-6, during ET [34]. Further investigations have
shown that gene-specific silencing by RelB is linked to the recruitment of histone H3 lysine
9 methyltransferase G9a and HP1 [35,36].

MiRNAs, as small non-coding RNAs (~22 nucleotides), were also described to be
involved in the post-transcriptional regulation of inflammatory reactions during ET. Nu-
merous studies described several miRNAs as being involved in the development of ET,
such as miR-98, miR-125b, miR-132, miR-146a, miR-155, miR-221, miR-222, miR-579 and
let-7 family [47,265,266]. For instance, miR-146, miR-155 and let-7 family target TLR4,
attenuating signaling through the regulation of TRAF6 or IKKε, triggering downregulation
inflammatory responses [267–272]. Diminished levels of TNF-α, as a result of subsequent
challenge by LPS, were reported by the activation of miR-125b, targeting the 3′-untranslated
regions of TNF-α transcripts [269]. MiR-132 has been shown to weaken inflammation in
the brain, whereas miR-212 serves as a well-known tumor suppressor [273,274]. Both are
known to be induced by TLR2 activation and being involved in cross tolerance responses
through IRAK-4 modulation [275]. Lately, Seeley and colleagues identified miR-221 and
miR-222 as critical regulators of macrophage reprogramming during LPS-tolerization, par-
ticularly associated with immunoparalysis and organ damage [276]. Moreover, miR-579 is
also reported to reduce inflammatory reactions by inhibiting the translation of TNF-α in
macrophages [249,277]. On the contrary, miR-98 targets the 3′-untranslated regions of IL-10
transcripts as a key cytokine for the development of ET; thus, the decreased activation of
miR-98 in macrophages is accompanied with reduced levels of IL-10 [249,278]. However,
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the role of other miRNAs in the induction of endotoxin tolerance remains elusive and needs
to be clarified. Furthermore, it would be of profound interest to determine whether the
dysregulation of miRNAs may significantly affect the development and progression of
inflammatory diseases [265].

Earlier studies disclosed weakened metabolic changes, especially affecting glucose
metabolism during ET [279]. Changes in bioenergetics occurring during ET have been
reported to be linked to several intermediate signaling proteins, such as Akt-1 or sirtuin-1
(SIRT1) [280,281]. A proper induction of ET by LPS requires the involvement of diverse
intermediate proteins, such as Akt1 or SIRT1, anticipating the diminished levels of pro-
inflammatory cytokines (i.e., TNF-α, IL-6 and IL-12p40) in mammals [282,283]. An in-
creasing number of studies have suggested a close interplay between metabolism and
inflammatory responses [284–286]. Impaired glycolysis is likely to be associated with
declined inflammatory responses [287]. Supporting evidence has shown that decreased
levels of lactate as an end product of glycolysis triggers reduced pro-inflammatory features
and supports an anti-inflammatory phenotype in immune cells, especially on myeloid
cells [288–291]. To date, reports postulated that LPS-tolerant innate immune cells are asso-
ciated with reduced glycolysis as well as dysregulated cellular respiration, a process that
alters the production of adenosine triphosphate (ATP) [166,211,292,293]. Recent work from
Chen et al. demonstrated that the prominent gene immune-responsive gene 1 (IRG1) of
activated myeloid lineage cells is responsible for encoding mitochondrial enzymes that
drive the synthesis of itaconate, supporting anti-inflammatory responses mainly by modi-
fying crucial glycolytic enzymes (impaired glycolysis) in LPS-stimulated cells [294,295]. At
a mechanistic level, the attenuated inflammation by endogenous itaconate is attributed to
the inhibitory effects on TET-family DNA dioxygenases, especially TET2 as a major target,
thus suppressing the activation of NF-κB and STAT signaling routes [294,296]. Comparable
findings for itaconate expressing anti-inflammatory properties were also highlighted in
an earlier investigation by Lampropoulou et al., where they demonstrated that itaconate
modulates the cell metabolism by suppressing the oxidation of succinate as a key regulator
of the IL-1β–HIF-1α axis by succinate dehydrogenase [297].

Another metabolite that facilitates ET serves α-ketoglutarate (αKG). αKG is an end
product of glutamine metabolism (glutaminolysis) that exerts anti-inflammatory proper-
ties of myeloid cells by modulating the NF-κB and Jmjd3 signaling pathways [298,299].
In addition to αKG, the engagement of fatty acid oxidation (FAO) has been shown as
a crucial metabolic event contributing to the development of ET by AMPK-dependent
activation [166,298,300–303]. Altogether, based on these characteristic features, we may
conclude that ET, specifically cross-tolerance as a non-specific feature mainly attributed to
innate immune cells, can serve as an antagonistic reaction to trained immunity.

4. Role of Trained Immunity and Endotoxin Tolerance in Inflammatory Diseases

Training as well as tolerance represent memory-like (adaptive) manners of the innate
immune cells. Both opposing adaptive reactions of the innate immune system are of
fundamental interest since they may represent a double-edged sword counteracting each
other driving, this protecting or supporting the pathogenesis of a variety of inflammatory
diseases. To date, the number of studies suggesting the involvement of training or tolerance
in inflammatory diseases is continuously rising (Figure 4). In this review, we briefly discuss
the role of these adaptive cues in several inflammation-related disorders.

To date, trained immunity has been described as a non-specific defense mechanism
where innate immune cells primed by different microbial or endogenous molecular lig-
ands confer protection against a broad spectrum of lethal pathologic infections [21,24,72].
On the contrary, the maladaptive activation of trained immunity triggers deleterious ef-
fects due to uncontrolled hyperactivation contributing to the severity of inflammatory
pathologies [28,304]. Atherosclerosis, as an inflammatory disease, represents one of the
main causes of coronary heart diseases, which is mainly driven by innate immune cells,
especially monocytes and macrophages [305–307]. Recently, it was shown that trained



Biomedicines 2023, 11, 766 15 of 32

monocytes and macrophages by oxLDL, aldosterone or hyperglycemia can contribute to
the pathophysiology of atherosclerosis [26,163,308–310]. A similar correlation between
BCG vaccination and increased aortic atherosclerosis in rabbits has been reported in the
late 20th century [311].
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Periodontitis, as a local inflammatory disease of oral mucosa, is associated with in-
creased risk of certain systemic inflammatory diseases [312,313]. A recent work by Li
et al., demonstrated that periodontitis-induced trained immunity in bone marrow exhib-
ited increased severity when subjected to inflammatory comorbidities, such as rheumatic
arthritis [304]. Furthermore, it is well-known that the pathogenesis of rheumatic arthritis
as a chronic inflammatory disease affecting predominantly the joints is driven by several
innate immune cells (i.e., monocytes, macrophages and dendritic cells) [314–317]. A close
interplay between trained innate immune cells and the progression of rheumatic arthri-
tis has been postulated, where the augmented inflammatory response by myeloid cells
is controlled by epigenetic and metabolic changes mediated by the mTOR/STAT3 path-
way [318–321]. Likewise, BCG-trained murine macrophages, characterized by an elevated
cytokine production, can modulate fibroblast transformation involving T/B cells affecting
the severity of systemic sclerosis (SSc) and inflammatory fibrotic disorders [322].

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease, where monocytes,
macrophages and neutrophils play a prominent role in the disease progression [323–326].
An increasing number of studies has shown that, in SLE patients, myeloid cells mani-
fest a dominant pro-inflammatory phenotype [327–330]. Neutrophil extracellular trap
(NET) formation has been shown to participate in the pathogenesis of SLE [331]. Inter-
estingly, C. albicans-injected mice demonstrated an increased production of NETs linked
to exacerbated disease progression, a memory response attributed presumably to trained
neutrophils [332,333].

A growing body of evidence has shown that β-glucan-trained myeloid cells, espe-
cially monocytes, macrophages and neutrophils, promote anti-tumoral activities controlling
tumor progression, a process associated with transcriptomic, epigenetic and metabolic
reprograming [61]. The appropriate rewiring of myelopoiesis by β-glucan or nanobiologic
compounds, such as MTP10-HDL, results in the increased ability of innate immune cells to



Biomedicines 2023, 11, 766 16 of 32

penetrate the tumoral environment, exhibiting suppressive effects on tumor growth [63,66].
The combination of trained immunity activities with the current immune therapy by check-
point inhibitors represents a more efficient way of cancer immune therapy. However, it is
well-known that prolonged inflammation fuels the progression of neoplastic transformation,
supporting tumor growth into highly aggressive entities [334–336].

Nonetheless, a close association of training effects by innate immune cells support-
ing the pathogenesis of other inflammatory/metabolic diseases, such as diabetes melli-
tus type 2, obesity and chronic obstructive pulmonary diseases (COPD), has been sug-
gested [308,337–343].

The process of neuroinflammation is linked to the development of neurodegenerative
diseases, such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral scle-
rosis [344–346]. An exaggerated immune response, training, by microglia contributes to
the pathological hallmarks of neurodegenerative disease in mouse models [46,208,347,348].
On the contrary, the development of immune tolerance in microglial cell by continu-
ous challenge by LPS could be a mitigating factor for neuroprotective effects in the
brain [46,208,349].

The tolerant phenotype of innate immune cells, especially monocytes and macrophages,
is primarily linked to the progression of cancer and sepsis, and has been observed in other
diseases, such as hepatic ischemia, cystic fibrosis, pancreatitis and acute coronary syn-
drome [30,47]. Cytokines and chemokines released by tumor-associated macrophages
(TAMs) and tumor-associated neutrophils (TANs) express pro-tumoral properties by pro-
moting the angiogenesis, invasion and metastasis, while suppressing the immune sys-
tem [350–352]. In vitro, tumor cells trigger the deactivation of monocytes by IRAK-M-
dependent upregulation marked by declined levels of pro-inflammatory cytokines, a
characteristic of tolerance development against neoplasms that can justify the increased
risk of infections in leukemia patients [353–357]. Moreover, considering it from the pheno-
typic aspect, it is important to mention that TAMs exhibit comparable features to tolerant
macrophages in vivo [358–360].

Sepsis is a life-threating organ dysfunction caused by a dysregulated host response to
infections [361]. It represents a highly inflammatory disorder mediated by the uncontrolled
activation of the immune system [362–364]. The early phase of sepsis is characterized by a
hyper-inflammatory state where the induction of ET is likely to contribute to protective
effects supporting decreased inflammation and repairing mechanisms [365,366]. The devel-
opment of ET during the late phases of sepsis is associated with increased mortality due to
suppressed immune functions and organ failure [47,366–368]. These findings indicate a far
more complex role of ET during sepsis.

Hepatic ischemic-reperfusion (I/R) injury is a pathophysiological process of liver
surgery accompanied by oxidative stress triggering cell damage and inflammation [369–371].
The local inflammatory reaction is driven by the innate immune cells [372]. In a rat model,
it was shown that endotoxin preconditioning results in diminished hepatic I/R injury prob-
ably via the IRAK-4-dependent downregulation of intra-organ TNF-α expression [373,374].
Similar findings were reported earlier by other groups for I/R injury of the heart and
hemorrhagic shock [375,376].

Other disease development which is linked to inflammatory responses of myeloid
cells includes the cardiovascular disorder of acute coronary syndrome (ACS) [47,377]. This
represents a good example of the hetero-tolerance where several internal factors, DAMPs
(i.e., HMGB1, hyaluronic acid or heat-shock proteins), during ACS prime circulating
monocytes toward a tolerant phenotype, failing to respond to subsequent challenges by
external pathogenic agonists, such as LPS ex vivo [47,377]. As a result, ACS patients can be
more vulnerable to secondary infections due to this phenomenon.

Finally, one of the most critical avenues is the investigation of the impact of trained
immunity and endotoxin tolerance on different diseases, particularly how these adaptive
features contribute to the pathogenesis of various diseases and how these reactions can
be approached as preventive or therapeutic targets. As mentioned above, great emphasis



Biomedicines 2023, 11, 766 17 of 32

has been placed on the development of trained immunity-based vaccines to increase the
immunogenicity of current anti-infectious vaccines to stimulate broader responses [104].
Other relevant areas where the modulation of trained immunity may be of crucial relevance
include: sepsis, cancer, allergy, neurodegenerative diseases and other immune-mediated
pathologies [21,378]. Similarly, endotoxin tolerance was initially considered as a relevant
mechanism to counteract hyper-inflammation-mediated diseases. As discussed previously,
the immuno-suppressive state of endotoxin tolerance is involved in numerous pathologies,
such as sepsis, hepatic and renal ischemia, cystic fibrosis, acute pulmonary syndrome and
cancer [30]. Initial attempts of the modulation of these adaptive manners included design-
ing proper small-molecule agonists/antagonist that may act in different PRRs; however,
since some receptors (i.e., TLR4) may trigger the development of both opposing reactions,
this attempt may not be of ideal use. Promising data are expected to appear in the coming
years involving epigenomic and transcriptomic modulations as crucial regulators of trained
immunity and tolerance.

Taken together, both opposing memory-like inflammatory reactions (training and
tolerance) may play a crucial role in the progression or suppression of various inflammatory
diseases. To date, the role of both adaptive cues of innate immune system in other diseases
remains elusive and needs to be clarified.

5. Conclusions

The identification of these antagonistic inflammatory cues, trained immunity and
endotoxin tolerance, has greatly challenged overall considerations accumulated through
the years regarding the “primitivity” of the innate immune cells. While trained immunity
aims at pathogen elimination, it may contribute also to the progression of inflammatory
diseases. On the contrary, tolerance may promote repairing/protective mechanisms against
some inflammatory pathologies, but on the other hand, its incidence correlates with an
increased risk to secondary infections. Both opposing reactions of the innate immune
system represent a highly complex, multi-level number of events notably regulated by
diverse alterations occurring on signaling pathways, chromatin modulations as well as
metabolic rewiring. However, we hope that future investigations in regard to the role of
training and tolerance in various diseases will pave the way for the development of novel
strategies for preventive and therapeutic purposes.
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