
Citation: Fan, Y.-J.; Tzeng, I.-S.;

Huang, Y.-S.; Hsu, Y.-Y.; Wei, B.-C.;

Hung, S.-T.; Cheng, Y.-L. Machine

Learning: Using Xception, a Deep

Convolutional Neural Network

Architecture, to Implement Pectus

Excavatum Diagnostic Tool from

Frontal-View Chest X-rays.

Biomedicines 2023, 11, 760.

https://doi.org/10.3390/

biomedicines11030760

Academic Editor: Jun Lu

Received: 11 November 2022

Revised: 17 February 2023

Accepted: 19 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Machine Learning: Using Xception, a Deep Convolutional
Neural Network Architecture, to Implement Pectus Excavatum
Diagnostic Tool from Frontal-View Chest X-rays
Yu-Jiun Fan 1 , I-Shiang Tzeng 2 , Yao-Sian Huang 3, Yuan-Yu Hsu 4, Bo-Chun Wei 1, Shuo-Ting Hung 5,*
and Yeung-Leung Cheng 1,6,*

1 Division of Thoracic Surgery, Department of Surgery, Taipei Tzu Chi Hospital,
Buddhist Tzu Chi Medical Foundation, New Taipei City 231016, Taiwan

2 Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
New Taipei City 231016, Taiwan

3 Department of Computer Science and Information Engineering, National Changhua University of Education,
Changhua City 50074, Taiwan

4 Department of Radiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation,
New Taipei City 231016, Taiwan

5 Department of R&D, Bamboo Technology Ltd., Taipei City 105037, Taiwan
6 School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
* Correspondence: hn28082251@gmail.com (S.-T.H.); ndmc0928@yahoo.com.tw (Y.-L.C.)

Abstract: Pectus excavatum (PE), a chest-wall deformity that can compromise cardiopulmonary
function, cannot be detected by a radiologist through frontal chest radiography without a lateral
view or chest computed tomography. This study aims to train a convolutional neural network
(CNN), a deep learning architecture with powerful image processing ability, for PE screening through
frontal chest radiography, which is the most common imaging test in current hospital practice.
Posteroanterior-view chest images of PE and normal patients were collected from our hospital to
build the database. Among them, 80% were used as the training set used to train the established CNN
algorithm, Xception, whereas the remaining 20% were a test set for model performance evaluation.
The performance of our diagnostic artificial intelligence model ranged between 0.976–1 under the
receiver operating characteristic curve. The test accuracy of the model reached 0.989, and the
sensitivity and specificity were 96.66 and 96.64, respectively. Our study is the first to prove that a
CNN can be trained as a diagnostic tool for PE using frontal chest X-rays, which is not possible by
the human eye. It offers a convenient way to screen potential candidates for the surgical repair of PE,
primarily using available image examinations.

Keywords: pectus excavatum; chest X-ray; artificial intelligence; convolutional neural networks;
image diagnosis

1. Introduction

Pectus excavatum (PE), also called funnel chest, is a congenital structural deformity
of the chest wall. Depression of the anterior chest wall to a certain degree is not merely
a cosmetic problem but can also cause exercise intolerance, owing to compromised car-
diopulmonary function. PE deformity, with an estimated prevalence of approximately 1
in 300~400 births [1], can cause exercise intolerance owing to cardiopulmonary compres-
sion [2]. On examination, the common cardiopulmonary finding is a restrictive pattern in
the pulmonary function test (PFT) and decreased right-ventricular function in echocardiog-
raphy [3].

Pectus excavatum can be corrected by a modified Nuss procedure, a minimally inva-
sive method, where stainless-steel bridge metal bars are placed retrosternally to strut the
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depressed chest wall [4] Although surgical repair has been proven to improve cardiopul-
monary function in patients with PE [5], there is much to be regretted considering some PE
patients miss the opportunity for surgical correction at the optimal age due to a delayed
diagnosis of the disease. Patients may feel embarrassed about their appearance and may
not be willing to talk about it. Some patients may not even be aware of its existence, and
therefore they cannot ascribe their exercise intolerance and cardiopulmonary symptoms to
PE, making the accessibility of PE diagnosis more important. Clinically, the image diagno-
sis of PE still relies on manual measurement of the thoracic diameter on chest computed
tomotraphy (CT). Physicians measure the maximum transverse diameter of the thoracic
cage divided by the shortest distance from the sternal to the anterior vertebral body to get
the Haller index, which can indicate the severity of pectus excavatum. The cut-off value of
Haller index 3.25 has been widely used for pectus excavatum diagnosis for decades based
on the preliminary report of Haller et al., which revealed that all patients who received
operative repair had a Haller index greater than 3.25 (Figure 1) [6]. However, chest CTs
are not economical and are not frequently requested imaging test compare to frontal view
chest X-rays during routine health examination. Moreover, a chest CT examination takes
30~170 times more radiation dose exposure than a chest X-ray [7]. Since a human can
hardly differentiate pectus excavatum from a frontal view chest X-ray, our proposal is to
use artificial intelligence to accomplish this task. Our aim is to train a machine learning
model to diagnose pectus excavatum from plain frontal chest radiography automatically,
without the need for a chest CT. It would not only economize manual labor and medical
expenses as a screening tool, but would also ensure that the potential diseased candidates
could be screened out for surgical repair to improve their quality of life, while helping them
to avoid extra radiation exposure.
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computed tomography (CT). Sample images used in our study: (a) posteroanterior-view chest X-
ray of a 24-year-old patient with PE with (b) CT calculated Haller index of 3.82. (c) Posteroanterior-
view chest X-ray of a 24-year-old patient with no abnormal radiographic finding with (d) CT calcu-
lated Haller index of 2.49. 

Figure 1. Pectus excavatum is diagnosed by Haller index > 3.25. Calculation of Haller index by mea-
surement of SVD (sternual-vertebral distance) divided by TD (transverse chest diameter) from chest
computed tomography (CT). Sample images used in our study: (a) posteroanterior-view chest X-ray
of a 24-year-old patient with PE with (b) CT calculated Haller index of 3.82. (c) Posteroanterior-view
chest X-ray of a 24-year-old patient with no abnormal radiographic finding with (d) CT calculated
Haller index of 2.49.
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Of note is that the PE diagnosis is unlikely from frontal chest radiograph images
without a chest lateral view or CT images.

Convolutional Neural Networks (CNN) and Medical Image Detection

Machine learning and artificial intelligence in the computing field aims to develop
algorithms to teach computers to detect patterns in data autonomously. Artificial neural
network (ANN) architecture and the further derived convolutional neural network (CNN)
architecture, as computing methods, can be used to develop an algorithm to achieve this
purpose. CNNs can be very good feature extractors which use filters to obtain convolutional
layer output, thereby reducing training parameters while keeping the accuracy. We can
also repeat the convolutional layers several times to go deep to make the model match
the data pattern more precisely [8]. Starting with LeNet-style [9], the following refined
well-known CNN architectures, VGG-style network, Inception and Inception-ResNet have
proven their powerful performance in image classification tasks. Some researchers have
applied these models for the interpretation of chest X-ray images to detect pneumothorax,
nodules, masses, opacity and fracture [10–12]. In recent research, the authers used VGG16
and VGG19 to identify pectus excavatum from chest computed tomography images [13].
However, artificial intelligence has not been yet applied for detecting PE from frontal chest
X-rays. Among the above CNN models, Xception is the latest proposed model derived
from Inception which has better performance on the ImageNet dataset and JFT (internal
datasets used at Google) dataset. Xception also had a smaller parameter count and higher
training speed compared to Inception V3 [14]. For reasons outlined above, we adopted
Xception as our model training algorithm.

2. Materials and Methods

All the radiographs and reports in our study database were obtained from the Taipei
Tzu-Chi Hospital, Taipei, Taiwan, ROC, and were fully anonymized. The study was
approved by the Ethics Committee and Institutional Review Board (IRB No: 11-XD-109).
The requirement for patient consent was waived by the Institutional Review Board.

Images of the posteroanterior-view chest radiographs for model implementation
were retrieved in JPEG format with 1760 × 2140 pixels from the clinical picture archiving
and communication system (PACS). These images were downsized to a resolution of
224 × 224 pixels and matted through YOLOv4, making them suitable for image recognition
by a CNN [15]. Every now and then, some extra mark can be seen for clinical use for
peripheral chest X-ray images. By object detection (YOLOv4) identifying the chest cage, we
can exclude those unrelated parts, such as peripheral marks usually used for clinical label
purposes and the limb girdle. Now that the CNN model can extract the diseased features,
the chest cavity is used for model training (Figure 2).

2.1. Data Set

Images were captured from 1 January 2006 to 31 December 2020 from patients aged
12–50. The collected images were divided into two independent datasets: CXRs from pectus
excavatum patients (PE) and normal (N). The PE dataset included images from patients
whose Haller index was determined to be greater than 3.25, measured and calculated
manually through chest CT, all of whom were diagnosed with PE and underwent surgical
treatment in our hospital. The images in the N dataset were obtained from a normal group
with no abnormalities in either frontal chest X-ray or chest CT. All the patients in the normal
group were verified to have no PE, based on the Haller index less than 3.25 calculated
manually from their chest CT images. The images in the two datasets were randomly
split into an 80:20 ratio for the training and test sets, respectively, by a computer program.
The test set, which is a holdout dataset, was never encountered by the algorithm during
training. This set was used to evaluate the trained models.
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2.2. Model Development

The convolutional neural network architecture used for our model implementation
was Keras Xception (version 2.5.0) in Tensorflow (2.5.0) [11]. This deep learning task was
executed in Google Colab using up to Tesla P100-PCIE. In the normalization process, we
normalized the X-ray intensity value of the 224 × 224 pixel image in the 0~255 range as
input data, computing using the process:

[(xi − min (x))/(max (x) − min (x))] × 255 (1)

The convolutional layers of Xception architectures were completely unchanged. After
going through transfer learning, the Xception architectures used for our model development
has its retained trained weights because it has been pretrained with an ImageNet large-
scale, multi-class labels dataset. The process flow of our model algorithm is exhibited
in Figure 3. We applied a cross-entropy loss function to obtain the final output of the
sigmoid function and Softmax classifier with two outputs to obtain our binary final result.
Nadamax was used as the optimizer. The batch size was set as 32. The learning rate and
learning rate schedule were all set to their default values. We did not use dropout or
image augmentation for our model because we have sufficient image data to compare to
pre-existing pectus excavatum image evaluation studies. We set early stopping to avoid
overfitting. The hyperparameters used during model development are listed in Table 1.

2.3. Model Evaluation

The primary outcome is the model’s performance in distinguishing patients with PE
from the frontal chest X-rays on the test set. The performance is depicted as a confusion
matrix. The accuracy, sensitivity, specificity and positive predictive values were com-
puted. The receiver operating characteristic (ROC) curves were plotted using matplotlib
(version 3.2.2).
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Figure 3. Xception architecture diagram: Xception is a complex multiple layers (deep) CNN structure
which contains both separatable depth-wise and pointwise convolutional layers. The Xception
architecture is composed of entry flow, middle flow and exit flow. After going through the entry flow
(blue part), the data then go through the middle flow which is repeated eight times (middle grey
part), and finally through the exit flow. After fully connected layer, all vectors go through SoftMax
function then binary cross-entropy loss to obtain binary classification results.
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Table 1. Hyperparameters during model training.

Parameter Values Explanation

Arch Xception Architecture: Xception

Imgshape 224 × 224 Image shape:
downsized image pixels

pooling Global average Pooling method after convoluted filter layers

LR default Learning rate

LR schedure default changes the learning rate during learning

Batch size 32 a number of samples processed everytime the model is updated

dropout 0 Dropout setting applied to fully connected layers

Augmentation
(zoom, shear, rotation) (0, 0, 0) Image transformation to expand data size

optimizer nadamax Optimization algorithm used for training

Batch normalization no A layer inserted before the pooling layer

2.4. Statistical Analyses

SPSS Statistics for Windows, version 24 (IBM Corp., Armonk, NY, USA), was used for
statistical analyses. The investigated parameters in our population were normally distributed
using the Kolmogorov–Smirnov test. Continuous data are depicted as mean ± standard
deviation, whereas categorical data are depicted as a count (%). The patient characteristics
of the PE and N datasets were compared through student’s t tests.

3. Results

A total of 2027 posteroanterior chest radiograph images were utilized, with 774 im-
ages in the PE dataset from 520 patients and 1253 images in the N dataset (normal group)
from 667 people. The PE group comprised 84.6% men and 15.4% women with an average
examined age of 23.4 ± 7.8 years. The N group comprised 49.2% men and 50.8% women
with an average examined age of 41.0 ± 6.7 years. A total of 27.3% of patients in the PE
group and 35.8% in the N group exhibited more than one image because they underwent
a series of chest X-ray examinations. We split our dataset into 80% training and 20% test
sets. The epidemiological data in the PE group had a significantly higher Haller index
(4 ± 1.2 vs. 2.5 ± 0.37) and the mean age was younger than that of the N group
(23.4 ± 7.8 vs. 41.0 ± 6.7). In our PE group, the proportion of men was dominant (84.6%);
nevertheless, women had a higher Haller index (p < 0.001). The mean Haller index of
women was higher in both the PE and N groups (p < 0.001). The prevalence of obvious
scoliosis with Cobb’s angle more than 20◦, noted concomitantly during chest X-ray review,
was 9.6% in the PE dataset and 4.2% in the N dataset. The shapes of chest wall depression
of PE were not identical in our patient group—53.1% were asymmetric (Table 2).

Model Performance

As previously mentioned, our model was implemented using Xception, a standard
network architecture in the Keras deep learning library [14]. We set early stopping in our
script code, wherein the training process is stopped if there is no improvement in accuracy
after three epochs. The highest accuracy for the model, evaluated on the test set, was
realized after 28 epochs on the training set. The test set used for evaluating the performance
of our model was not used previously during the training process. The confusion matrix
indicating our model performance is shown in Figure 3, with an accuracy of 0.973 ± 0.005,
precision of 0.986, recall of 0.943, F1-score of 0.964 and AUC of 0.976 ± 0.014 (Table 3;
Figure 4) [16].
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Table 2. Patient characteristics of the Training and Test Data Sets.

Characteristic PE Data Set N Data Set p Value

Total No. of chest X-rays
Mean examined age (y)

774
23.4 ± 7.8

1253
41.0 ± 6.7 <0.001

Patients (n)
Men (n)
Women (n)

520
440 (84.6%)
80 (15.4%)

667
328 (49.2%)
339 (50.8%)

Haller index, mean ± SD
Men
Women

4 ± 1.2
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4. Discussion

The development of convolutional neural networks (CNN) drives the progress of
imaging diagnostic medicine. In addition to automatic detection [17], it is also possible to
identify image features that are invisible to the human eye [18].

Since the release of the NIH ChestX-ray14 dataset [19], which contains 112,120 labeled
frontal chest X-rays, artificial intelligence algorithms for automated diagnosis from chest
radiographs have been developed. In addition to the ChestX-ray 14 (originally ChestX-ray
8), there are several large open-access chest X-ray datasets worldwide that may be utilized
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for future work, such as CheXpert from Stanford [20], MIMIC-CXR from M.I.T [21] and the
well-known Alicante hospital chest X-ray datasets with large chest X-ray image data [22].
These datasets enable the CNN architectures to be trained as chest X-ray automated di-
agnostic models. The most popular among these chest X-ray autodetection algorithms
is CheXNet, which can replicate radiologist-level pneumonia detection [23]. The trained
neural network CheXNeXt can concurrently [12] detect 14 different pathologic findings,
as classified in the NIH ChestX-ray 14 dataset on frontal-view chest radiographs. Many
such algorithms have proven to be just as feasible, valid and competitive as certified ra-
diologists for certain diagnoses [24,25]. Notably, none of these databases include the PE
category. The 14 pathology classes of ChestX-ray 14, the largest and most well-known
chest X-ray database, are pneumonia, pneumothorax, consolidation, atelectasis, nodule,
mass, infiltration, cardiomegaly, emphysema, edema, effusion, fibrosis, hernia and pleural
thickening. However, this does not include PE. To our knowledge, no attempt has been
made to diagnose PE from frontal chest radiographs. Previous studies have focused on
diseases which require label annotation from radiologists on chest X-rays compared to the
result of machine reading [11,12,26]. Our study applies the CNN algorithm innovatively to
detect PE; the distinguishing features of which are beyond the resolving power of human
eyes. There is no need for manual label annotation in our study. Nevertheless, in real world
clinical practice, the radiologist is not obligated (or unable) to diagnose PE from frontal
chest X-rays. The results of our study reveal that training established CNN architecture can
distinguish PE on frontal chest X-rays, which is not possible by the human eye.

For model implementation, we selected Xception, a novel deep CNN architecture that
replaces depth-wise separable convolutions in the inception algorithm. Xception performs
better than Inception V3 on the JFT dataset (an internal Google dataset) [14]. Some studies
compare several CNN architectures, such as VGG, Inception, Xception, ResNet, DenseNet
and EfficientNet to evaluate the machine learning performance and parameter optimization
of frontal chest X-ray interpretation [26,27]. Taylor et al. used VGG16, VGG19, Inception,
Xception and ResNet, and manipulated their parameters to determine the best model for
detecting pneumothorax in frontal chest X-rays. The best performing models published for
the prediction of pneumothorax have a validation AUC of 0.94. The performances of these
models are approximated after hyperparameter optimization [14]. In our study, we have
reported that Xception is a promising CNN architecture for the detection of pneumothorax
after parameter optimization, as it has a high accuracy of 0.973 and an AUC of 0.976. Further
studies are required to train different CNN architectures for better model establishment.

As PE is a low-prevalence disease, the available data are limited. At the beginning
of model development, we split the database into 70%, 15% and 15% for the training,
validation and test sets, respectively. Generally, datasets are often split into training set,
validation set and test set. However, we could not train the model successfully on this
setting because of the limited number of images. After discarding the validation set and
redistributing the data into training/test sets to increase the data in both sets, the training
model could be established. K-fold cross-validation is also a modified validation method
to split the training set into K parts which can be used as a validation set alternatively.
K-fold cross-validation is also a good way to evaluate the training model and tuning to
optimize the hyperparameter when the training data are limited [28]. It can be adopted for
our further experiment compared with the previous model. We selected adolescent and
adult patients for model implementation for two reasons: (i) the best time for PE repair
surgery is when patients are in their adolescence or young adulthood [29,30]; (ii) chest
X-rays confirmed as normal or with PE through chest CT during childhood are rare, and
those available could be extreme data that may disturb model training.

Considering the limited data for model training, the CNN architecture used for model
implementation was pretrained on the ImageNet dataset in the Keras library [31]. Ima-
geNet is an image database with more than 14 million images classified into more than
20,000 categories with hand-annotated objects on the pictures. Ke et al. (2021) compared
the transfer performance and parameter efficiency of 16 popular CNN architectures on
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a large chest X-ray dataset, and found that ImageNet pretraining provided a statistically
significant improvement in the algorithm performance [27].

Limitation

The population of our study is all Asian and male-dominant and is limited in com-
parison to those of other deep machine learning studies. We require more diverse pooling
data that include other races and more female data. This would enhance the validity of
the machine model and aid further study to compare different subgroups. In addition,
evaluation datasets from other institutions for external validation are requested. As the
Haller index is extensively used to quantify PE, and to indicate and evaluate the results of
surgery [6], we used a Haller index of 3.25 as the cutoff to separate the data into normal
and disease groups for deep learning training in our study. However, the Haller index
is not necessarily related to the severity of the patient’s symptoms and cardiopulmonary
function. Further studies can combine the relative symptoms and other parameters, in
addition to chest X-ray images, to render the proposed diagnostic model more effective.
Additionally, the image processing in our study was just downsizing and simple intensity
value normalization. In fact, when processing large amounts of image information, there
are state-of-the art methods proposed to help in denoising unnecessary signals as well as
in preserving the image texture and details. Wavelet denoising or denoising-compressed
sensing by regularization (DCSR) can be applied for image processing [32,33]. By the
denoising method, feature simplification may improve overfitting problem in our machine
learning model, which can be verified by further work.
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